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Abstract— There are important issues in the design of the
driving mechanism for the rolling robots. The actuator is
expected to operate without occupying the whole space of
the carrier body. This property gets harder to achieve as the
degree of freedom in driving mechanism increases. This paper
proposes an alternative fluid actuator for rolling bodies e.g.,
sphere or disc. The designed mechanism has a circular pipe
that is propelled by rotating spherical mass (core) inside a fluid
medium. In this work, we first establish the dynamics of the
rolling circular pipe. Then, the internal driving unit is modeled
and combined with rotating mass dynamics. Finally, the model
simulations are conducted for observing motion patterns of the
carrier body and locomotion abilities of the rotating core. The
results show the feasibility of the proposed actuator for future
applications.

I. INTRODUCTION

Rolling robots are increasingly being involved in un-
manned ground vehicle researches. Li and Canny were the
first scholars who studied the controllability of rolling objects
as a non-holonomic system [1]. Since then, many types of
research have taken place to develop a rolling robot for real-
world applications [2]. However, there are certain challenges
in the design of these robots that cannot be satisfied, e.g.,
having an isolated driver, omni-directional locomotion of the
robot.

In the literature on spherical rolling robots, different
principles of actuation have been studied. First, spherical
robots were developed based on the torque-reaction principle
[3]–[6]. To move these robots, mounted internal wheels were
creating the reaction force opposed to the spherical shell.
Another principle of propulsion was changing the center of
mass inside the spherical body [7], [8] where certain weights
were moving through a connecting rod. As an alternative
in mass-imbalance mechanism, pendulum-based robots were
also proposed [9], [10]. Different scholars studied trajec-
tory tracking methods for this model [11]–[13] because
this type could combine torque-reaction and mass-imbalance
to propel itself. Also, some robots were conserving their
angular momentum through rotating discs to carry their body
[14]–[16]. Gyrover was an example for the disk-like robot
with a rotating internal gyroscope and two motor drivers
[14]. Another hybrid spherical robot was implemented with
combining conservation of angular momentum and torque-
reaction forces at MIT [17].

It should be noted that there are certain downsides in the
previously proposed actuators. For example, a pendulum-
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actuated system has an efficient mechanism and realizable
dynamics [18]. However, increasing the number of pendu-
lums for multiple degrees of freedom is not feasible due to
the collision of connecting rods. Typically, most mechanisms
occupy the whole space of spherical shell [2]. This issue
prevents including any extra equipment to the robot. To deal
with complete occupancy of the inner body, moving masses
attached to the geared bars are the only solution [7], [8].
Nevertheless, gears directly limit the velocity of these mass-
imbalance actuators because there are load inertia and motor
backlash [7]–[9], [17], [19]. To address these problems, we
propose a fluid actuated mechanism. To manipulate a carrier
body, the fluid pushes a spherical moving mass (core) within
a circular pipe. This removes the limitation of gear-based
equipment and makes the core motion directly dependent on
the injected fluid properties. Additionally, combining these
mechanisms increases the degree of mobility in the rolling
carrier/robot. In the proposed mechanism, the fluid is moved
by a cylinder that is connected to a linear actuator. By
moving the rod inside the linear actuator and the cylinder,
the injected fluid volume is controlled. Note that fluid circu-
lation guarantees a safe and smooth work of the propulsion
mechanism during locomotion.

In this paper, we focus on modeling the novel driving
mechanism and combine it with the dynamics of the rolling
pipe. We simulate this mechanism for two case studies:
motion patterns of rolling body and locomotion ability of
the core. These simulations are necessary for estimating the
power of this actuator. This mechanism will be applied to
develop the proposed robot in [20].

We organize the paper as follows. The dynamics of the
rolling body are derived by the Lagrange-Euler method in
Section II. In Section III, the internal driving mechanism
is described and modeled. Next, the rolling body and the
driving unit are combined in Section IV. Finally, Section V
analyzes the simulation results of the proposed actuator.

II. ROLLING BODY DYNAMICS

To derive the dynamics of the rolling body, variables and
coordinate frames are considered as Fig. 1. Here, X0Y0Z0

represents the inertial reference frame. The moving frame
connected to the center of the circular pipe is X1Y1Z1,
which translates with respect to inertial frame X0Y0Z0. Also,
X2Y2Z2 is a rotating frame for the core attached to the center
of the pipe, but it rotates with respect to the X1Y1Z1.

Moving mass (core) is traveling through the dashed line
as shown in Fig. 1-a. The kinematic model of the spherical
carrier (linear and angular velocities are Vb and ωb) and the
core as a moving point (linear and angular velocities are Vc
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(a)

(b)

Fig. 1: a) Rolling motion model along O − Y with core
in circular pipe, b) Forces on the core due to the fluid
circulation. Note: FB , FD, FW , Ff and FP are buoyancy,
drag, weight, surface friction and dynamic pressure forces,
respectively.

and ωc) in 2D plane is

Dco = −r sin(γ + θ)j− r cos(γ + θ)k, ωb = θ̇i,

Vb = Rθ̇j, ωc =
(
γ̇ + θ̇

)
i,

Vc =
(
Rθ̇ − r(γ̇ + θ̇) cos(γ + θ)

)
j

+
(
r(γ̇ + θ̇) sin(γ + θ)

)
k,

(1)

where γ, θ, r, R, Dco are respectively the rotation angles of
core and sphere, the distance of the core from the center of
the circular pipe, the radius of the spherical body, the position
of the rotating mass-point (core). We can now introduce the
Lagrange-Euler function EL = Ek − Ep that contains only
the terms due to the rotation along the O − Y axis, where
Ek and Ep stand for the total kinetic and potential energies.
By considering the spherical shell as a rigid body and the
core as a mass-point, EL is

EL =
1

2
Mb|Vb|2 + 1

2
Ib|ωb|2 + 1

2
mc|Vc|2 +m′

cgdc, (2)

where Mb, mc, m′
c, Ib = 2MbR

2/3, g and dc are the mass
of whole body except the core, the mass of the core, the
core’s apparent mass due to existing body forces, the inertia
tensor of rolling body, the acceleration of gravity and the
distance of the core respect to the ground, respectively. Note
that the apparent mass of the core m′ is due to the gravity
and buoyancy forces 1. After the substitution of Eq. (1) into

1Please refer to Eq. (22) for the derivation.

(2), we will get

EL =
1

2
R2θ̇2Mb +

1

2
Ibθ̇

2 +m′
cgr(1− cos(γ + θ))

+
1

2
mc

[ (
Rθ̇ − r(γ̇ + θ̇) cos(γ + θ)

)2

+
(
r(γ̇ + θ̇) sin(γ + θ)

)2 ]
.

(3)

Now, the Lagrange-Euler equations for translation in O−Y
plane is as follows:

d

dt

(
∂EL

∂γ̇

)
− ∂EL

∂γ
= τγ ,

d

dt

(
∂EL

∂θ̇

)
− ∂EL

∂θ
= τθ, (4)

where τγ and τθ are the external torques for the core and
the sphere. As we assumed the core as a mass-point, it
doesn’t contain any spinning around itself hence reactive
torque between core-body is τθ = 0. Therefore, equations
of the motion for the given mechanical system from Eq. (3)-
(4) can be represented in following form[

M11 M12

M21 M22

] [
θ̈
γ̈

]
+

[
N11

N21

]
+

[
G11

G21

]
=

[
τγ
0

]
,

(5)

where Mij , Nij and Gij are the acceleration coefficients, the
velocity dependencies and the gravity factors, while:

M11 = M12 −mcRr cos(γ + θ) = mcr
2

−mcRr cos(γ + θ),

M21 = M22 +MbR
2 + Ib +mcR

2 −mcRr cos(γ + θ)

= MbR
2 + Ib +mcR

2 − 2mcRr cos(γ + θ) +mcr
2,

N11 = 0, N21 = mcRr(γ̇ + θ̇)2 sin(γ + θ),

G11 = G21 = m′
crg sin(γ + θ).

(6)

III. MODEL OF DRIVING MECHANISM

A. Fluid Actuator
To move the spherical mass (core) in the pipe, fluid flow

is created by a linear actuator connected to the cylinder
[see Fig. 2]. The core is manipulated with the created
fluid displacement and control valves. Fig. 3 illustrates the
schematic for the designed fluid actuator. We first model the
connecting rod between the cylinder and linear actuator.

Fig. 2: Fluid actuated mechanism with flow control integra-
tion.
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(a)

(b)

Fig. 3: Fluid actuator with a linear actuator and cylinder
connection. DC motor torque is carried through rotating body
to joint that is connected to cylinder rod.

Axial forces acting on the moving rod of the cylinder and
linear actuator are defined as follows

FI − FL + FS = 0, (7)

where FI , FL and FS are the inertia of cylinder’s rod, the
transferred joint force and the total friction force between
the screw and rotating body, respectively. These forces are
expressed by following equations [21]

FI = mLaL, FL = 2πTmη/�, FS = μLFI ,

where mL, aL, Tm, η, � and μL are the mass of rod and
moving joint, the rod acceleration, the motor torque input,
the efficiency of linear actuator, the lead size and the friction
coefficient between rotating body and rod. Note that the
efficiency for the involved lead in rotating actuator and ball
screw is η = [(cosα − μs tanλ)/(cosα + μs cotλ)] [21],
where α, μs and λ are the thread angle, coefficient of friction
(typically 0.15) in the the screw and the lead angle. The
screw is considered to be ball screw with minimal friction
effect so η is approximated with 96%.

From the given parametrization, the motion equation of
rod (7) can be represented as

ḊL = VL,

V̇L =
2πη

mL�(1 + μL)
Tm,

(8)

where the states are displacement and velocity of the rod.
Since the connecting rod produces an equal displacement of
the cylinder cl and the linear actuator L, we can assume
VL = Vcl. This property is later used on determining the
fluid velocity in the pipes.

We are using the double-act cylinder. The volume in this
cylinder tank is shifting in each cycle to provide a continues
flow during the simulation of Eq. (8). Thus, each side of the

tank produces the fluid with different pressure and velocity
[see Fig. 3] where the affected cross-section area Acl is

Acl =

{
πD2

2/4, DL is from 0 to LT

π
(
D2

2 −D2
1

)
/4, DL is from LT to 0

(9)
where D1, D2 and LT are the diameter of the rod, the
diameter of the pusher in the cylinder and the length of the
rod, in the given order.

B. Circular Pipe
The main part of the actuation mechanism, from the

cylinder to the circulating core, operates in a liquid. In this
system, a lightweight double-act pneumatic cylinder [22] is
utilized as a pump actuator to create a continuous flow. The
fluid is circulating inside a closed system so fluid volume is
constant. Also, the flow moves through pipes, cylinder and
neutralized tank. This liquid enters the neutralized tank to
control the cylinder which fills the cycles inside the internal
driving unit (IDU).

The fluid input ports and forces acting on the moving core
are shown in Fig. 1-b. We construct the motion equation
where the core and fluid are interfacing. It is assumed that
flow velocity in the pipe is the same as the velocity of the
core Vc = rγ̇n, where γ̇ and n are the core angular velocity
and the unit vector tangent to the circular path of the pipe.
The proposed mechanism works in the liquid-solid medium;
hence we combine the given core forces with the fluid input
by using the flow momentum equation [23], [24] as follows

d(mcVc)

dt
=

‹

C.S.

PpndAc +

˚
ρfgdνc + Fv, (10)

where Pp, dAc, ρf , dνc, g and Fv are the entering pressure
to main pipe, the derivative of the core’s cross-section area,
the fluid density, the derivative of the core’s volume, the
gravity vector and the viscous forces on the moving core,
in the given order. Also, C.S. stands for the contour surface
of the affected area by Pp. We model the system in polar
coordinates where the left side of inertia has angular aγ(t)
and radial aR(t) accelerations

aγ(t) =
d|Vc|
dt

n = r
d

dt
(γ̇)n, aR(t) = −rγ̇2m,

where m is the unit vector in a radial direction. Please note
that aR(t) is ignored since it is constant with no effect on
the core and the fluid; hence, all terms are expressed with
respect to aγ(t). Fluid pressure force as the first term in Eq.
(10) can be obtained as

FP =

‹

C.S.

PpndAc = PpAcn, (11)

where Ac = π(R− r)2 is the constant cross-section area of
the core. Next, the gravity term in Eq. (10) is decomposed
to the core’s gravity FW and buoyancy FB forces in which
it is defined in tangent to the core path n˚

ρgdνc � FW + FB = [−mc + ρfνc] g (1− cos γ)n,

(12)
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where νc = 4π(R− r)3/3 is the filled liquid volume of the
core in the pipe. Also, Fv consists of fluid head loss Ff and
drag force FD acting on the core’s circular path [24]

Fv = [Ff + FD]n = −
(
fp

L′
P

Dc

V 2
c

2g
+

1

2
CDρfAcV

2
c

)
n,

(13)

where L′
P , Dc and CD are the apparent length of the

pipe, the diameter of the core and the drag coefficient,
respectively. To keep the sign of the core velocity align with
the rotation direction, the V 2

c term in Eq.(13) is defined as
V 2
c = r2 sgn(γ̇i)γ̇

2 where sgn is the sign function. Note that
the head loss is a resistant force coming from bending form
of the pipe. This force creates a centripetal acceleration due
to secondary flow in the bend [24]. Thus, apparent length
through the main pipe is

L′
P = LP + [(KbDc)/fp], (14)

where LP , Kb and fp are the length of the circular pipe,
the resistance coefficient for 180o in return bend and the
Darcy friction factor in the entrance of the main pipe,
respectively. From the definitions in Eqs. (11)-(13), Eq. (10)
is transformed to the motion equation of the core as follows

FP − FW + FB − Ff − FD = mcac, (15)

where ac = rγ̈ is the core tangential acceleration. The
motion equation is formed with the assumption that the
flux of linear momentum equilibrates with external forces,
including pressure, gravity and the viscous friction forces.
Please note that the flow continuum is definite since the
surface gap between the pipe and the core is small.

Finally, to define the input pressure force Pp in Eq. (11),
the two-stage Bernoulli equation with head loss is introduced
within the streamline [23]:

Pil = Pcl +
ρf
2

[
V 2
cl − V 2

il

]− ρfghil,

Pp = Pil +
ρf
2

[
V 2
il − V 2

p

]
+ ρfg

[
Zil − Zp (1− cos γil)

− hp

]
,

(16)

where Pil, Vil, Pcl, Vcl, Vp, hil, hp, Zil, Zp and γil are
respectively the pressure and velocity of the fluid in the
injection line, the pressure and velocity of the fluid in the
cylinder, the velocity of entering fluid to the main pipe, the
head-loss for transition of the cylinder to the injection line,
the head-loss for transition of the injection line to the main
pipe, the distance of injection line and the main pipe output
ports from the ground and the angle of the injection line’s
port [see Fig. 1-b].

In the first stage, the fluid goes through the cylinder tank
(Pcl, Vcl) to the injection line (Pil, Vil) where il stands for
the slim fluid carrier pipe. The distance between the cylinder
and injection lines is small (hil = 0) as they both are in the
box. To find out injection line pressure Pil, rod equations
(8) are solved for Vcl. Next, the injection line velocity Vil

is derived from continuity equation Vil = VclAcl/Ail, where
Acl and Ail are the cross-section areas of the cylinder tank
(9) and the injection line pipe. Then, cylinder pressure Pcl =

TABLE I: Parameters of the driving mechanism.

Variable Value Variable Value
KS.E. 0.9 D2 0.0097 m
Kb 0.2 dm 0.0097 m
� 0.007 m Dil 0.00635 m
μL 0.75 Dc 0.028 m
mL 0.2 kg D1 0.0047 m
η 96% ρf 1000 kg/m3

LIL 0.145 m γil 10o

LT 0.05 m Tm 0.27 mN · m
LP 0.411 m μf 1.81× 10−3 kg/m · s
LJS 0.01 m Ib 0.0140 kg·m2

CD 0.8 g 9.8 m/s2
Mb 1 kg R 0.145 m
mc 0.25 kg r 0.131 m

[2πTmη] /�Acl is substituted into (16) for establishing the
injection line pressure Pil.

The injection lines (connecting both ports in Fig. 1) from
IDU are connected to the main pipes with core (Pp, Vp). By
the continuity equation Vp = VilAil/Ac, the velocity in the
main pipe can be determined. Also, the head loss during the
entrance of liquid to pipe from the injection line is defined
as [23]

hp = hf + hm =
V 2
il

2g

(
fil

LIL

Dil
+KS.E.

)
, (17)

where LIL, hf , hm, Dil and KS.E. are the length of injection
line pipe, the head loss of friction, the sudden expansion loss,
the pipe diameter of the injection line and the loss coefficient
through the transition from injection to the pipe, in the given
order. These computations give Pp in (16). The cylinder tank
and the pipe are assumed to be smooth surfaces; hence the
friction factors for each section are calculated by

fp = 64/Rep, fil = 0.316/Re0.25il ,

where Re is the Reynolds number. Each of streamlines has
its own Reynolds number as Re = LV ρf/μf where μf is the
viscosity of rotating fluid. For instance, the Reynold number
for pipe with the core p is Rep = LPVpρf/μf .

IV. COMBINED MODEL OF ROLLING PIPE AND IDU
To combine the rolling body dynamics (5) with the driving

mechanism (15), the input force of the core Fc has to
be determined. Before calculating the core’s input force,
the created forces from fluid circulation are analyzed for
elimination. From Eq. (15), the input force Fc can be written
down as

Fc(t) = FP − FW + FB − Ff − FD −mcac. (18)

Lemma Let the external torque τγ = −rFc of the core with
distance r from the center of the sphere be on the right-
hand side of motion equation of the rolling body (5). The
introduced buoyancy, gravity and inertia forces in the IDU
model have to be eliminated from (18) for establishing the
combined model.

Proof: Consider (5)-(6) while this carrier body is steady
(θ, θ̇, θ̈ = 0), the core motion equation becomes:

γ̈
[
mcr

2
]
+m′

crg sin γ = τγ . (19)
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Fig. 4: First case analysis of obtained model with rest states.
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Fig. 5: The core location in sphere with respect to base frame
for first case where |γ| − |θ| ∈ [−π, π].

Now, Fc in Eq. (18) is substituted into (19) as follows

γ̈
[
r2mc

]
+ rm′

cgc sin γ = r(−FP + FW

− FB + Ff + FD +mcac).
(20)

We can confirm that FW + FB = m′
cg sin γ and ac = rγ̈.

Thus, the body forces and the inertia terms of the core
already exist in left-hand side of rolling body dynamics;
hence, FW , FB and mcac have to be zero in Eq. (18).

Remark It can be interpreted that the head loss Ff , the
drag FD and the pressure FP forces have to be included as
external forces to the Fc.

By using the Remark, we can define the external torque with
Eq. (11) and Eq. (13) as

τγ = rFc = r(FP + Ff + FD) =

r
[
PpAc − 0.5r2 sgn(γ̇)

(
fP

L′
P

Dcg
+ CDρfAc

)
γ̇2

] (21)

Also, gravity and buoyancy forces at Eq. (12) are taken into
account by using the apparent mass

m′ = mc − ρfνc. (22)

Thus, we substitute Eq. (21) and Eq. (22) to the motion
equation of the rolling body in Eqs. (5), which results in the
overall model of the system.

Fig. 6: The results of locomotion while carrier contains initial
velocity θ̇(0) as a second case.

V. MOTION SIMULATION ANALYSIS

We study the motion of the core in the circular pipe,
propelling the carrier body. The total mass Mb is set as 1
kg with the core mass as 0.25 kg. The simulation lasts for
4 sec. Parameters of the driving mechanism are taken from
Table I. The fluid actuator has the commercially available
A07020D pneumatic cylinder [22] and DC motor 08GS61
[25]. Note that the chosen pneumatic cylinder can be used
for moving the fluid and has a lightweight as 0.05 kg. To
solve the complete model including Eqs. (5)-(6) and Eq. (8),
ODE45 solver [26] in Matlab is chosen. The fluid pressure
and velocities are calculated from Bernoulli equations in Eq.
(16). The simulation analysis takes place for two cases: first,
the combined model is checked for the ability to move the
carrier when the core moves from the bottom of the pipe at
rest states. Second, the carrier has different initial velocities
with the same core location.

In the first case, the feed-froward control input is constant
values for Tm. Fig. 4 illustrates simulation results of rolling
body for various input torque values. We see that the sphere
rolls in the given main direction (clockwise rotation) by
the core’s counterclockwise rotation. This confirms that the
designed actuator successfully propels the carrier. However,
there are minor fluctuations in core’s velocity because as the
cylinder stops to switch the cycles, it directly affects the sys-
tem. This issue can be removed by using multiple cylinders
to fill the gap of the filling cycles. Next, to demonstrate the
core location with respect to the base frame, |γ| − |θ| is
shown in Fig. 5. It is defined that |γ| − |θ| ∈ [−π, π]. We
see that two motion patterns appear in the system analysis.
For a critical torque value Tm = 0.24 mN·m, the core stays
in the lower hemisphere, which looks like the pendulum-
actuated models. When the torque input is lower than these
values, the core can’t overcome viscous and gravity forces
as the sphere turn. By exceeding the critical torque, the core
starts circulating in the total pipe which creates a new pattern
during locomotion.

It is observed that the resultant displacement of spherical
carrier converges to lower values as the torque rises [see
Fig. 4]. This demonstrates that higher control input doesn’t
always result in larger displacement. It is also clear that the
core velocity shows large impulses with higher DC motor
torque (Tm ∈ [0.3, 0.4] mN·m). Furthermore, high torque
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Fig. 7: Core location in sphere with respect to base frame
for second case where |γ| − |θ| ∈ [−π, π].

input effects the clockwise rotation of the spherical carrier
and creates minor backward locomotion (see Fig. 4 for θ
angular displacement). For instance, when the core passes
the north pole at approx. 0.6 sec with Tm = 0.4 mN·m [see
Fig. 5], the sphere minor backward motion is observed in
1.5 sec (core arrives to bottom of sphere) in Fig. 4.

In the second case, the initial velocity of the carrier is not
zero, θ̇(0) �= 0. The control input is set as Tm = 0.3e−t/T

mN·m where T = 4. The sphere initial velocity is limited to
θ̇(0) ∈ [−π, π].

It is obvious that the core is able to carry the sphere in
the given main direction [see Fig. 6]. However, this spherical
carrier reaches shorter distances as the initial velocity θ̇(0)
changes from π to −π. Also, the positive values of the
sphere’s initial velocities keep the core in lower-hemisphere
[see Fig. 7], when the sphere orientation θ reaches the
maximal distance. Also, the negative sphere velocities boost
the actuated core to the north pole of the sphere [ see
Fig. 7]. This ability can have a negative effect on the final
displacement of the carrier. As the core has this circulation
around the pipe, the carrier travels less distance compared
to the one established in the first case. Thus, the carrier
can easily accelerate, but we have to control the core more
accurately.

VI. CONCLUSION

A new fluid actuated driving mechanism for rolling bodies
has been proposed and analytically studied in this paper.
First, the dynamics of the rolling body on the plane were
derived. Then, the described driving mechanism was mod-
eled and combined with the rolling body model of the
carrier. Simulation results show that the developed mecha-
nism can successfully move the body with a feed-forward
control. Moreover, the core rotation creates two motion
patterns: swinging and circulation. As the core swings, the
rolling body’s behavior becomes similar to the conventional
pendulum-actuated system. In the circulation pattern, the
carrier body creates a different motion with a less arrival
distance in contrast to swinging pattern. In future work, we
will validate the obtained model with an experiment.
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