
Lightweight Monocular Depth Estimation with an Edge Guided Network

Xingshuai Dong1, Matthew A. Garratt1, Sreenatha G. Anavatti1, Hussein A. Abbass1 and Junyu Dong2

Abstract— Monocular depth estimation is an important task
that can be applied to many robotic applications. Existing
methods focus on improving depth estimation accuracy via
training increasingly deeper and wider networks, however these
suffer from large computational complexity. Recent studies
found that edge information are important cues for convolutional
neural networks (CNNs) to estimate depth. Inspired by the above
observations, we present a novel lightweight Edge Guided Depth
Estimation Network (EGD-Net) in this study. In particular, we
start out with a lightweight encoder-decoder architecture and
embed an edge guidance branch which takes as input image
gradients and multi-scale feature maps from the backbone to
learn the edge attention features. In order to aggregate the
context information and edge attention features, we design a
transformer-based feature aggregation module (TRFA). TRFA
captures the long-range dependencies between the context in-
formation and edge attention features through cross-attention
mechanism. We perform extensive experiments on the NYU
depth v2 dataset. Experimental results show that the proposed
method runs about 96 fps on a Nvidia GTX 1080 GPU whilst
achieving the state-of-the-art performance in terms of accuracy.

I. INTRODUCTION

Depth estimation refers to estimating depth maps from
RGB images, and has been widely explored in computer
vision and robotics [1]. It is a fundamental perception com-
ponent of robotic systems. Active sensors such as RGB-
D cameras and LiDAR provide accurate depth perception.
However, these devices are heavy and require high power
consumption that cannot be deployed on resource constrained
platforms. In contrast, monocular depth estimation (MDE) is
inexpensive, and achievable in compact form factors with high
energy efficiency.

Recent developed methods [2]–[6] learn deeper (more
layers) and wider (more channels in each layer) models that
produce better depth estimation performance. Particularly,
these methods aim to improve depth estimation accuracy
other than achieve real-time running speed. This makes them
difficult to run in edge platforms where reaction time is crucial
for operating safety such as for obstacle avoidance in small
sized autonomous robots.

In order to solve the problem of running speed on embed-
ded platforms, lightweight CNNs such as ERFNet [7] and
MobileNets [8], [9] have been employed to design lightweight
MDE networks [10], [11]. Moreover, Wofk et al. [11] applied
network pruning technique to further reduce the number of
parameters. Although these methods achieve real-time speed
on embedded platforms, their accuracy are inferior to state-
of-the-art methods.

In addition, the above discussed methods [10]–[12] employ
encoder-decoder style network architectures. However the

1Xingshuai Dong, Matthew A. Garratt, Sreenatha G. Anavatti and Hussein
A. Abbass are with the School of Engineering and Information Technology,
University of New South Wales, Canberra, ACT 2612, Australia

2Junyu Dong is with the School of Computer Science and Technology,
Ocean University of China, Qingdao 266100, China

(a) (b)

(c) (d)

Fig. 1: Example comparison of estimated depth maps. (a)
RGB image, (b) Ground-truth depth, (c) Wofk et al. [11] and
(d) Our method.

downsampling operations in the encoder network distort fine
details in lower resolution layers, which leads to blurry
results around object edges. To avoid the loss of spatial
information, MobileXNet [13] stacked two relatively shallow
encoder-decoder style subnetworks back-to-back in a unified
framework. According to [14], [15], the edges in input images
are important cue for CNNs to predict depth.

This study aims to address the above problems by designing
a novel lightweight network which adopts edge attention
features to guide MDE. Specifically, we integrate the depth
estimation branch and an edge guidance branch in a unified
network, named Edge Guided Depth Estimation Network
(EGD-Net). EGD-Net is built on top of a shallow (less layers)
and narrow (less channels in each layer) encoder-decoder
network and applies edge attention features to guide the depth
estimation. The contributions of this study are attributed as
follows: (1) we propose a novel lightweight monocular depth
estimation network, named EGD-Net, which employs edge
attention features to guide the task of depth estimation; (2) we
design a channel attention-based feature fusion module; (3)
we design a transformer-based feature aggregation module,
which captures the long-range dependencies between the
edge attention features and the context information; (4) we
demonstrate the effectiveness of our designed method through
extensive experiments.

II. RELATED WORK

A. Convolutional Neural Networks

Starting from the appearance of AlexNet [16], CNNs have
significantly advanced the progress of computer vision. Over
the past few years, many CNN architectures such as ResNet
[17] and SENet [18] have been designed. The development

ar
X

iv
:2

20
9.

14
82

9v
1

 [
cs

.C
V

]
 2

9
Se

p
20

22

Extension

Edge Guidance Branch

Edge

Head

ECM

Edge Loss

Laplacian

Kernel

Depth Loss

2x

4x

8x

2xC

C

Sobel

E
-B

lo
ck

-2
E

-B
lo

ck
-2

E
-B

lo
ck

-1
E

-B
lo

ck
-1

E
-B

lo
ck

-3
E

-B
lo

ck
-3

E
-B

lo
ck

-4
E

-B
lo

ck
-4

TRFA

CC

D
-B

lo
ck

-2
D

-B
lo

ck
-2

D
-B

lo
ck

-1
D

-B
lo

ck
-1

3
x

3
 C

o
n

v
3

x
3

 C
o

n
v

D
-B

lo
ck

-3
D

-B
lo

ck
-3

3
x

3
 C

o
n

v

3
x

3
 C

o
n

v

3
x

3
 C

o
n

v

Decoder

Multi-scale Feature Extractor

2x

4x

8x

C E-BlockE-Block

D-BlockD-Block

TRFA

Edge Head

Transformer-Based Feature

Aggregation Module

Edge Head

Encoder

Block

Decoder

Block

Concatenate

2x Upsample

4x Upsample

8x Upsample

Extension
Extension

Module

Channel Attention-

Based Feature Fusion

Module

3
x

3
 C

o
n

v
3

x
3

 C
o

n
v

3x3 Conv3x3 Conv
3x3 Conv

+BN+ReLU

Supervision

Max Pooling

ECM
Edge Compact

Module

3
x

3
 C

o
n

v
3

x
3

 C
o

n
v

3
x

3
 C

o
n

v
3

x
3

 C
o

n
v

C
o

n
ca

te
n

a
te

C
o

n
ca

te
n

a
te

Feature

Aggregation

32 24 32 96

32 32 24 24 32 32 96 96

128

128

24 32 96

32 32 1

64 1

248

128

128160961206496

32

96

96

2D1D 3D 4D 5D

1E 2E 3E 4E 5E 6E

cF

aF

edgeL

depthL

1 1 1

1 8 1

1 1 1

− − −
 − −

− − −

Fig. 2: Illustration of our EGD-Net architecture.

trend is to increase the depth and width of CNNs to enhance
the accuracy. However, these advances neglect the need to
make networks more efficient with respect to the size and
speed required for some real-time applications. Howard et
al. [8] designed the first lightweight CNN, MobileNet, for
mobile and embedded vision applications. MobileNet is built
on top of depthwise separable convolutions, which decompose
a regular convolution into a depthwise convolution and a 1×1
pointwise convolution. Later, Sandler et al. [9] extended [8]
through a novel efficient convolutional block with inverted
residual and linear bottleneck. ShuffleNet [19] applied chan-
nel shuffle operators in the channel dimension of feature maps
to make cross-group information flow for group convolution
layers. Tan et al. [20] developed an EfficientNet-B0 baseline
network by using neural architecture search and scaled it up
to get a set of models, named EfficientNets.

B. Monocular Depth Estimation

Monocular depth estimation (MDE) is a task that estimates
dense depth maps from single RGB images. Motivated by the
success of CNNs in image classification, Eigen et al. [21] de-
signed the first MDE network. Later, Laina et al. [2] designed
a fully convolutional network which includes an encoder and
a decoder. Inspired by [2], Hu et al. [5] combined the encoder-
decoder network with a multi-scale feature fusion module and
a refinement module. Later, Chen et al. [4] exploited multiple
scale scene structure information to estimate depth maps. Ye
et al. [6] designed a dual branch network architecture for
MDE, named DPNet. DPNet incorporates a spatial branch
to retain spatial details and produce high resolution features.
The produced high resolution features are fused with features

from the contextual branch in a refinement module. Recently,
Chang et al. [22] designed a hybrid network consisting of
a Transformer-based encoder and a CNN-based decoder to
solve the MDE problem. The above discussed methods focus
more on depth estimation accuracy and use large backbones or
complex architectures to achieve performance increase which
lead to increased computational complexity.

Spek et al. [10] designed a lightweight depth estimation
network on the basis of “non-bottleneck-1D” block [7].
Although the designed network achieves real-time speed on
the Nvidia TX2 GPU, its accuracy is inferior. Wofk et al.
[11] introduced a lightweight encoder-decoder network for
MDE. Besides, they employed network pruning method to
further reduce the amount of parameters. Dong et al. [13]
introduced a real-time MDE network which stacks two simple
encoder-decoder style network in a unified framework. Exist-
ing methods employ encoder-decoder network to aggregate
high-level and low-level features to regress depth. Researches
in [14], [15] demonstrated that the edges in input images are
important cue for CNNs to predict depth. In addition, Fan et
al. [23] fused the learned detail information and contextual
features to perform semantic segmentation. Inspired by the
above described methods, we design a novel lightweight
network which integrates an edge guidance branch to produce
edge attention features to guide the task of depth estimation.

III. METHODOLOGY

This study proposes a novel lightweight monocular depth
estimation network, EGD-Net. Fig. 2 illustrates the architec-
ture of EGD-Net, which is composed of four parts: multi-scale
feature extractor, edge guidance branch, feature aggregation
module and decoder.

3x3 Conv

Sigmoid

Upsample 4x

3x3 Conv

Sigmoid

Upsample 4x

3x3 Conv, S=2

3x3 Conv, S=1

3x3 Conv, S=1

3x3 Conv, S=2

3x3 Conv, S=1

3x3 Conv, S=1

(b)(a)

Fig. 3: (a) The edge compact module, where S denotes
stride. (b) The edge head, where “3× 3 Conv” has no batch
normalization and ReLU.

A. Multi-scale Feature Extractor

The multi-scale feature extractor (MSFE) consists of a
backbone (E-Block-1, 2, 3, 4) and an extension module. We
adopt a lightweight CNN, MobileNetV2 [9] as the backbone.
To adapt MobileNetV2 to the MDE task, we remove the layers
after the fourth convolutional stage. Thus, the final features
from the backbone are 1/16 size of the input image. To further
enhance the representation ability of produced features, we
add an extension module after the backbone. The extension
module is comprised of six dilated Inverted Residual Blocks
(IRBs) and each IRB has different dilation rate to capture
multiple scales context information. Specifically, the dilation
rates are set as 1, 2, 3, 1, 2 and 3. Furthermore, the
expansion factor and stride values in IRB are set as 4 and
1 respectively. For convenience, we define the output feature
maps from the MSFE as D1, D2, D3, D4, D5, with strides of
21, 22, 23, 24, 24, respectively.

B. Edge Guidance Branch

Edge information are important cues for CNNs to predict
depth [14], [15]. To model the edge attention features for
guiding the task of depth estimation, we design an edge guid-
ance branch (EGB) which is composed of a few convolutional
layers interleaved with channel attention-based feature fusion
modules (CAFF). EGB takes image gradients as well as the
intermediate features from the MSFE as input and outputs
edge images and high resolution feature maps. We first extract
image gradients in x and y directions from the input image
with the Sobel operator. Image gradients are processed by an
edge compact module (Fig. 3 (a)) to generate features (E1)
at 1/2 size of the input image. The generated features (E1)
are fused with D1 through the CAFF.

As shown in Fig. 4, intermediate feature maps generated
by the MSFE (Di) and EGB (Ei) are concatenated along
the channel dimension. The concatenated features are passed
through a 1×1 Conv+BN+ReLU layer to reduce the channel
dimension to half size. Next, we pool the reduced features to a
feature vector, which is then processed by 1×1 convolutions,
ReLU and Sigmoid operators to get an attention map. The
attention map is multiplied with Di and Ei respectively.
These multiplied features are added element-wise to build
a fused feature. The fused feature is then convolved with

C
o

n
ca

te
n

a
te

R
eL

U

A
v

g
P

o
o

li
n

g

1
x
1

 C
o
n

v

R
eL

U

S
ig

m
o

id

×

×

B
N

+

F
u

se
d

1
x
1

 C
o
n

v
1

x
1

 C
o
n

v

1
x
1

 C
o
n

v
1

x
1

 C
o
n

v

i
E

i
D

Fig. 4: Illustration of the channel attention-based feature
fusion module (CAFF), where “1 × 1 Conv” has no batch
normalization and ReLU, “×” and “+” represent multiply
and add operations respectively.

Q K V

LinearAttention Layer

Cat&Linear&Norm

AddAdd

ConcatConcat

h

(b) (c)

(a)

MatMulMatMul

elu(∙) + 1 elu(∙) + 1

MatMul

Q K V

k vD D

MatMul

elu(∙) + 1 elu(∙) + 1

MatMul

Q K V

k vD D

MLP&Norm MLP&Norm

LTR Encoder

LTR Encoder

B
N

B
N

R
eL

U
R

eL
U

1
x

1
 C

o
n

v
1

x
1

 C
o

n
v

aF

5D

5D

6E

6E

LTR Encoder

LTR Encoder

B
N

R
eL

U

1
x

1
 C

o
n

v

aF

5D

5D

6E

6E

if jf

if

Fig. 5: (a) The transformer-based feature aggregation module
(TFAM), where LTR represents linear transformer. (b) LTR
encoder layer, h means the multiple heads of attention, which
is set as 4 in this study. (c) Linear attention layer.

a 3 × 3 Conv-BN-ReLU layer. We denote the feature maps
generated by the EGB as E1, E2, E3, E4, E5, E6, with strides
of 21, 21, 22, 23, 24, 24, respectively.

Feature maps from EGB (E3, E4, E5) are resized to 1/2
size of the input image and concatenated with E2 and then
pass through a 3×3 Conv-BN-ReLU layer. As shown in Fig.
2, the output feature (Fc) from the 3×3 Conv-BN-ReLU layer
is used as the input of two directions. The first direction is the
edge head, which produces edge maps for supervision. The
second direction is passed to the decoder to act as the edge
guidance feature. In addition, E5 is convolved with a 3 × 3
Conv-BN-ReLU layer and generates E6, which is fed to the
TRFA module to aggregate with the context rich feature from
the MSFE. In this study, the edge detection is modeled as a
binary segmentation task. To obtain the ground-truth binary
edge images, we adopt the Laplacian operator to extract edge
maps from the ground-truth depth maps. The edge guidance
branch is directly supervised by the binary edge labels. Thus,
it learns edge attention features.

C. Transformer-Based Feature Aggregation Module

In order to combine the edge attention features from the
EGB and context rich features from the MSFE to produce

high resolution depth maps, we design a transformer-based
feature aggregation module (TRFA). TRFA consists of two
linear transformer encoder layers [24] and a 1 × 1 Conv-
BN-ReLU layer. The core element of the linear transformer
encoder layer is that the linear attention layer computes the
attention between a set of query vectors (Q) and key vectors
(K) using dot-product similarity, which is then used to weigh
a set of value vectors (V). Thus, the attention computation
selects the relevant information through measuring the simi-
larity between the query vector and each key vector.

Inspired by [25], we adopt the linear transformer encoder
layer to capture the long-range dependencies (or global con-
text) between the edge and context features through cross-
attention in two directions. As shown in Fig. 5, the input
features to linear transformer encoders are (D5, E6) and
(E6, D5) respectively. Then, features from the linear trans-
former encoder layers are concatenated and passed through
the 1× 1 Conv-BN-ReLU layer to aggregate them together.

The output features from TRFA are first upsampled to two
times in size and then fed to the decoder. The decoder is
composed of a 3×3 Conv-BN-ReLU layer and three decoder
blocks (D-Block-1, 2, 3), each decoder block includes a 3×3
Conv-BN-ReLU layer and a bilinear interpolation with a scale
factor of 2. The decoder incorporates features (Fa) from the
TRFA, low-level features (D1, D2, D3) from the MSFE, and
the high resolution features (Fc) from the EGB to produce
depth maps with the same size as input images.

D. Loss Function

The designed network includes two branches that output
depth maps and edge maps respectively. For the task of
monocular depth estimation, we adopt the loss function
proposed in [13]. This loss stacks the regular L1 loss:
L1(d, d

∗) = 1
N

∑N
i |di − d∗i | and the image gradient based

L1 loss: Lgrad(d, d
∗) = 1

N

∑N
i |5x(di, d

∗
i)|+ |5y(di, d

∗
i)|,

where N is the total number of pixels being considered, d
and d∗ are the predicted and ground-truth depth, 5x and 5y

are the spatial derivatives in x and y directions. The depth
estimation loss can be written as: Ldepth = L1 + Lgrad.
For edge detection, we employ the standard binary cross-
entropy (BCE) loss Ledge, which is defined as:Ledge =
−
∑

i(e
∗
i logei + (1− e∗i)log(1− ei)), where ei and e∗i are

the detected and ground-truth edges. Finally, the whole loss
function is formulated as: L = λ1Ldepth + λ2Ledge, where
λ1 and λ2 are the hyper-parameters, we empirically set λ1 =
1 and λ2 = 20.

IV. EXPERIMENTS

To demonstrate the effectiveness of our proposed EGD-Net,
we evaluate it on the NYU depth v2 dataset [26].

A. Implementation Details

The designed network is implemented in PyTorch. A
workstation with a single Nvidia RTX 3090 GPU is used
for training and testing. The weights of the backbone of
the MSFE are initialized with the weights pre-trained on
ImageNet. The other layers are randomly initialized. The
training is optimized by using the SGD optimizer, and the
batch size is set as 8. We train the network for 25 epochs.
The poly learning rate policy is adopted, the learning rate for

the nth epoch is init lr × (1 − n
max epoch)

power, where the
init lr and power are set as 0.01 and 0.9 respectively.

During training, we employ data augmentation approaches
to increase the diversity of training samples. Data augmenta-
tions are applied to each RGB and ground-truth depth image
pair in an online fashion:
• Random Flips: RGB and ground-truth depth image pairs

are horizontally flipped at a probability of 0.5.
• Random Rotation: RGB and ground-truth depth image

pairs are randomly rotated by a degree of r ∈ [−5, 5].
• Color Jitter: the brightness, contrast and saturation values

of the RGB images are randomly scaled by a factor of
c ∈ [0.6, 1.4].

B. Dataset and Evaluation Metric
We evaluate the proposed method on the commonly used

NYU depth v2 dataset [26], which was collected in real-world
indoor surroundings with a Microsoft Kinect camera. The
original images have a resolution of 640 × 480 pixels. In
this work, we train our method on the training set proposed
by Hu et al. [5] and evaluate it on the offical testing set
including 654 RGB and depth image pairs. Each image pair
is downsampled to 342 × 256 and then center cropped to
320×240. We first compare our proposed method with state-
of-the-art methods and then perform ablation experiments to
validate the contribution of each component of the proposed
network.

We adopt three widely used metrics to evaluate the pro-
posed method. Since our aim is to estimate depth maps from
RGB images, only the error and accuracy metrics of depth
estimation are compared. Let N denotes the total number of
valid pixels, di and d∗i represent the estimated and ground-
truth depth values at the pixel indexed by i, respectively. The
error metrics are defined as follows:
• Root Mean Square Error (RMSE):

√
1
N

∑N
i |di − d∗i |2.

• Mean Relative Error (REL): 1
N

∑N
i
|di−d∗

i |
di

.
• δi Accuracy: % of di s.t. max(d

∗

d ,
d
d∗) < δi, δi = 1.25i.

C. Comparison with State-of-the-art
In this subsection, we compare the performance of our

EGD-Net with state-of-the-art methods [4], [5], [11]–[13],
[27] in terms of the amount of network parameters (Params.,
million), error (RMSE and REL) and accuracy (δ1, δ2 and
δ3) metrics. Quantitative results of our proposed method and
state-of-the-art methods are listed in Table I. For [4], [5] we
report the corresponding results from their papers. The results
of [12], [27] are reported in [12]. We retrained [11], [13]
with the same training and testing procedure as described in
Section IV-A. To compare fairly, [11], [13] are supervised by
the depth loss described in Section III-D.

It can be observed that: (1) among all methods, EGD-Net
has the lowest amount of parameters. In particular, EGD-Net
has >2.5× fewer parameters than [12], [27], >11× fewer
parameters than MobileXNet [13], >71× fewer parameters
than Hu et al. [5], and >95× fewer than Chen et al. [4];
(2) with much fewer network parameters, EGD-Net generates
the best RMSE performance while its δ2 and δ3 metrics are
very close to Hu et al. [5] and Chen et al. [4]; (3) EGD-Net
outperforms [11]–[13], [27] in terms of all error and accuracy
metrics.

TABLE I: Comparison of performances on the NYU depth v2 dataset [26]. ↑ means higher is better, ↓ means lower is better.
The red and bold values indicate the best results.

Method Backbone Params. ↓ RMSE ↓ REL ↓ δ1 ↑ δ2 ↑ δ3 ↑
Hu et al. [5] SENet-154 157.0 M 0.530 0.115 0.866 0.975 0.993

Chen et al. [4] SENet-154 210.3 M 0.514 0.111 0.878 0.977 0.994
Wofk et al. [11] MobileNet 20.67 M 0.529 0.155 0.789 0.950 0.987

Tu et al. [27] MobileNetV2 5.7 M 0.531 0.147 0.801 0.956 0.989
Rudolph et al. [12] DDRNet-23-slim 5.8 M 0.501 0.138 0.823 0.961 0.990
MobileXNet [13] MobileNet 24.95 M 0.507 0.149 0.807 0.953 0.989

Ours MobileNetV2 2.21 M 0.486 0.136 0.825 0.960 0.990

TABLE II: Ablation study on different feature aggregation methods. ↑ means higher is better, ↓ means lower is better. “w
CAFFM” means the EGB includes the CAFF module. “w/o CAFFM” indicates the EGB does not include the CAFF module.
The red and bold values indicate the best results.

Method Params. ↓ RMSE ↓ REL ↓ δ1 ↑ δ2 ↑ δ3 ↑
Baseline 1.56 M 0.520 0.149 0.796 0.955 0.988

Baseline + EGB 2.01 M 0.514 0.149 0.808 0.959 0.990
Baseline + TAFM 2.19 M 0.506 0.144 0.810 0.955 0.986

Baseline + EGB (w CAFF) + TAFM 2.21 M 0.486 0.136 0.825 0.960 0.990
Baseline + EGB (w/o CAFF) + TAFM 2.16 M 0.489 0.144 0.817 0.960 0.989

TABLE III: Ablation study on different backbones. ↑ means higher is better, ↓ means lower is better. The red and bold values
indicate the best results.

Backbone Params. ↓ RMSE ↓ REL ↓ δ1 ↑ δ2 ↑ δ3 ↑
ResNet-18 [17] 6.43 M 0.489 0.144 0.818 0.960 0.990

EffcientNet-B0 [20] 2.63 M 0.555 0.161 0.771 0947 0.988
ShuffleNetV2 [19] 3.37 M 0.514 0.155 0.798 0.949 0.986
MobileNetV2 [9] 2.21 M 0.486 0.136 0.825 0.960 0.990

Regarding the running speed, EGD-Net runs about 96
fps (GPU reference time is 10.4 ms) on a Nvidia GTX
1080 GPU (2580 CUDA cores and 8GB memory), which
is adequate for real-time robotic applications. We present the
qualitative comparison of our results with Wofk et al. [11]
and MobileXNet [13] in Fig. 6. It can be observed that our
proposed method can predict finely detailed object boundaries
while [11], [13] cannot predict clearly.

D. Ablation Experiments and Analyses

To analyze the contribution of each component of the
designed network, we perform experiments with different
deployments on the NYU Depth v2 dataset [26]. The training
and testing strategies are kept the same as Section IV-A.

1) Contribution of Different Components: We setup a
baseline network that is consisted of the multi-scale feature
extractor and the decoder shown in Fig. 2. The baseline
method is trained with the depth loss described in Section III-
D. The edge guidance branch and transformer-based feature
aggregation module are added to the baseline step by step.

As show in Table II, the baseline has the lowest amount
of parameters, while it yields the worst results. When we
combine the proposed EGB with the baseline, it outperforms
the baseline in terms of RMSE, δ1, δ2 and δ3. To explore
the influence of the proposed TRFA, we append it to the
baseline network and train it with the depth loss. With the
same training procedure, it outperforms the baseline and the
combination of “Baseline + EGB”. Finally, our whole EGD-
Net (line 4, Table II), with both EGB and TRFA and trained
with the whole loss function, yields the best performance
in terms of all metrics. To evaluate the contribution of the
proposed CAFF, we design a variant by replacing CAFF
with pixel-wise addition (Baseline + EGB (w/o CAFF) +

TAFM). According to the last two lines, the CAFF improves
the performance of EGD-Net in term of all error and accuracy
metrics.

2) Comparison of Different Backbones: In this subsec-
tion, we investigate the influence of adopting different back-
bones in the MSFE. We compare MobileNetV2 [9] with
three CNNs, ResNet-18 [17], EfficientNet-B0 [20] and Shuf-
fleNetV2 [19]. Specifically, ResNet-18 [17] is a general CNN,
ShuffleNetV2 [19] and EfficientNet-B0 [20] are lightweight
CNNs. The weights of all backbones are initialized from the
pre-trained models on ImageNet. To make the backbones
compatible with the fixed feature aggregation module, we
fixed the channel dimension of the final feature maps from the
MSFE (D5) and EGB (E6) to 128. We report the results of
four backbones in Table III. As can be observed, when using
MobileNetV2 [9] as backbone the proposed method achieves
the best trade-off between accuracy and computation com-
plexity. In particular, it has the lowest amount of parameters
and yields the best performance in terms of both error and
accuracy metrics.

V. CONCLUSION

In this paper, we introduced a novel lightweight monocular
depth estimation network, named EGD-Net. Specifically, we
designed an Edge Guidance Branch to detect edges and
produce edge attention features that contain edge information.
Moreover, a transformer-based feature aggregation module
has been designed to learn the long-range dependencies
between the edge and context features and aggregate them
together. Extensive experiments on the NYU depth v2 dataset
demonstrated the effectiveness of our proposed network. In
future work, we will extend our approach to real-world and
simulated outdoor environments.

(a) (b) (c) (d) (e)

Fig. 6: Qualitative results from the NYU depth v2 dataset. (a) RGB image, (b) Ground-truth depth, (c) Wofk et al. [11], (d)
MobileXNet [13] and (e) Our results. Color represents depth (yellow is far, blue is close).

REFERENCES

[1] X. Dong, M. A. Garratt, S. G. Anavatti, and H. A. Abbass, “Towards
real-time monocular depth estimation for robotics: A survey,” IEEE
TITS, 2022.

[2] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab,
“Deeper depth prediction with fully convolutional residual networks,”
in 3DV, 2016, pp. 239–248.

[3] I. Alhashim and P. Wonka, “High quality monocular depth estimation
via transfer learning,” arXiv preprint arXiv:1812.11941, 2018.

[4] X. Chen, X. Chen, and Z.-J. Zha, “Structure-aware residual pyra-
mid network for monocular depth estimation,” arXiv preprint
arXiv:1907.06023, 2019.

[5] J. Hu, M. Ozay, Y. Zhang, and T. Okatani, “Revisiting single image
depth estimation: Toward higher resolution maps with accurate object
boundaries,” in WACV, 2019, pp. 1043–1051.

[6] X. Ye, S. Chen, and R. Xu, “DPNet: Detail-preserving network for high
quality monocular depth estimation,” PR, vol. 109, p. 107578, 2021.

[7] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo, “ERFNet:
Efficient residual factorized ConvNet for real-time semantic segmenta-
tion,” IEEE TITS, vol. 19, no. 1, pp. 263–272, 2017.

[8] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[9] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in CVPR,
2018, pp. 4510–4520.

[10] A. Spek, T. Dharmasiri, and T. Drummond, “CReaM: Condensed real-
time models for depth prediction using convolutional neural networks,”
in IROS, 2018, pp. 540–547.

[11] D. Wofk, F. Ma, T.-J. Yang, S. Karaman, and V. Sze, “FastDepth: Fast
monocular depth estimation on embedded systems,” in ICRA, 2019, pp.
6101–6108.

[12] M. Rudolph, Y. Dawoud, R. Güldenring, L. Nalpantidis, and V. Be-
lagiannis, “Lightweight monocular depth estimation through guided
decoding,” arXiv preprint arXiv:2203.04206, 2022.

[13] X. Dong, M. A. Garratt, S. G. Anavatti, and H. A. Abbass, “Mo-
bileXNet: An efficient convolutional neural network for monocular
depth estimation,” arXiv preprint arXiv:2111.12334, 2021.

[14] T. v. Dijk and G. d. Croon, “How do neural networks see depth in
single images?” in ICCV, 2019, pp. 2183–2191.

[15] J. Hu, Y. Zhang, and T. Okatani, “Visualization of convolutional neural
networks for monocular depth estimation,” in ICCV, 2019, pp. 3869–
3878.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImagenNet classifi-
cation with deep convolutional neural networks,” in NIPS, 2012, pp.
1097–1105.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778.

[18] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
CVPR, 2018, pp. 7132–7141.

[19] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2: Practical
guidelines for efficient CNN architecture design,” in ECCV, 2018, pp.
116–131.

[20] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for convo-
lutional neural networks,” in ICML, 2019, pp. 6105–6114.

[21] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a
single image using a multi-scale deep network,” in NIPS, 2014, pp.
2366–2374.

[22] W. Chang, Y. Zhang, and Z. Xiong, “Transformer-based monocular
depth estimation with attention supervision,” in BMVC, 2021.

[23] M. Fan, S. Lai, J. Huang, X. Wei, Z. Chai, J. Luo, and X. Wei,
“Rethinking BiSeNet for real-time semantic segmentation,” in CVPR,
2021, pp. 9716–9725.

[24] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret, “Transformers
are RNNs: Fast autoregressive transformers with linear attention,” in
ICML, 2020, pp. 5156–5165.

[25] J. Sun, Z. Shen, Y. Wang, H. Bao, and X. Zhou, “LoFTR: Detector-
free local feature matching with transformers,” in CVPR, 2021, pp.
8922–8931.

[26] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation
and support inference from RGBD images,” in ECCV, 2012, pp. 746–
760.

[27] X. Tu, C. Xu, S. Liu, R. Li, G. Xie, J. Huang, and L. T. Yang, “Efficient
monocular depth estimation for edge devices in internet of things,”
IEEE TII, vol. 17, no. 4, pp. 2821–2832, 2020.

	I INTRODUCTION
	II Related Work
	II-A Convolutional Neural Networks
	II-B Monocular Depth Estimation

	III Methodology
	III-A Multi-scale Feature Extractor
	III-B Edge Guidance Branch
	III-C Transformer-Based Feature Aggregation Module
	III-D Loss Function

	IV Experiments
	IV-A Implementation Details
	IV-B Dataset and Evaluation Metric
	IV-C Comparison with State-of-the-art
	IV-D Ablation Experiments and Analyses
	IV-D.1 Contribution of Different Components
	IV-D.2 Comparison of Different Backbones

	V Conclusion
	References

