1810.10414v1 [cs.RO] 24 Oct 2018

arxXiv

Deep Learning Scooping Motion using Bilateral Teleoperations

Hitoe Ochi, Weiwei Wan, Yajue Yang, Natsuki Yamanobe, Jia Pan, and Kensuke Harada

Abstract— We present bilateral teleoperation system for task
learning and robot motion generation. Our system includes a
bilateral teleoperation platform and a deep learning software.
The deep learning software refers to human demonstration
using the bilateral teleoperation platform to collect visual
images and robotic encoder values. It leverages the datasets
of images and robotic encoder information to learn about
the inter-modal correspondence between visual images and
robot motion. In detail, the deep learning software uses a
combination of Deep Convolutional Auto-Encoders (DCAE)
over image regions, and Recurrent Neural Network with Long
Short-Term Memory units (LSTM-RNN) over robot motor
angles, to learn motion taught be human teleoperation. The
learnt models are used to predict new motion trajectories for
similar tasks. Experimental results show that our system has
the adaptivity to generate motion for similar scooping tasks.
Detailed analysis is performed based on failure cases of the
experimental results. Some insights about the cans and cannots
of the system are summarized.

1. INTRODUCTION

Common household tasks require robots to act intelligently
and adaptively in various unstructured environment, which
makes it difficult to model control policies with explicit ob-
jectives and reward functions. One popular solution [1] [2] is
to circumvent the difficulties by learning from demonstration
(LfD). LfD allows robots to learn skills from successful
demonstrations performed by manual teaching. In order to
take advantage of LfD, we develop a system which enables
human operators to demonstrate with ease and enables robots
to learn dexterous manipulation skills with multi-modal
sensed data. Fig[I] shows the system. The hardware platform
of the system is a bi-lateral tele-operation systems composed
of two same robot manipulators. The software of the system
is a deep neural network made of a Deep Convolutional
Auto-Encoder (DCAE) and a Recurrent Neural Network
with Long Short-Term Memory units (LSTM-RNN). The
deep neural network leverages the datasets of images and
robotic encoder information to learn about the inter-modal
correspondence between visual images and robot motion, and
the proposed system use the learnt model to generate new
motion trajectories for similar tasks.

Using the system, we can conduct experiments of robot
learning different basic behaviours using deep learning al-
gorithms. Especially, we focus on a scooping task which is
common in home kitchen. We demonstrate that our system
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Fig. 1: The bilateral teleoperation system for task learning
and robotic motion generation. The hardware platform of the
system is a bi-lateral tele-operation systems composed of two
same robot manipulators. The software of the system is a
deep neural network made of a Deep Convolutional Auto-
Encoder (DCAE) and a Recurrent Neural Network with Long
Short-Term Memory units (LSTM-RNN). The deep learning
models are trained by human demonstration, and used to
generate new motion trajectories for similar tasks.

has the adaptivity to predict motion for a broad range of
scooping tasks. Meanwhile, we examine the ability of deep
learning algorithms with target objects placed at different
places and prepared in different conditions. We carry out
detailed analysis on the results and analyzed the reasons that
limited the ability of the proposed deep learning system. We
reach to a conclusion that although LfD using deep learning
is applicable to a wide range of objects, it still requires a
large amount data to adapt to large varieties. Mixed learning
and planning is suggested to be a better approach.

The paper is organized as follows. Section 2 reviews
related work. Section 3 presents the entire LfD system
including the demonstration method and the learning al-
gorithm. Section 4 explains how the robot perform a task
after learning. Section 5 describes and analyzes experiment
setups and results. Section 6 draws conclusions and discusses
possible methods to improve system performance.

II. RELATED WORK

The learning method we used is DCAE and RNN. This
section reviews their origins and state-of-the-art applications.
Auto-encoders were initially introduced by Rumelhart et
al. [3] to address the problem of unsupervised back propaga-



tion. The input data was used as the teacher data to minimize
reconstruction errors [4]. Auto-encoders were embedded into
deep neural network as DCAE to explore deep features in
[5] [6] [7] [8], etc. DCAE helps to learn multiple levels of
representation of high dimensional data.

RNN is the feed-backward version of conventional feed
forward neural network. It allows the output of one neuron
at time ¢#; to be input of a neuron for time 7;;.;. RNN may
date back to the Hopfield network [9]. RNN is most suitable
for learning and predicting sequential data. Some successful
applications of RNN include handwritting recognition [10],
speech recognition [11], visual tracking [12], etc. RNN
has advantages over conventional mathematical models for
sequential data like Hidden Markov Model (HMM) [13] in
that it uses scalable historical characters and is applicable to
sequences of varying time lengths.

A variation of RNN is Multiple Timescale RNN
(MTRNN), which is the multiple timescale version of tra-
ditional RNN and was initially proposed by Yamashita
and Tani [14] to learn motion primitives and predict new
actions by combining the learnt primitives. The MTRNN is
composed of multiple Continuous Recurrent Neural Network
(CTRNN) layers that allow to have different timescale acti-
vation speeds and thus enables scalability over time. Arie et
al. [15] Jeong et al. [16] are some other studies that used
MTRNN to generate robot motion.

RNN-based methods suffers from a vanishing gradient
problem [17]. To overcome this problem, Hochereiter and
Schmidhuber [18] developed the Long Short Term Memory
(LSTM) network. The advantages of LSTM is it has an input
gate, an output gate, and a forget gate which allow the cells
to store and access information over long periods of time.

The recurrent neural network used by us in this paper is
RNN with LSTM units. It is proved that RNN with LSTM
units are effective and scalable in long-range sequence learn-
ing [19ﬂ By introducing into each LSTM unit a memory
cell which can maintain its state over time, LSTM network
is able to overcome the vanishing gradient problem. LSTM
is especially suitable for applications involving long-term
dependencies [21].

Together with the DCAE, we build a system allowing
predicting robot trajectories for diverse tasks using vision
systems. The system uses bilateral teleoperation to collect
data from human beings, like a general LfD system. It trains
a DCAE as well as a LSTM-RNN model, and use the
model to learn robot motions to perform similar tasks. We
performed experiments by especially focusing on a scooping
task that is common in home kitchen. Several previous
studies like [2] [22] [23] [24] also studied learning to perform
similar robotic tasks using deep learning models. Compared
with them, we not only demonstrate the generalization of
deep models in robotic task learning, but also carry out
detailed analysis on the results and analyzed the reasons that

IThere are some work like [20] that used MTRNN with LSTM units
to enable multiple timescale scalability.

limited the ability of the proposed deep learning system.
Readers are encouraged to refer to the experiments and
analysis section for details.

III. THE sYSTEM FOR LFD USING DEEP LEARNING
A. The bilateral teleoperation platform

Our LfD system utilizes bilateral teleoperation to allow
human operators to adaptively control the robot based on his
control. Conventionally, teleoperation was done in master-
slave mode by using a joystick [23], a haptic device [25],
or a virtual environment [24] as the master device. Unlike
the conventional methods, we use a robot manipulator as
the master. As Figure 2 shows, our system is composed of
two identical robot systems comprising a Universal Robot 1
arm at the same joint configuration and a force-torque sensor
attached to the arms end-effector. The human operator drags
the master at its end-effector and the controller calculates
6 dimensional Cartesian velocity commands for robots to
follow the human operators guidance. This dual-arm bilateral
teleoperation system provides similar operation spaces for
the master and slave, which makes it more convenient for
the human operator to drag the master in a natural manner.
In addition, we install a Microsoft Kinect 1 above the
slave manipulator to capture depth and RGB images of the
environment.

The bilateral teleoperation platform provides the human
operator a virtual sense of the contact force to improve
LfD [26]. While the human operator works on the master
manipulator, the slave robot senses a contact force with
a force-torque sensor installed at its wrist. A controller
computes robot motions considering both the force exerted
by human beings and the force feedback from the force
sensor. Specifically, when the slave does not contact with
the environment, both the master and slave move following
human motion. When the slave has contact feedback, the
master and slave react considering the impedance from force
feedback. The human operator, meanwhile, would feel the
impedance from the device he or she is working on (namely
the master device) and react accordingly.

B. The deep learning software

LSTM-RNN supports both input and output sequences
with variable length, which means that one network may
be suitable for varied tasks with different length of time.
Fig[] illustrates a LSTM recurrent network which outputs
prediction.

The data of our LfD system may include an image of
the environment, force/torque data sensed by a F/T sensor
installed at the slaves end-effector, robot joint positions,
etc. These data has high dimensionality which makes com-
putation infeasible. To avoid the curse of dimensionality,
we use DCAE to represent the data with auto-selected
features. DCAE encodes the input data with a encoder
and reconstructs the data from the encoded values with a
decoder. Both the encoder and decoder could be multi-layer
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Fig. 2: LSTM-RNN: The subscripts in Input; and Predict;
indicate the time of inputs and for which predictions are
made. An LSTM unit receives both current input data and
hidden states provided by previous LSTM units as inputs to
predict the next step.

convolutional networks shown in Fig[l] DCAE is able to
properly encode complex data through reconstruction, and
extract data features and reduce data dimension.
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Fig. 3: DCAE encodes the input data with a encoder and
reconstructs the data from the encoded values with a decoder.
The output of DCAE (the intermediate layer) is the extracted
data features.

The software of the LfD system is a deep learning archi-
tecture composed of DCAE and LSTM-RNN. The LSTM-
RNN model is fed with image features computed by the
encoder and other data such as joint positions, and predicts
a mixture of the next motion and surrounding situation. The
combination of DCAE and LSTM-RNN is shown in Fig[4]
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Fig. 4: The entire learning architecture. OD means Other
Data. It could be joint positions, force/torque values, etc.
Although drawn as a single box, the model may contain
multiple LSTM layers.

IV. LEARNING AND PREDICTING MOTIONS

A. Data collection and training

The data used to train DCAE and LSTM-RNN is collected
by bilateral teleoperation. The components of the bilateral
teleoperation platform and the control diagram of LfD using
the bilateral teleoperatoin platform are shown in Figls] A

human operator controls a master arm and performs a given
task by considering force feedback (F, €P F. in the figure)
from the slave side. As the human operator moves the master
arm, the Kinect camera installed at the middle of the two
arms take a sequence of snapshots as the training images
for DCAE. The motor encoders installed at each joint of the
robot take a sequence of 6D joint angles as the training data
of LSTM-RNN. The snapshots and changing joint angles are
shown in Fig[6] Here, the left part shows three sequences of
snapshots. Each sequence is taken with the bowl placed at a
different position (denoted by posl, pos2, and pos3 in the
figure). The right part shows a sequence of changing joint

angles taught by the human operator.
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(b) The control diagram of LD using the bilateral platform

Fig. 5: Bilateral Teleoperation Diagram.
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Fig. 6: The data used to train DCAE and LSTM-RNN. The
left part shows the snapshot sequences taken by the Kinect
camera. They are used to train DCAE. The right part shows
the changing joint angles taught by human operators. They
are used to further train LSTM-RNN.

B. Generating robot motion

After training the DCAE and the LSTM-RNN, the models
are used online to generate robot motions for similar tasks.
The trajectory generation involves a real-time loop of three
phases: (1) sensor data collection, (2) motion prediction,
and (3) execution. At each iteration, the current environment
information and robot state are collected and processed and
then attached to the sequence of previous data. The current
robot state is fed to the pre-trained LSTM-RNN model to



predict next motions that a manipulator uses to take action.
In order to ensure computational efficiency, we keep each
input sequence in a queue with fixed length.

The process of training and prediction is shown in Figl[l]
Using the pre-trained DCAE and LSTM-RNN, the system is
able to generate motion sequences to perform similar tasks.

V. EXPERIMENTS AND ANALYSIS

We use the developed system to learn scooping tasks. The
goal of this task is to scoop materials out from a bowl placed
on a table in front of the robot (see Fig[l). Two different
bowls filled with different amount of barley are used in
experiments. The two bowls include a yellow bowl and a
green bowl. The volumes of barley are set to “high” and
“low” for variation. In total there are 2x2=4 combinations,
namely {“yellow” bowl-“low” barley, “yellow” bowl-“high”
barley, “green” bowl-“low” barley, and “green” bowl-“high”
barley}. Figa) shows the barley, the bowls, and the differ-
ent volume settings. During experiments, a human operator
performs teleoperated scooping as he/she senses the collision
between the spoon and the bowl after the spoon is inserted
into the materials. Although used for control, the F/T data
is not fed into the learning system, which means the control
policy is learned only based on robot states and 2D images.

(a) Bowls and barley ~ Yellow bowl with Green bowl with
low volume of high volume of
barley barley

Barley

(b) One motion sequence

timestep =0 timestep = 60 timestep =120

B h -

Fig. 7: (a) Two different bowls filled with different amount
of barley are used in experiments. In total, there are 2x2=4
combinations. (b) One sequence of scooping motion.

The images used to train DCAE are cropped by a 130x130
window to lower computational cost. The DCAE has 2 con-
volutional layers with filter sizes of 32 and 16, followed by 2
fully-connected layers of sizes 100 and 10. The decoder has
exactly the same structure. LeakyReLLU activation function is
used for all layers. Dropout is applied afterwards to prevent
over fitting. The computation is performed on a Dell T5810
workstation with Nvidia GTX980 GPU.

A. Experiment 1: Same position with RGB/Depth images

In the first group of experiments, we place the bowl at the
same position, and test different bowls with different amounts
of contents. In all, we collect 20 sequences of data with 5 for
each bowl-content combination. Fig[7[b) shows one sequence
of the scooping motion. We use 19 of the 20 sequences of

data to train DCAE and LSTM-RNN and use the remaining
one group to test the performance.

Parameters of DCAE is as follows: Optimization function:
Adam; Dropout rate: 0.4; Batch size: 32, Epoch: 50. We use
both RGB images and Depth images to train DCAE. The pre-
trained models are named RGB-DCAE and Depth-DCAE
respectively. Parameters of LSTM-RNN is: Optimization
function: Adam; Batch size: 32; Iteration: 3000.

The results of DCAE is shown in Fig[8[a). The trained
model is able to reconstruct the training data with high
precision. Readers may compare the first and second rows
of Fig@a.l) for details. Meanwhile, the trained model is
able to reconstruct the test data with satisfying performance.
Readers may compare the first and second row of Fig[8|a.2)
to see the difference. Although there are noises on the second
rows, they are acceptable.

The results of LSTM-RNN show that the robot is able to
perform scooping for similar tasks given the RGB-DCAE.
However, it cannot precisely differ “high” and “low” vol-
umes. The results of LSTM-RNN using Depth-DCAE is
unstable. We failed to spot a successful execution. The reason
depth data is unstable is probably due to the low resolution
of Kinect’s depth sensor. The vision system cannot differ if
the spoon is at a pre-scooping state or post-scooping state,
which makes the robot hard to predict next motions.

B. Experiment 2: Different positions

In the second group of experiments, we place the bowl
at different positions to further examine the generalization
ability of the trained models.

Similar to experiment 1, we use bowls with two differ-
ent colors (“yellow” and “green”), and used two different
volumes of contents (‘“high” and “low”). The bowls were
placed at 7 different positions. At each position, we collect 20
sequences of data with 5 for each bowl-barley combination.
In total, we collect 140 sequences of data. 139 of the 140
sequences of data are used to train DCAE and LSTM-
RNN. The remaining 1 sequence are used for testing. The
parameters of DCAE and LSTM-RNN are the same as
experiment 1.

The results of DCAE are shown in Fig[§(b). The trained
model is able to reconstruct the training data with high
precision. Readers may compare the first and second rows of
Fig[§(b.1) for details. In contrast, the reconstructed images
show significant difference for the test data. It failed to
reconstruct the test data. Readers may compare the first and
second row of Fig[8b.2) to see the difference. Especially for
the first column of Fig[§[(b.2), the bowl is wrongly considered
to be at a totally different position.

The LSTM-RNN model is not able to generate scooping
motion for either the training data or the test data. The motion
is randomly changing from time to time. It doesn’t follow
any pre-taught sequences. The reason is probably the bad
reconstruction performance of DCAE. The system failed to
correctly find the positions of the bowls using the encoded
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Fig. 8: The results of DCAE for experiment 1 and 2. (a.1-2) are the results of training data and test data for experiment 1.
(b.1-2) are the results of training data and test data for experiment 2.

features. Based on the analysis, we increase the training data
of DCAE in Experiment 3 to improve its reconstruction.

C. Experiment 3: Increasing the training data of DCAE

The third group of experiments has exactly the same
scenario settings and parameter settings as Experiment 2,
except that we use planning algorithms to generate scooping
motion and collect more scooping images.

The new scooping images are collected following the
work flow shows in Figl0] We divide the work space into
around 100 grids, place bowl at these places, and sample
arm boatswains and orientations at each of the grid. In total,
we additionally generate 100x45x3=13500 (12726 exactly)
extra training images to train DCAE. Here, “100” indicates
the 100 grid positions. “45” and “3” indicate the 45 arm
positions and 3 arm rotation angles sampled at each grid.

300mm

300mm

Fig. 9: Increase the training data of DCAE by automat-
ically generating motions across a 10x10 grids. In all,
100x45x3=13500 extra training images were generated.
Here, “100” indicates the 100 grid positions. At each grid,
45 arm positions and 3 arm rotation angles are sampled.

The DCAE model is trained with the 140 sequences of
data in experiment 2 (that is 140x120=16800 images, 17714
exactly), together with the 13500 extra images collected
using the planner. The parameters of DCAE are exactly
the same as Experiment 1 and 2. The results of DCAE is
shown in Fig[I0] Compared with experiment 2, DCAE is
more stable. It is able to reconstruct both the training images
and the test images with satisfying performance, although
the reconstructed spoon position in the sixth and seventh
columns of Fig[T0(b) have relatively large offsets from the
original image.

The trained DCAE model is used together with LSTM-
RNN to predict motions. The LSTM-RNN model is trained

using different data to compare the performance. The results
are shown in Table[l} Here, A1-A7r_s1 indicates the data used
to train DCAE and LSTM-RNN. The left side of “_ shows
the data used to train DCAE. A1-A7 means all the sequences
collected at the seven bowl positions in experiments 2 are
used. r means the additional data collected in experiment
3 is used. The right side of “_” shows the data used to
train LSTM-RNN. sl means only the sequences at bowl
position sl are used to train LSTM-RNN. s1s4 means both
the sequences at bowl position s1 and position s4 are used
to train LSTM-RNN.

The results show that the DCAE trained in experiment 3
is able to predict motion for bowls at the same positions.
For example, (row position sl, column Al1-A7r_s1) is O,
(row position s1, column A1-A7r_s1s4) is also Q. The result,
however, is unstable. For example, (row position s2, column
Al-ATr_sls4) is X, (row position s4, column Al-A7r_s4) is
also x. The last three columns of the table shows previous
results: The Al_sl column and A4_s4 column correspond
to the results of experiment 1. The Al1A4_sls4 column
correspond to the result of experiment 2.

Results of the three experiments show that the proposed
model heavily depends on training data. It can predict motion
for different objects at the same positions, but is not able to
adapt to objects at different positions. The small amount of
training data is an important problem impairing the general-
ization of the trained models to different bowl positions. The
experimental results tell us that a small amount of training
data leads to bad results. A large amount of training data
shows good prediction.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a bilateral teleoperation system for
task learning and robotic motion generation. It trained DCAE
and LSTM-RNN to learn scooping motion using data col-
lected by human demonstration on the bilateral teleoperation
system. The results showed the data collected using the
bilateral teleoperation system was suitable for training deep
learning models. The trained model was able to predict
scooping motion for different objects at the same positions,
showing some ability of generalization. The results also
showed that the amount of data was an important issue that
affect training good deep learning models.

One way to improve performance is to increase training
data. However, increasing training data is not trivial for LfD
applications since they require human operators to repeatedly
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Fig. 10: The results of DCAE for experiment 1 and 2. (a.1-2) are the results of training data and test data for experiment
1. (b.1-2) are the results of training data and test data for experiment 2.
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TABLE I: Results of scooping using DCAE and LSTM-RNN

Al-A7rsl Al-AT7rsls4  Al-A7rsd  Alsl  Adsd  AlAdsls4
position s1 O O - O - X
position s4 - X X - O X
work on teaching devices. Another method is to use a mixed  [12] J. Dequaire, P. Ondriiska, D. Rao, D. Wang, and 1. Posner, “Deep

learning and planning model. Practitioners may use planning
to collect data and use learning to generalize the planned
results. The mixed method is our future direction.
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