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Abstract— Benchmarking provides experimental evidence of
the scientific baseline to enhance the progression of funda-
mental research, which is also applicable to robotics. In this
paper, we propose a method to benchmark metrics of robotic
manipulation, which addresses the spatial-temporal reasoning
skills for robot learning with the jigsaw game. In particular,
our approach exploits a simple set of jigsaw pieces by design-
ing a structured protocol, which can be highly customizable
according to a wide range of task specifications. Researchers
can selectively adopt the proposed protocol to benchmark their
research outputs, on a comparable scale in the functional,
task, and system-level of details. The purpose is to provide a
potential look-up table for learning-based robot manipulation,
commonly available in other engineering disciplines, to facilitate
the adoption of robotics through calculated, empirical, and
systematic experimental evidence.

I. INTRODUCTION

Robot learning leverages the availability of data, com-
putation, and algorithms to explore model-free control of
robots in unstructured and complex manipulation tasks. The
involvement of robotic hardware significantly increased the
challenges in implementing shareable and reproducible robot
learning research, which comes in various combinations and
configurations. How to establish a transferable protocol for
benchmarking the performances of different robotic manip-
ulation becomes a critical issue to be solved.

Experimental evidence has been commonly adopted to
support new findings in robotic science, and the target
object for manipulation naturally becomes the benchmarking
milestone for the research challenge. The Yale-CMU-Berkley
object set represents a significant milestone in providing a
wide selection of daily life objects with in-depth digitization
as the ground truth for benchmarking research [1]. As it
focused on the objects and the manipulation tasks, it did
not involve the influence of different hardware. And it also
leaves flexibilities in protocol design and metric specifica-
tion to accommodate different research interests in robotic
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manipulation. The design differentiation in robotic hardware,
algorithm integration, and task environment may still intro-
duce uncertainties in the benchmarking results. We need a
more general benchmarking to compare the performance of
different configurations in the same task.

Besides the experience from standard engineering prac-
tices, the integration between computer science and engineer-
ing also plays an essential role in establishing a transferable
benchmark, where games often play a pivotal role in ensuring
ease of accessibility and adoption. Throughout the success
of artificial intelligence, games have been adopted since the
beginning as a benchmark against human intelligence in
problem-solving, ranging from sub-human performance up
to super-human performance or optimal ones in some games.

Fig. 1: An overview of the proposed jigsaw-based bench-
mark using a minimum robot cell of the DeepClaw. Top:
DeepClaw contains minimum hardware and a structured
algorithm. Bottom: An example of the proposed 5-piece
jigsaw in (a) and its design variations in (b).

A. Related Work

Robot benchmarking research aims to explore the experi-
mental process that is shareable and reproducible toward an
empirical validation of novel methods for robotic science.
Due to the complexity of robot manipulation, common
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focuses usually fall within the function, task, and system
levels of experimental benchmarking.

Function-level benchmarking focuses on the specific
breakthroughs in structured modeling of robot manipulation
that improves the existing state of the art at the functional
level. For example, He et al. proposed Mask R-CNN for
object instance segmentation [2], Redmon et al. presented
YOLO [3], and Liu et al. proposed SSD [4] to detect the
bounding box and class of the object. Moreover, they used
Intersection over Union (IoU) metric and Average Precision
(AP) metric to evaluate the performance [5]–[7], Kehl et al.
proposed SSD-6D based on the SSD for 3D object instances,
and 6D poses estimation, and used an extended version of
the IoU-3D metric [8]. Behrens et al. presented a general
indicator for evaluating the robot force-control performance
[9].

Task-level benchmarking integrates the various functional
performances of the robot system within a specific task
scenario. Calli et al. selected 77 daily objects, built an image
and model dataset of the objects, and defined several tasks
for robot manipulation research [1], [10], [11]. Marjovi et
al. proposed a benchmark for mobile robots and evaluated
motion control performance with three tests [12]. Leitner
et al. proposed a benchmark for robotic picking based
on the Amazon Picking Challenge [13]. It used a white
IKEA Kallax shelf and defined the objects’ initial status to
standardize the pick task and evaluate the performance.

System-level benchmarking recently emerged by adopting
design thinking methods towards the scalable implementation
of robot manipulation, mainly when data-driven learning
methods are used. Levine et al. used 14 robotic manipulators
and collected over 800K grasp attempts to hand-eye coordi-
nation [14]. Yang et al. developed a low-cost REPLAB cell
for vision-based robotic manipulation tasks and defined a
grasping task based on a supervised learning approach with
92K grasping [15]. Quispe et al. presented a taxonomy of
benchmark manipulation tasks for service robots and divided
the benchmark tasks into necessary parts for standardizing
robot manipulation benchmark [16].

B. Proposed Method and Original Contributions

This paper focuses on exploiting a set of jigsaw pieces
with a simple design, broad accessibility, and flexible cus-
tomization to explore the benchmarks of learning-based
robotic manipulation, as shown in Fig.1 bottom. Different
from previous approaches, the proposed method adopts a
structured decomposition and reconstruction of the robot ma-
nipulation protocols to explore the performance benchmarks
of a minimum robot cell for learning-based tasks. The aim is
to examine the transferability of automated benchmarking for
experimental evidence using a standardized protocol toward
applicable engineering insights.

Contributions of this paper are listed as the following:

• The design of a minimum benchmarking configuration
of the robot cell, i.e., DeepClaw, mimicking the arcade
claw machine game.

• A structured task protocol with reusable functions and
quantifiable metrics for transferable benchmarking.

• A series of 5-piece jigsaw games customizable to var-
ious aspects of robot manipulations for learning-based
research.

• Preliminary experimental results to benchmark learning-
based robot manipulation using jigsaw games.

The rest of this paper is structured as follows. Section II
explains the method of DeepClaw and its practical usage with
a structured algorithm pipeline for robot learning. Section
III presents the experiment setup, procedure, and results by
adopting the proposed benchmark. Section IV discusses the
implications of the proposed benchmarking method and its
potential usage towards a shareable and reproducible robot
learning. The conclusion and limitations are enclosed in the
final section.

II. METHOD

A significant challenge in benchmarking robot learning
is the availability of widely accessible training data for
robot manipulation and a wide selection of algorithms for
system integration across hardware specifications. To reduce
the entry barrier, we propose a simple set of jigsaw pieces
as the target object for manipulation. Also, we propose
the DeepClaw as a minimum hardware configuration of a
robot cell and a structured task protocol to streamline the
benchmarking process during experimental implementation.

A. Manipulation Problems with Jigsaw Puzzles

A jigsaw puzzle is a tiling game that requires the assembly
of often oddly shaped interlocking and tessellating pieces,
which dates back to the eighteenth century as an educa-
tional tool for children’s spatial-temporal reasoning skills on
various subjects [17]. Completing a jigsaw game requires
fine motor function between the mind and brain for delicate
object manipulation and hand-eye coordination, which is
rewarding and entertaining. Moreover, this self-explanatory
game is designed to be highly customizable with a rich set
of relational features in geometries, graphics, and textures,
suitable for a wide range of demographics.

To explore the possibility of using the jigsaw game to
benchmark robotic manipulation, we experiment with a sim-
ple 5-piece jigsaw, as shown in Fig. 1 bottom (a). Each
jigsaw set contains one base plate with a concave volume
and another four fragmented pieces with matching features
in geometry and graphics. The base plate and the fragmented
pieces share a common theme of a farm animal but differ
in the actual drawing, as shown in Fig. 1 bottom (b). The
jigsaw set used in this paper was initially purchased at an
online platform from Taobao.com in China, which can be
easily sourced through Aliexpress.com for global buyers with
a low price (less than 5 USD) or reproduced using local laser
cutting machinery or global laser cutting service provider
such as Ponoko.com.

The simplicity of this jigsaw game enables one to cus-
tomize the game in many ways, which can be further related
to various scenarios of learning-based robot manipulation.



Fig. 2: Experiment setup. Top: three tasks. (a)Pick and
place task: randomly placed fragmented pieces (top), the
result of the task (bottom). (b) Tiling task: randomly placed
fragmented pieces (top), the result of the task (bottom). (c)
Assembly task: randomly place five pieces (top), the result
of the task (bottom); Bottom: 6-dimensional descriptors to
describe the jigsaw used in the task, so we can use a jigsaw
code to describe the jigsaw used.

In this paper, we designed three games with the same set of
jigsaw pieces, as shown in Fig. 2 top. The three tasks have
different difficulty levels, as the pick and place task is easy
to complete, and the assembly task needs some skills. We
designed six-dimensional descriptors called jigsaw code to
describe the jigsaw pieces used in the task. The jigsaw code
shows the details of the jigsaw used in the task normatively.
Despite the game design variations, the ultimate goal remains
to complete the jigsaw puzzle as much as possible (%)
within the shortest time (sec), which serves as the general
benchmark metric at the task level. Function metrics are
evaluated at each workflow step, which will be explained
later.

B. DeepClaw as A Minimum Robot Cell

In this paper, we borrow the concept from the arcade
claw machine for a minimum robot cell, namely DeepClaw,
as shown in Fig. 1 top, to characterize the robot system
configuration, which usually includes a manipulator as the

arm, a camera as the eye, an end-effector as the hand,
a few target objects, and a table as the environment of
interaction. This minimum robot cell only considers the
necessary hardware and no external environment, such as
illumination. Furthermore, the robot arm, camera, and end-
effector are not specific, so it is easy to rebuild with existing
hardware in other labs.

Unlike the claw machine, which is usually for a human
player. The DeepClaw, in this paper, will need to manipulate
objects through learning in spatial and temporal terms, aided
by a clear goal to complete the game. DeepClaw can perform
a wide range of learning-based manipulation tasks as a
minimum robot cell, which is also easy to reproduce for
benchmarking purposes.

C. A Common Task Protocol

An important assumption for learning-based research is to
generate comparable performance as humans. By reviewing
the structured process of robotic picking tasks and how hu-
mans pick things up, we adopt the following four functional
steps commonly used in learning-based manipulation re-
search: segmentation, recognition, pick planning, and motion
planning before execution.

• Segmentation indicates the partition of an image, or
sensory data in general, into a set of non-overlapping
regions whose union is the entire image. The purpose
of segmentation is to decompose the image into mean-
ingful parts for a particular application [18]. Also, a
typical result is bounding boxes of objects. The IoU
metric is commonly used [6] to evaluate the accuracy
of the bounding box.

• Recognition finds objects in the real world from an
image of the world, using object models known as prior
[19], or advanced algorithms. To evaluate the precision
of prediction, the AP metric is a standard metric for this
function [6].

• Pick Planning predicts the pose of objects for picking.
This function decides how the robot picks up the thing
and is the physical interaction between the end-effector
and the objects. The result of this function can be a
3D vector (x, y, angle) [20], a 5D vector (two for the
position, two for size, and one for orientation) [21],
or a 6D vector (three for the position, and three for
orientation) [8]. This step aims to find the successful
picking pose that picks up the target object. The critical
metric in this function is the success rate, which means
the count of successful picks over the total picking
trials.

• Motion Planning plans collision-free motions for com-
plex bodies from a start to a goal position among a
collection of static obstacles [22]. Chen et al. developed
a fast RRT algorithm based on the RRT (Rapidly-
exploring Random Tree) algorithm, with a lower time
cost and smoother path [23]. The algorithm running
time and length of the trajectory is the critical indicators
of the Motion Planning function. We use the program
running time and arm execution time as the metric for



this function, and the arm execution time is easy to
collect and equals the trajectory when we set the same
speed for a different arm. Note that as a temporal metric,
the running time is also typical for all functions.

Fig. 3: A structured and reconfigurable DeepClaw task
protocol for jigsaw-based manipulation. The red rectangle
indicates function-level benchmarking. The blue rectangle
suggests task-level benchmarking. Also, the green rectangle
is system-level benchmarking.

As shown in Fig. 3, a step-by-step assembly of the above
four steps naturally leads to the workflow of an assembly
task. For ease of analysis, we recommend choosing the
specific metrics for each function step before the execution
of the task to facilitate the data collection process for further
analysis. Following such a structured workflow of function
steps, one can quickly reconfigure the workflow by replacing
one function step with another to accommodate different
needs, making sharing and reproducing the benchmarking
results easier.

III. EXPERIMENT RESULTS

A. Experiment Setup

The hardware configuration of the DeepClaw in this paper
involves a UR10 e-series, UR5, and Franka Emika Panda as
the manipulators, a suction cup as the gripper, and Intel Re-
alSense D435/D435i as the camera sensor. We implemented
robot control and communication using a Xiaomi laptop with
an Intel i7-7700HQ CPU, an NVIDIA GeForce GTX 1060
GPU, and 16GB RAM and a computer with an Intel i5-
8250U CPU and 4GB RAM. The neural network training
uses an AMAX server of four NVIDIA GeForce1080Ti
GPUs. Each experiment is repeated ten times, with all
metrics recorded.

Following the game design variation shown in Fig. 2,
we designed a series of jigsaw games with differentiated
setups for experimentation, including a pick-and-place task
for baseline verification, a tiling task for simple picking,
and an assembly task for object manipulation. Each task
is implemented with different hardware, and different tasks
are implemented with the same hardware (Fig. 4). These
three experiments’ sets also exhibit a progressive increase in
difficulty levels in a general sense.

As the experiments depend on hardware, we try to set the
same configurations in 3 platforms. Different robots have
different structures and workspaces; setting the same state is
hard. Considering the end-effector is the physical interface
between the robot system and the objects, we fix the relative
position of the end-effector and the workspace. The end-
effector used in the three tasks is the same one. It is a suction
cup mounted on the tool flange. The end of the suction cup
is 0.15 meters above the table, 0.3 meters away from the
center of the workspace, and the pose is vertical downward.
A camera is mounted 1 meter above the table and measures
a relative position with hand-eye calibration.

B. Experiment Procedure

The pick-and-place task is widely used in the logistics in-
dustry and is fundamental for the robot manipulation system.
Next, we conducted tiling and assembly tasks for the jigsaw
pieces for baseline experiments. These three experiment sets
are illustrated in Fig. 2. Each task is implemented with the
structured algorithms, as shown in Fig. 3. The structured
workflow contains four essential functions. It is easy to
complete the task following the workflow step by step and
modify it by changing the function’s implementation.

We established three platforms with different hardware
to complete the same tasks. The main differences between
the platforms are arms and cameras. Those will mainly
influence the segmentation, recognition, and motion planning
functions, as the segmentation and recognition are vision
functions that depend on cameras. Motion planning is a
physical function that depends on the arms.

Fig. 4: The structured algorithm of the experiments with
different hardware.

1) Pick-and-Place Task: We adopted the YCB block’s
pick-and-place protocol for our jigsaw pieces with four black
squares on an A4-sized paper that is 1.5 times bigger than
the jigsaw pieces, as shown in Fig. 2 top (a). We used simple
metrics for spatial and temporal measurement, including
spatial metrics for the correct placement of each jigsaw piece,
temporal metrics for the speed of task execution, and the final
score for placing the four pieces on the A4-sized paper as



task completion. One point is counted only when a jigsaw
piece is placed correctly within the four squared areas on the
A4-sized paper. No sequential specification is made in this
task. Therefore, the highest task completion score is four.
The temporal metric is measured in seconds for each step.
To complete this task, we used the Single-Shot Detection
(SSD) algorithm for segmentation, aided by AlexNet for pick
planning. According to the procedure in Fig. 4, we do not
use the recognition function in this task.

2) Tiling Task: The tiling task aims at testing the classifi-
cation of the four fragmented pieces besides pick-and-place,
as shown in Fig. 2 top (b), which also includes recognition
and pick planning steps in the function workflow. This tiling
task is essentially a palletizing task in 2D. Therefore, 2D
measurement of the area rate, i.e., standard area

real area , is used as
the spatial metric. The standard area refers to the total area of
the finished jigsaw using four fragmented pieces, which is a
fixed value in our case. The real area refers to the actual area
measurement of the finished jigsaw game within a minimum
bounding box. In addition to the pick-and-place task, we used
the Single-Shot Detection (SSD) algorithm for segmentation
and recognition, aided by AlexNet for pick planning.

3) Assembly Task: The assembly task utilizes all five
pieces of the jigsaw pieces to test the ability of the whole
DeepClaw in a manipulation setting, as shown in Fig. 2top
(c). Since it is difficult to calculate the real area due to the
occlusion of the base plate at the bottom, we used the correct
placement of each fragmented piece inside the base-plate
piece as the score. Same as in the previous task, the highest
score for the spatial metric in this task is four. In addition to
the workflow in the last task, we also included a hard-coded
manipulation of the jigsaw pieces to place the fragmented
pieces inside the base plate piece.

C. Results

The experiment results are statistical metrics of 10 repeat
experiments, including function results and total task score.
The definition and calculation methods of the metrics used
in the tasks are described below.

IoU is the metric of the segmentation function, and it
measures the positioning performance. To calculate the IoU,
we first capture an image without jigsaw puzzles as a
background and collect an image with jigsaw puzzles as
input when the task begins. We find the difference between
the background and input images as ground truth. Use the
rectangle predicted and ground truth to calculate the IoU.

AP is the metric of the recognition function; it measures
the object classification accuracy. In each experiment, we
count the number M of correct prediction, and AP is M/4
(as we only use four fragmented pieces), calculated manually.

Success rate is the metric of the pick planning function; it
measures the performance of grasping. As the suction cup is
perfect for picking plate objects, the success rate is always
1, which means each grasping is successful.

Grasping time is the metric of the motion planning func-
tion; it measures the arm’s effectiveness. This metric depends

on the arm and trajectory planned, and it is different with
different arms and tasks.

Score is the metric of the full task. It measures the
performance of the entire task and is different for different
tasks. For pick and place tasks, the score is the number of
fragmented jigsaw pieces divided by 4, which are placed in
the four squared areas on the A4-sized paper without overlap
of the box. For the tiling task, the score is the area completed
divided by the standard area. Moreover, for assembly tasks,
the score is the number of fragmented jigsaw pieces divided
by four, placed in the board’s inner box.

The segmentation and recognition time and pick planning
time are the running time of the algorithms; they depend on
the computers.

IV. DISCUSSIONS

A. Result Analysis

1) Transferable performances in different hardware:
Comparing the results of UR5 and UR10e platforms in Fig.
5, the metrics show that tasks can be reproduced with differ-
ent hardware with comparable performance. In particular, we
adopted the same workflow for the same task with the same
algorithm and different hardware. As shown in the figure,
the functional metrics of IoU and AP are not significantly
different (the difference is less than 5%). We set the same
max joint speed in UR5 and UR10e in the experiments. The
grasp time metric is not significantly different in the pick
and places task and tiling task, and the time of UR10e is
shorter than UR5 in the simple assembly task. The reasons
may be that the UR10e arm has a longer wingspan than
UR5 with the same configuration, and the assembly task is
more complicated than the other two tasks. According to the
scoring metric, it is not significantly different in the pick,
place, and tiling tasks and is better than UR5 in the simple
assembly task. The result shows that in a complex scenario,
the UR10e performs better than UR5. According to the
functional and full task metrics, the task can be reproduced
with different hardware with comparable performance.

2) Influence of hardware for different task: Comparing
the results of Panda and UR10e platforms in Fig. 5, the
results show that task performance is dependent on hardware.
The IoU and AP with Panda and Realsense D435i are worse
than UR10e and Realsense D435. As the IoU and AP only
depend on the images from the camera, the difference in the
camera will influence the metrics. We collected the images
with D435 and trained the model with them, but the images
from D435i are different from D435, which may be why it is
different. The configuration of the two arms is different, and
the grasp time is different too. The Panda is significantly
faster than UR10e, and it may be because the Panda has
seven joints, and the UR10e is six as we set the same max
joint speed. The performance of different hardware in the
same task is different, which is not unpredictable. It follows
some rules. The segmentation and recognition functions are
mainly affected by vision, so the hardware of visual input is
the critical factor. Pick planning is primarily influenced by
grippers. As we use the same suction cup in all experiments,



Fig. 5: Results of 3 tasks in 3 platforms.(a) the results of pick and place task in 3 platforms. (b) the results of the tiling
task in 3 platforms. (c) the results of simple assembly tasks in 3 platforms.

the performance of different hardware and tasks is the same.
Motion planning is mainly affected by arms. Different arms
will have different performances.

So we can predict the performance of an unseen hardware
platform if the hardware has some comparable features.

The performance of the full task is a combination of
functions performance. The score is not good in the pick
and place and simple assembly task, as indicated by the IoU
and AP. The tiling task has an inconsistent performance, and
the reason is that the area rate maybe not be suitable for the
task. The area rate is a 2D metric, and the tiling task is 3D.
The stacked pieces will lead to a reasonable area rate.

Fig. 6: The dexterous manipulation results in UR10e and
Panda platforms. (a) (b) two assembly tasks in UR10e and
Panda.

3) Dexterous manipulation: Comparing the result in a
simple assembly and manipulation assembly tasks shown in
Fig. 6, the scores of manipulation assembly have significant
improvement over the simple assembly with the grasp time
lightly grown both in UR10e and Panda platforms. The
tolerance or gap between the completed jigsaw pieces is less
than 0.6mm. However, the pose repeatability of UR10e is
0.05mm, the depth accuracy of the D435 camera is higher

than 2.5mm when mounted one meter away from the object,
the RGB image accuracy is 1mm/pixel with a 1280*720
resolution, and the accuracy of the suction cup is several
millimeters. As a result, the total error of the hardware is
significantly larger than the allowable error of the assembly
task. Without manipulation, this task is hard to complete.
However, our experiments showed that one could adopt
manipulation techniques in the above benchmark.

This assembly task focuses on the physical interactions
between multiple objects and needs high-precision reference
positions. However, we can divide it into two steps: a coarse
location and manipulations such as picking. This dexterous
manipulation allows us to complete high-precision tasks with
low-precision hardware, just like humans.

B. Customizable Jigsaws

Unlike other object sets with a rich selection of stan-
dardized items, our proposed jigsaw puzzle contains only
five pieces, at least in Fig. 7. It is cheap and convenient to
purchase, has access to customized, and has many variants.
The shape and texture of the 2-5 pieces are free, and the
base-plate piece is a container of the four fragmented pieces.
One can use Legos, a 3D printer, or laser cutting to make
different jigsaw puzzles.

Furthermore, one can print a picture downloaded from the
Internet or captured by oneself and paste it on the surface
of the jigsaw to get a new suit. Except for simple grasping,
jigsaw puzzles can also be used for complex manipulation.
Flipping the jigsaw piece upside down, move the piece from
the cluster for better grasping, or push them to finish a
complete picture. Those tasks may need a customized gripper
and are a tremendous challenge for robot manipulation.

The thickness of the original jigsaw is 5mm, and it is easier
for a suction cup than a 2-fingers gripper to pick. However, it
is a disadvantage for testing the adaptability of the gripper to
different shapes, and the customized free-shape jigsaw may
be a better choice.

C. Benchmarking Usage

Considering the characteristics of the tasks, we can further
generate a series of experiments by designing different forms
of the jigsaw game (Fig. 2). As a discretization of the
jigsaw pieces’ properties, we use six dimensions descriptors
to define a task. For example, the code of four fragmented
pieces with sheep texture is 000101. Moreover, the structured



Fig. 7: Illustration of the jigsaw puzzle and variants. (a) the
diagram of the jigsaw puzzle; (b) the customized jigsaw.

algorithm can complete the simple pick-and-place task based
on the four fragmented pieces (Fig. 3). With the jigsaw code
and task, we can easily use benchmarking.

V. CONCLUSION

In this article, we proposed a jigsaw-based benchmark-
ing to evaluate the performance of robot manipulation and
completed three tasks. We proposed a minimal robot cell
called DeepClaw and a structured algorithm with essential
functions to complete different tasks. The DeepClaw is
easy to reproduce and reuse existing equipment and can be
modified with specialized hardware such as a soft gripper.
The structured algorithm is an essential picking workflow,
and each function can be easily replaced with different
methods. The jigsaw set we used is a simple object set for
the task design. It is cheap, easy to obtain, and diverse.
At the same time, it is easy to extend different tasks to
evaluate the robot system’s performance. This system-level
benchmarking contains a minimal robot cell, a structured
algorithm, and a simple object set. It can evaluate the multi-
hierarchical performance of the robot system and is shareable
and reproducible.

The jigsaw pieces used in our experiments are thin
blocks (2D objects), so our experiment presents a limited
evaluation of 6D grasping. In other words, we ignore the
six-dimensional pose estimation. In future work, we will
design 3D jigsaw puzzles and complete a 3D jigsaw puzzle
assembly task to evaluate the performance of the 6D pick
planning function. Moreover, we will create stacked jigsaw
puzzle experiments to assess the performance of the motion
planning function.
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