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Frequency Response of Transmission Lines with Unevenly Distributed

Properties with Application to Railway Safety Monitoring*

Xiangyu Ni1 and Bill Goodwine2

Abstract— This paper proposes a method to quickly and
efficiently compute the voltage and current along a transmission
line which can be ”damaged”; that is its electrical properties
can be unevenly distributed. The method approximates a
transmission line by a self-similar circuit network and leverages
our previous work regarding the frequency response for that
class of networks. The main motivation arises from the research
for railway track circuit systems where transmission line models
are often employed. However, in contrast to real transmission
lines, railway track circuits are more likely to be damaged
due to its scale and environmental uncertainties; furthermore,
changes in circuit properties due to a train occupying a segment
of the track also is of great interest as a means to ensure safety.
As a result, an accurate and quick simulation of damaged track
circuits is necessary and can contribute to the corresponding
health monitoring research area in the future.

I. INTRODUCTION

Transmission line theory, credited to Oliver Heaviside,

determines the voltage and current along a transmission line

with respect to both spatial and temporal parameters. Its

effect is significant for the wiring purpose especially when

dealing with high frequency signals [1]. It is widely applied

in electrical engineering. For antenna systems, it is used

to determine the matching networks balancing a load with

its source [2]. It builds the foundation for physical models

of power line communications channel representing signal

propagation effects [3]. It is also employed to analyze the

cylindrical body model for studying interaction of a human

with electromagnetic fields [4].

The main motivation of this work is the implementation

of transmission line theory in railway track circuits which

automatically detects whether a sector of track is occupied

[5]–[8]. One drawback of applying the classical transmission

line theory to this problem is its assumption of uniformly

distributed electrical properties, which is unlikely for track

circuits. For instance, humidity in both soil and ballast bed

can impact those properties as indicated by [9]. In addition,

some sudden external influences, like lightning, can cause

damages to a track circuit system which may lead to a

catastrophic safety monitoring failures where two trains are

present within the same track segment.

As a result, in this work, we propose a method to quickly

compute the voltage and current along a transmission line

when its electrical properties are unevenly distributed with

example applications to simulating a damaged track circuit

*The support of the US National Science Foundation under Grant No.
CMMI 1826079 is gratefully acknowledged.
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system, as well as simulating a train passing along an intact

track circuit. The contribution of this paper can be further

employed more generally in the health monitoring research

area for track circuits.

The proposed method approximates a transmission line

by an electrical network with many subsections, and the

electrical properties are lumped in each subsection. The

electrical properties at one subsection can be different from

the others, which imitates a transmission line with unevenly

distributed properties. The transmission line model and its

approximated counterpart, the circuit network model, are

shown in Figures 1 and 2, and are similar to the networks

constructed in [7], [10], [11].

Leveraging a frequency-domain network modeling algo-

rithm proposed in our previous work [12], we can obtain

the impedance Vg/Ig and the voltage gain Vout/Vg at each

subsection g. Then, given one voltage observation inside the

network, e.g vout, we can obtain the voltage and current at

every node connecting two adjacent subsections. Note that

the network modeling algorithm presented in our previous

work [12] can be applied to any self-similar one-dimensional

networks. Therefore, the network model is not limited to

Figure 2, which is selected here merely due to its consistency

with the transmission line model in Figure 1. Readers with

different circuit network models can still follow the same

procedure proposed in this paper as well as the modeling

algorithm in [12]. This modeling approach yields a frequency

domain model where damage (or the fact that a rail segment

is occupied) is represented as a multiplicative disturbance,

which is particularly convenient for robust control analyses.

The rest of this paper is organized as follows. Section II

briefly reviews transmission line theory. Section III describes

our method to approximate voltage and current along a

transmission line through the circuit network model. To

validate the correctness of our approximation result, we

compare it to the transmission line theory in Section IV when

the electrical attributes are distributed evenly. In Section V,

we illustrate our method’s capability of evaluating voltage

and current along an unevenly distributed transmission line.

That capability is illustrated by two examples. The first

example is computing voltage and current along a railway

track circuit when a ballast degradation occurs. The second

one is assessing the current as a train is passing through an

intact track circuit. Finally, Section VI concludes this paper.

II. TRANSMISSION LINE THEORY

In this section, we briefly review transmission line theory

for a model shown in Figure 1. The goal is to obtain the
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Fig. 1. Model for transmission line theory. The left hand side is the input/transmitter end. The right hand side is the output/receiver end, where x = 0

+

−

vin

r1,1 l1,1

r1,2 l1,2

iin rb1 c1 v1

∆x

r2,1 l2,1

r2,2 l2,2

i1 rb2 c2 v2

∆x

· · ·

· · ·

vn−1

rn,1 ln,1

rn,2 ln,2

in−1 rbn cn

∆x

iout

Zoutvout

Fig. 2. Circuit network model with n subsections to approximate a transmission line

R Series resistance Ω/m
L Series inductance H/m
G Shunt conductance S/m
C Shunt capacitance F/m

TABLE I

NOTATIONS OF THE ELECTRICAL ATTRIBUTES USED IN THE

TRANSMISSION LINE MODEL

spatial and temporal distribution of voltage and current, i.e.

v(x, t) and i(x, t), given the boundary conditions at x = 0
and the values of the electrical attributes listed in Table I.

For an evenly distributed transmission line, those electri-

cal attributes are constant. Therefore, by using Kirchhoff’s

circuit laws, we have the following within an infinitesimal

distance ∆x.

v(x+∆x, t) −R∆xi(x+∆x, t)− L∆x
∂i(x+∆x, t)

∂t
− v(x, t) = 0,

and

i(x+∆x, t)−G∆xv(x, t) − C∆x
∂v(x, t)

∂t
− i(x, t) = 0.

Taking ∆x → 0, we obtain the following partial differential

equations.

∂v(x, t)

∂x
= Ri(x, t) + L

∂i(x, t)

∂t
,

∂i(x, t)

∂x
= Gv(x, t) + C

∂v(x, t)

∂t
.

Using separation of variables, we assume

v(x, t) = Re{v(x)ej(ωt+φ)}

i(x, t) = Re{i(x)ej(ωt+φ)},

which result in two decoupled second-order ordinary differ-

ential equations.

d2v

dx2
= γ2v,

d2i

dx2
= γ2i,

where γ =
√

(R + jωL)(G+ jωC). Using the boundary

conditions at x = 0, the final results is

v(x, t) = Re{v(x)ej(ωt+φ)}, (1)

i(x, t) = Re{i(x)ej(ωt+φ)}, (2)

where

v(x) =
v(0)

1 + µ
(eγx + µe−γx),

i(x) =
i(0)

1− µ
(eγx − µe−γx),

µ =
Z0 − Zc

Z0 + Zc

,

Zc =

√

R+ jωL

G+ jωC
.

Note that for an unevenly distributed transmission line, those

electrical attributes may vary with the distance x, which

makes such simple solutions difficult or impossible.

III. CIRCUIT NETWORK MODEL

In this section, we propose our procedure to quickly

approximate the voltage and current along a transmission

line which can have unevenly distributed physical param-

eters. Our method divides a long transmission line into n
subsections with equal length to form a circuit network where

electrical attributes lump into each subsection as shown in

Figure 2. The goal is to compute the voltage and current at

every node connecting two adjacent subsections, i.e. vg and



ig in Figure 2. Those would be discrete approximations of

the continuous results, v(x, t) and i(x, t) in Equations (1)

and (2), given by transmission line theory.

It is clear that the electrical components in Figure 2 can be

either same or different, which incidentally does not affect

the capability of our proposed method. When all components

are the same, that is

r1,1 = r1,2 = r2,1 = r2,2 = · · · = r,

l1,1 = l1,2 = l2,1 = l2,2 = · · · = l,

rb1 = rb2 = · · · = rb,

c1 = c2 = · · · = c,

the network is called undamaged, and those constants r,

l, rb, and c are the undamaged constants. Otherwise, the

network is damaged, in which case we use a pair of two

lists, (l, e), to describe a specific damage case, where l is

the list of damaged components, and e is the corresponding

list of damage amounts. As a concrete example, the damage

case

(l, e) = ([rb1, c2], [0.1, 2])

means rb1 = 0.1rb, and c2 = 2c, while all the other

components are undamaged.

Our previous work [12] proposed algorithms to com-

pute frequency response and transfer functions for one-

dimensional self-similar networks. For the specific applica-

tion in this paper, we can use a recursive algorithm from

[12] to obtain the following two quantities at each node in

Figure 2,

1) Impedance Zg = Vg/Ig ,

2) Voltage gain Hg = Vout/Vg.

That algorithm is listed in Algorithm 1. The returned values

Z and H are the impedance and the voltage gain at the

transmitter end. The input argument nG is the number of

subsections of the circuit network, and w is the angular

frequency at which the computation conducts, which is same

as the ω in Equations (1) and (2). In addition, zOut is the

impedance at the receiver end. The undamaged constants r,

l, rb, c, are grouped into the input argument undCst.

In Algorithm 1, the partition() function splits the

damage case (l,e) for the entire network into two parts,

where (l1,e1) is the damage case at the first generation,

and (lS,eS) is the damage case with respect to the subnet-

work after the first generation. Then, based on (l1,e1), the

getG1Cst() function computes the values of the constants

at the first generation, that is the values of r1,1, r1,2, l1,1, l1,2,

rb1 and c1. If the network in question has zero generations,

the returned impedance Z = zOut, and the returned voltage

gain H = 1. Otherwise, the input argument nG is reduced by

one, and a recursive call is made to obtain the impedance

ZS and voltage gain HS for the subnetwork given the

relevant damage case (lS,eS). Those two quantities are used

to compute the final result, the impedance Z and voltage

gain H for the entire network. By using series and parallel

connection rules of idealized electrical components, from

Algorithm 1 Computing the impedance Z and voltage gain

H at the angular frequency w for a circuit network with nG

number of generations given its damage case (l,e) and the

undamaged constants undCst

1: function[Z,H]=fR(l,e,undCst,zOut,w,nG)

2: s = j*w;

3: [l1,e1,lS,eS] = partition(l,e);

4: g1Cst = getG1Cst(l1,e1,undCst);

5: if nG == 0 then

6: [Z,H] = G0(zOut,s);

7: else

8: nG = nG-1;

9: [ZS,HS]=fR(lS,eS,undCst,zOut,w,nG);

10: Z = Zr(g1Cst,ZS,s);

11: H = Hr(g1Cst,Z,HS,s);

12: save(Z,H);

13: end if

Figure 3, we can obtain that

Z(s) = r1,1 + r1,2 + l1,1s+ l1,2s

+
1

1

rb1
+ c1s+

1

Zs(s)

,

H(s) = Hs(s)(1−
r1,1 + r1,2 + l1,1s+ l1,2s

Z(s)
),

which are conducted by the Zr() and Hr() functions.

Finally, the resultant Z and H are saved externally. Due to

the recursive nature of Algorithm 1, by doing so, all Zg and

Hg can be saved externally for any node g between two

neighboring subsections. Then, since Vout is known, which

serves as the boundary condition v(0, t) in Section II, we

can evaluate Vg and Ig at every node too.

Note that Algorithm 1 is not limited to the circuit network

shown in Figure 2. For other similar networks, the structure

of Algorithm 1 stays the same with necessary modifications

on the detailed computations inside some subordinate func-

tions. A more comprehensive explanation of Algorithm 1 can

be found in our previous work [12].

IV. EVENLY DISTRIBUTED ELECTRICAL ATTRIBUTES

To prove the correctness of our calculation in Section III,

we compare our discrete approximations to the continuous

results given by the transmission line theory when electrical

attributes are evenly distributed.

The boundary conditions at the receiver end are assumed

to be

v(0, t) = Re{110ej4600πt}V, (3)

Z0 = 500Ω,

i(0, t) = Re{0.22ej4600πt}A.

The above voltage and frequency are taken from [6]. The

length of the entire transmission line is set to be 1170m,



+

−

vin

r1,1 l1,1

r1,2 l1,2

iin rb1 c1
i1 v1 Zs(s)

Fig. 3. When coding the recursive Algorithm 1, we only focus on the first generation, because the impedance of the subnetwork Zs(s) = V1/I1 and
the voltage gain of the subnetwork Hs(s) = Vout/V1 are computed by the recursive call in Algorithm 1. (Hs(s) is not shown here.)

0 200 400 600 800 1000 1200
30

35

40

45

50

Im
pe

da
nc

e 
m

ag
ni

tu
de

 (
dB

)

0 200 400 600 800 1000 1200
x (m)

-5

0

5

10

Im
pe

da
nc

e 
ph

as
e 

(d
eg

re
e)

Fig. 4. Impedance Z at each node connecting two adjacent subsections
obtained by the circuit network model

which is from [7]. The constants for electrical attributes are

from [9] at the frequency 2300Hz, where

R = 2.5mΩ/m,

L = 1.8µH/m,

G = 20µS/m,

C = 0.2nF/m.

By knowing the above quantities, we can compute the

voltage v(x, t) and current i(x, t) given by the transmission

line theory according to Equations (1) and (2).

On the other hand, for our circuit network model, if we

use n subsections, the distance of each one is ∆x = 1170/n
meters. Therefore, the undamaged constants are

r = 2.5∆x/2 mΩ,

l = 1.8∆x/2 µH,

rb = 1/(20× 10−6∆x) Ω,

c = 0.2∆x nF,

which are grouped into the undCst to call Algorithm 1.

In addition, both l and e are empty lists indicating the

intact case, zOut = 500, w = 4600π, and nG = n. Then,

Algorithm 1 saves the impedance and voltage gain at each

node between two adjacent subsections, which are shown

in Figures 4 and 5 for the undamaged network with fifty

generations. After that, given the same boundary condition

v(0, t) in Equation (3), we can obtain the voltage and current

at those nodes.

The comparison between the transmission line theory’s

result and our circuit network’s result are shown in Figures 6

and 7, where maxt(|v(x, t)|) and maxt(|i(x, t)|) are plotted

versus the distance x. For the circuit network, we test three
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Fig. 5. Voltage gain H at each node connecting two adjacent subsections
obtained by the circuit network model
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Fig. 6. Maximum voltage maxt(|v(x, t)|) versus the distance x. The blue
curve is given by transmission line theory. The dots are given by our circuit
network model

networks with 5, 10, and 50 generations. From Figure 6, we

see that the Vmax given by the circuit model converges to

the one obtained by using transmission line theory as the

number of generations increases. From Figure 7, we observe

that the Imax given by both methods almost overlap each

other. In addition, to show that both magnitudes and phases

are correct, Figure 8 compares v(1170, t) at the receiver end

given by both methods. Hence, we can confirm that our

method provides a reasonable approximation of transmission

line model.

V. UNEVENLY DISTRIBUTED ELECTRICAL ATTRIBUTES

In this section, we illustrate our method’s capability of

computing voltage and current along an unevenly distributed

transmission line with the applications to railway track circuit

networks. All constants used in this section are same as those

in Section IV. Besides, we fix the number of subsections at

117 here, so each subsection takes 10m. In addition, we
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assume Vmax at the transmitter end is fixed at the one in

Figure 6, i.e. Vmax = 115V at x = 1170m.

The first example of unevenly distribution we showcase

here is ballast degradation, which means unusual current

leakage between the rails through the ballast [13]. In this

damage case, some shunt resistance rbg become lower and

shunt capacitance cg become higher. Here, we suppose a

ballast degradation happens between x = 100m and x =
1000m, that is between subsection 18 and subsection 107.

Note that the order of subsections is opposite to the direction

of x. Hence, the list of damaged components is

l =
[

rb18 · · · rb107 c18 · · · c107
]

.

The assumed list of damage amounts e is plotted in Fig-

ure 9. When the above damage case (l, e) is inputted to

Algorithm 1, the resultant voltage and current distribution

along the track obtained by our circuit network model for this

type of ballast degradation are shown in Figures 10 and 11.

Note that the other two damage cases mentioned in [13],

insulation imperfections and rail conductance impairments,

can also be simulated by our circuit network model.

The second example of uneven distribution is when a train

is moving along an intact track, which can be equivalently

viewed as a number of damage cases. We assume that a

190-meter train is moving from the receiver end to the

transmitter end at a constant speed 100m/s, that is it passes

one subsection every 0.1sec. Besides, the train has one wheel
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Fig. 9. The damage amounts e are plotted versus generations where the
blue dots are for the shunt resistance from rb18 to rb107 , and the red dots
are for the shunt capacitance from c18 to c107
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Fig. 10. The distribution of maxt(|v(x, t)|) at each node between two
adjacent subsections obtained by the circuit network model when the ballast
degradation occurs. The undamaged curve is obtained by transmission line
theory which is same as that in Figure 6

base every 10 meters, so there are 20 wheel bases in total.

Each wheel base acts as an additional shunt resistor across

two rails with resistance rw = 102.0408Ω. The undamaged

value of the shunt resistance in this case is

rb = 1/(20× 10−6 × 10) = 5000Ω.

When the shunt resistance rb is connected to the wheel base’s

resistance rw in parallel, the equivalent resistance is 100Ω. In

other words, when one wheel base is within one subsection,

we can consider that as if that corresponding shunt resistance

is damaged by a factor of 0.02. Therefore, this example of a

train moving along an intact track can be regarded as a time

series of damage cases, where the correspondence between

the time instance and the damage case is listed in Table II.

At each time instance in Table II, we use the corresponding

damage case in the second column to call Algorithm 1. Then,

we can evaluate the current at the receiver end, maxt |i(0, t)|
as the train is passing through this sector of track, which

is plotted in Figure 12. Note that Figure 12 shares similar

characteristics with real measurements presented in [13].

It is worth pointing out that every damage case only takes

around one second to compute with the setup of the 117-

generation network in this section. The computation is run

on MATLAB R2019b with a single CPU of Intel Core i7-

4510U Processor.
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Time (sec) Damage case (l,e)
0.1 ([rb117], [0.02])
0.2 ([rb117, rb116], [0.02, 0.02])
.
.
.

.

.

.
2 ([rb117, · · · , rb98], [0.02, · · · , 0.02])

2.1 ([rb116, · · · , rb97], [0.02, · · · , 0.02])
.
.
.

.

.

.
11.7 ([rb20, · · · , rb1], [0.02, · · · , 0.02])
11.8 ([rb19, · · · , rb1], [0.02, · · · , 0.02])

.

.

.
.
.
.

13.6 ([rb1], [0.02])

TABLE II

THE EQUIVALENT DAMAGE CASE AT EACH TIME INSTANCE FOR THE

TRAIN PASSING EXAMPLE

VI. CONCLUSIONS

This paper presents a method to rapidly and accurately

compute voltage and current along a transmission line,

especially when its electrical properties are unevenly dis-

tributed. The proposed method divides a transmission line

into many subsections to form a circuit network, where

electrical attributes are lumped at each generation. Thus,

that model offers opportunities to imitate an unevenly dis-

tributed transmission line by a damaged network. Thanks to a

modular recursive algorithm designed to compute frequency

response for a general class of one-dimensional self-similar
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Fig. 12. The variation in the current at the receiver end, maxt |i(0, t)|, as
the train passing through an intact track obtained by our modeling algorithm

networks, we can thereby quantify the voltage and current

at each node inside that network. The correctness of our

method is proved by comparing our result to the one given

by the transmission line theory when the electrical attributes

are evenly distributed. In addition, we illustrate our method’s

ability to simulate an unevenly distributed transmission line

by providing two real application examples of railway track

circuit systems. One of them concerns a damage situation

when a ballast degradation occurs. The other quantifies the

current’s variation as a train is passing through. The proposed

method of quickly simulating a railway track circuit under

various conditions can be applicable to the relevant health

monitoring research area. For instance, it may be suitable

for some damage detection methods with supervised learning

tools and offers a baseline case of how the circuit would

respond with respect to different types of situations.
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