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Abstract—Robot-assisted surgery has made great progress
with the development of medical imaging and robotics technol-
ogy. Medical scene understanding can greatly improve surgical
performance while the semantic segmentation of the robotic
instrument is a key enabling technology for robot-assisted
surgery. However, how to locate an instrument’s position and
estimate their pose in complex surgical environments is still
a challenging fundamental problem. In this paper, pixel-wise
instrument segmentation is investigated. The contributions of
the paper are twofold: 1) We proposed a two-level nested U-
structure model, which is an encoder-decoder architecture with
skip-connections and each layer of the network structure adopts
a U-structure instead of a simple superposition of convolutional
layers. The model can capture more context information from
multiple scales and better fuse the local and global information
to achieve high-quality segmentation. 2) Experiments have
been conducted to qualitatively and quantitatively show the
performance of our approach on three segmentation tasks:
the binary segmentation, the parts segmentation, and the type
segmentation, respectively. The results show that our method
significantly improves the segmentation performance and out-
performs state-of-the-art approaches.

I. INTRODUCTION

Robot-assisted systems have revolutionized the minimally
invasive surgery to achieve safer, more precise and consistent,
and less invasive intervention [1]. For instance, the Da Vinci
Xi robot is able to control laparoscopic surgery through
remotely operated by surgeons [2]. Since the success of
robot-assisted surgery highly relies on the understanding of
surgical scene, accurate segmentation of surgical instruments
is crucial.

Recent advances of robotics [3] [4] and computer vi-
sion technologies promote the intelligent endoscopic vision,
which can help surgeons perform precise operation. For
instance, the augmented reality (AR) based on endoscopic
video can improve surgeon’s visual awareness of high-risk
targets [5]. The vision-based endoscopic navigation method
has been applied in sinus surgery [6]. The work of [7]
presents a method for automatically assessing a surgeon’s
performance by tracking and analyzing tool movements in
surgical videos. The 3D dense reconstruction of handheld
monocular endoscopic surgery scenes was developed in [8].
However, in the above applications, the endoscope visual
perception is inseparable from medical scene understanding,
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resulting in the poor performance in extracting necessary
visual and regional information for surgical procedures.

Medical scene understanding can significantly improve
the surgical performance, since it can expand the surgeon’s
perception by providing information on internal anatomy and
surgical instruments. Such information is usually provided
by videos or 2D images consisting of human tissues and
surgical instruments that present their position, shape, size
and posture intuitively. The location of the instrument’s
position relative to the patient’s anatomy helps surgeons
understand surgical scene and operate more accurately. The
pose of the instrument can be used to measure the distance
to risk structures, evaluate the surgeon’s skills, and realize
automated surgical operation [9]. Therefore, it is important
to extract these valuable information selectively and intel-
ligently, while avoiding unnecessary information that might
confuse the surgeons.

To address this challenge, scene segmentation of surgical
instruments is a recent research focus, which can separate
the instruments from the background tissue and provides
important information in surgical procedures for surgeons.
Segmentation masks can prevent the covering occlusion
apparatus of the rendered tissue and clearly show the position
and pose of the surgical instruments in the endoscopic
images [10]. Besides, segmentation masks play an important
role in instrument tracking systems. Therefore, the semantic
segmentation of surgical robotic instruments is highly desired
for promoting the cognitive assistance to surgeons. However,
due to the complicated medical scene, how to locate an in-
strument’s position and estimate their pose to achieve precise
segmentation is an essentially fundamental yet challenging
problem [11].

Recently, a variety of vision based methods are devel-
oped for the location and tracking of the instruments [12].
Prior methods of instrument-background segmentation uti-
lized color and texture features [13] [14], Haar wavelets
[15], and HoG [16]. Later, machine learning algorithms, such
as Random Forest [17] and Gaussian Mixture Model [18],
were applied to deal with the segmentation problem. How-
ever, these models only focus on single binary segmentation
problems. More complex segmentation, such as the detection
of various parts and types of the instrument, are desired in
modern surgery.

To solve this problem, many deep learning based ap-
proaches have been developed, showing promising perfor-
mance in medical areas, especially for tracking, classification
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and location problems of robotic surgical instrument. Con-
volutional neural networks (CNN) have been successfully
applied, which can realize pixel-level segmentation of images
captured by endoscope camera [19]. However, it requires
a large size of training data, which limits their success
in practice. U-Net [20] with an encoder-decoder network
architecture was designed to address this issue and has
achieved good performance on different biomedical segmen-
tation applications. In fact, location information is the basis
of semantic segmentation. Accurate location information
can lead to precise segmentation performance. Deep neural
networks (DNN) have been used to combine semantic seg-
mentation with landmark locations [21], which learn better
feature representation of the existing input by the training
mechanism of layer by layer via data pre-training. In [22], the
recurrent neural network was embedded with convolutional
neural network to establish dependencies among multiple
tags. To further improve segmentation accuracy, [23] fused
the information of kinematic pose and convolutional neural
networks prediction. Besides, [24] [25] [11] have provided
solutions for three sub-problems of instrument segmentation,
i.e., binary segmentation, partial segmentation, and type
segmentation. While these deep learning-based methods have
achieved impressive results, it still leaves room for improve-
ment. Moreover, how to improve the accuracy of surgical
instrument segmentation efficiently and make it suitable for
multiple segmentation tasks is still a challenge.

In this paper, to facilitate intelligent surgery, we develop a
novel nested U-structure framework for surgical instrument
semantic segmentation. The goal is to better understand
the medical scene and extract the semantic information to
promote minimally invasive surgery. The main contributions
of this work can be summarized as follows: 1) we take multi-
scale feature extraction and multi-level deep feature integra-
tion into consideration and proposed a two-level nested U-
structure, which fuses the local and global features to realize
a more precise segmentation for surgical instrument segmen-
tation tasks. 2) Dilated convolutions were used in our network
to maintain high resolution feature maps while increasing
the reception field of convolution kernel. 3) Experiments are
conducted on the MICCAI EndoVis Challenge 2017 dataset.
The results show that our model can greatly improve the
performance of segmentation and outperforms other state-of-
the-art approaches.

II. METHODS

A. Overview

The understanding of medical scene can improve the
surgeon’s ability in perception. To have a better scene un-
derstanding of the surgical scenario, semantic segmentation
is one of the important methods to extract the posture and
position information of surgical instruments, which is crucial
for the smooth surgical operation. It is especially helpful for
medical imaging and robot-assisted surgical system. Given
an image captured by the high resolution stereo camera,
the goal is to separate the surgical instrument from the
background in the image, and segment the parts and types of

surgical instruments semantically. To achieve this objective,
we proposed a new deep learning-based solution. The overall
architecture of our network is illustrated in Fig. 1, which is
a two-level nested U-structure. The images obtained by the
laparoscopic system are taken as input to the network, and the
output is the semantic segmentation of surgical instruments.

B. Network Architecture

For robot-assisted minimally invasive surgery, when a
surgical instrument is moved and operated within the tissue,
the robot needs to locate and track the instrument. Due to
the complex surgical environment, it is crucial for the model
to acquire high-precision segmentation of instruments in the
surgical scene. In general, features from multiple deep layers
are able to generate better results. Taking into account the
memory and the computation budget, we choose a 6-layer
deep structure for our network architecture. For semantic
segmentation, both local and global contextual information
are essential for high precision segmentation. Traditional
UNet [20] uses two 3 × 3 convolutions, rectified linear unit
(ReLU), and 2×2 maxpooling operation repeatedly to shrink
or expand the feature maps, so as to extract important feature
information. However, more detailed feature information
is required to achieve accurate segmentation and feature
information extraction is limited for simple superposition
of convolutional layers. The new modules need to be de-
signed to implement multi-scale feature extraction. Inspired
by UNet, the model that we proposed adopts an encoder-
decoder architecture which can capture context information
by a contraction path and locate accurately by an expansion
path. Hence, considering multi-level deep feature integration
and multi-scale feature extraction, the network we proposed
is a two-level nested U-structure as shown in Fig. 1(a). Each
layer of the network structure uses a U-structure instead of
a simple superposition of convolutional layers.

It is well known that the encode process is essentially
a process of feature extraction while reducing the spatial
size of feature maps. Since modern CNN models have been
successfully used and UNet [20] has greatly promoted the
development of deep learning in the field of medical imaging,
we introduce Resnet into UNet and call it ResUNet. We
use ResUNet as the main encoder backbone of the network
architecture. The starting unit of encoder is a combination
of Resnet18 and UNetplusplus [26] which we call it Re-
sUNetpp (Fig. 1(b)). It can be interpreted as UNetplusplus
using Resnet18 as the encoder. Subsequently, there are 4
stages of encoder which consists of ResUNet34. Similarly,
ResUNet34 can be interpreted as UNet using Resnet34 as the
encoder. Each step in the contraction path contains alternating
convolution and pooling operations, and the feature maps
are gradually downsampled with stride 2 while increasing
the number of feature maps at each layer. After 4 times of
downsampling, the resolution of the feature map has been
greatly reduced. The feature information will be lost if we
continue on downsampling. Therefore, we adopt the RSU-
4F [27] module at the bottom of the structure to keep the
resolution consistent between the input and output feature



Fig. 1. The illustration of the proposed network for the semantic segmentation of surgical instruments.

maps. As shown in Fig. 1(c), RSU-4F is a four layer structure
similar to UNet which consists of a 3 × 3 convolutions, a
Batch Normalization(BN) and a rectified linear unit (ReLU).
To maintain high resolution feature maps while increasing
the reception field of convolution kernel, we use dilated
convolutions to upsample and downsample. The expanding
path increases the resolution of the feature maps by upsam-
pling and the backbone of decoder also follows a similar
architecture of UNet. The decoder consists of 4 ResSdual
Ublocks(RSU) [27] and the architecture of RSU is shown in
Fig. 1(c). It is a variant of a 5-layer UNet which enables the
network architecture to extract the features of multiple scales
from each residual block. Skip-connections have been applied
to combine the feature maps from contracting path and
expanding path. It is worth mentioning that we have replaced
the classical activation function ReLU with LeakyReLU and
substitute InstanceNorm2d for BatchNorm2d in our model.
The network takes RGB images as input and generate pixel-
level segmentation prediction pictures. We perform three
segmentation tasks by setting the number of output channels
of the network structure.

C. Lossfunction
Since image segmentation tasks can be regarded as a

classification problem of pixels, the overlap rate between
the predicted masks and the corresponding ground truth
represents the probability that the pixel belongs to each
category. The segmentation loss function is based on Jaccard
index, which indicates the similarity between two sets. In
this work, we introduce a common loss function, denoted

as H . In different segmentation tasks, H represents different
loss functions. For binary segmentation task, H adopts the
BCEWithLogitsLoss. For multi-class segmentation problem,
H represents the Cross-Entropy Loss. We define the gener-
alized segmentation loss function as follows:

Loss = H − log(
1

n

n∑
i=1

(
mini

mi+ni−mini
)), (1)

where mi and ni represent the ground truth and the predicted
output for the pixel i, respectively. In order to perform the
segmentation task better, it has to minimize the generalized
segmentation loss function via maximizing the probability of
correctly predicting pixels.

III. EXPERIMENTS
In this section, experiments are conducted to show the per-

formance of the proposed network architecture in three types
segmentation tasks. To evaluate the accuracy of this nested
U-structure for segmentation qualitatively and quantitatively,
we calculate the Intersection Over Union (IOU), also referred
to Jaccard Index, as the evaluation criteria. Meanwhile, we
use Dice coefficient (Dice) as another evaluation metrics. The
segmentation accuracy is proportional to the numerical value
of IOU and Dice. We compared our approach with the state-
of-the-art methods on EndoVis 2017 dataset, and analyzed
the experimental results.

A. Dataset

The dataset we used in this paper is provided by the
Endoscopic Vision Challenge 2017 [28]. The training dataset



Fig. 2. Examples of visual segmentation results of the proposed model.

TABLE I
COMPARISON OF INSTRUMENT SEGMENTATION RESULTS ON THE THREE TASKS(MEAN±STD).

Methods Binary segmentation Parts segmentation Type segmentation
IOU(%) Dice(%) IOU(%) Dice(%) IOU(%) Dice(%)

U-Net 75.44 ± 18.18 84.37 ± 14.58 48.41 ± 17.59 60.75 ± 18.21 15.80 ± 15.06 23.59 ± 19.87
TernausNet 81.14 ± 19.11 88.07 ± 14.63 62.23 ± 16.48 74.25 ± 15.55 34.61 ± 20.53 45.86 ± 23.20
LinkNet-34 82.36 ± 18.77 88.87 ± 14.35 34.55 ± 20.96 41.26 ± 23.44 22.47 ± 35.73 24.71 ± 37.54

PlainNet 81.86 ± 15.85 88.96 ± 12.98 64.73 ± 17.39 73.53 ± 16.98 34.57 ± 21.93 44.64 ± 25.16
Ours 82.94 ± 16.82 89.42 ± 14.01 58.38 ± 19.06 69.59 ± 18.66 41.72 ± 33.44 48.22 ± 34.46

consists of 8 robotic surgical videos acquired from da Vinci
Xi surgical system in different procedures, and each video
is divided into a sequence of 225 images. To avoid data
redundancy, video sampling rate of 2 Hz in the training
sequences was provided. The RGB stereo channels from the
left and right cameras together form these video sequences.
The images taken by the camera on the left provide the hand-
labeled ground truth for every robotic instrument, but the
right frames was not provided. Therefore, the training images
are from the left channel. Different surgical instruments such
as rigid shafts, articulated wrists, claspers, drop-in ultrasound
probe, and a laparoscopic instrument, have all been labelled
by hand. A surgical instrument can be roughly divided into
three parts: shaft, wrist, and clasper which are also labelled
in the frames.

The testing dataset consists of 8 × 75 frame sequences

sampled immediately after each training sequence and two
full 300-frame sequences. These sequences were sampled at
the same rate as the training set, resulting in ten test datasets
with a total of 1200 images.

B. Training

Before starting the training, the input images are pre-
processed. Every RGB images generated from surgical video
sequences have a high resolution of 1920 × 1080 pixels. In
order to crop out the black canvas in the frames, images
should be reduced to 1280 × 1024 which are necessary to
be cropped at the position of (320, 28). Besides, several
simple augmentations (e.g., PadIfNeeded, RandomCrop, Flip
Horizontal and Flip vertical) are used for dataset’s pre-
processing in order to improve the performance of semantic
segmentation. The dataset within each image channel is



TABLE II
THE NUMERICAL RESULTS OF OUR METHOD AND COMPARISON WITH OTHER METHODS IN BINARY SEGMRNTATION OF ROBOTIC TOOLS.

Dataset
1

Dataset
2

Dataset
3

Dataset
4

Dataset
5

Dataset
6

Dataset
7

Dataset
8

Dataset
9

Dataset
10

mIOU

NCT 0.784 0.788 0.926 0.934 0.701 0.876 0.846 0.881 0.789 0.899 0.843
UB 0.807‘ 0.806 0.914 0.925 0.740 0.890 0.930 0.904 0.855 0.917 0.875
BIT 0.275 0.282 0.455 0.310 0.220 0.338 0.404 0.366 0.236 0.403 0.326
MIT 0.854 0.794 0.949 0.949 0.862 0.922 0.856 0.937 0.865 0.905 0.888
SIAT 0.625 0.669 0.897 0.907 0.604 0.843 0.832 0.513 0.839 0.899 0.803
UCL 0.631 0.645 0.895 0.883 0.719 0.852 0.710 0.517 0.808 0.869 0.785
TUM 0.760 0.799 0.916 0.915 0.810 0.873 0.844 0.895 0.877 0.909 0.873
Delhi 0.408 0.524 0.743 0.782 0.528 0.292 0.593 0.562 0.626 0.715 0.612
UA 0.413 0.463 0.703 0.751 0.375 0.667 0.362 0.797 0.539 0.689 0.591
UW 0.337 0.289 0.483 0.678 0.219 0.619 0.325 0.506 0.377 0.603 0.461
Ours 0.877 0.814 0.962 0.959 0.849 0.892 0.812 0.956 0.855 0.917 0.889

normalized and the mean value of each channel is subtracted
to get a zero-average image.

To compare directly and fairly, IOU is a standard perfor-
mance measure for segmentation problems. The IoU value is
calculated as

IOU =
1

n

n∑
i=1

(
mini

mi + n−mni
), (2)

where mi and ni represent the ground truth value and the
predicted output for the pixel i, respectively.

To measure the similarity of the sets, Dice is defined as :

Dice =

n∑
i=1

2× TPi

2× TPi + FPi + FNi
, (3)

where the n represent the number of images in the dataset
for evaluation, and TPi, FPi, and FNi denote the numbers
of true positives, the false positives and the false negatives
for every image, respectively. The value of Dice is between
0 and 1, which indicates the similarity of the semantic
segmentation.

In experiments, we set the learning rate as 1e-4. During
the training, the optimizer we used in our proposed model
is AdamW. In order to evaluate the generality of the model
to the data, the K-fold cross-validation is employed in the
course of training, which divides the dataset into 4 folds. Our
framework is implemented in MindSpore with 2 NVIDIA
GTX3090 GPUs for training. We trained all the models for
100 epochs with the batch size set to 2. Multiple GPUs are
allowed to accelerate the training.

C. Results

In order to verify the performance of the network qualita-
tively and quantitatively, we conducted a series of segmen-
tation experiments based on EndoVis 2017 dataset. We per-
formed a qualitative comparison with state-of-the-art models,
such as U-Net [20], TernausNet [25], LinkNet-34 [11] and
PlainNet [10], and listed the results of three segmentation
tasks in the TABLE I. As we shown in the TABLE I, for
binary segmentation, our method achieves the best result,
i.e., the IOU score of 82.94% and the Dice score of 89.42%.
In particular, 1) compared to U-Net, our model achieves an
improvement of 7.5 points for IOU and 5.05 points for Dice.
2) compared to prior advanced methods, we still obtain the

best segmentation performance. For parts segmentation, our
method does not show the best performance compared to
TernausNet and LinkNet-34, but it still greatly improves its
segmentation performance over the UNet for 9.97 points. For
the task of multi-class class instrument segmentation, as we
list in the table, our network achieves the best performance
with the IOU score of 41.72% and the Dice score of 48.22%
and the result is far superior to others methods. Since several
of the seven categories of instruments only appear a few
times in the training dataset, the performance of this task
is overall lower. The result suggests that increasing the size
of the dataset for the corresponding problem can effectively
improve the performance.

We have also demonstrated a more intuitive result by
visualizing the result of the segmentation tasks of our model
on the dataset in Fig. 2. There are three different sub-
tasks, i.e., binary segmentation (2 classes), part of instrument
segmentation (4 classes), and instrument type segmentation
(8 classes). For binary and parts segmentation, we encode
the ground truth labels with values (10, 20, 30, 40, 0) to
distinguish the background and every part of an instrument.
Besides, the instrument type labels are used to classify
different surgical instruments, and they are encoded with
an incremental numerical value starting from 1 to 7. In
order to display the segmentation effect more clearly, we
convert the image of the segmentation result into color. As
shown in the figure, the instruments and backgrounds are
distinguished by purple and yellow, respectively. Three parts
of each instrument can be identified individually by different
colors while yellow represents the clasper, green represents
the wrist and blue represents the shaft, respectively. For the
type segmentation, the seven classes of instruments are also
distinguished by different colors. Fig. 2 shows that our model
can basically complete the detection and segmentation of
instrument edges and types well. For case 3 and case 5, for
parts segmentation, the surgical instrument in the lower right
corner of the picture is not segmented very well. The possible
explanation is that it was caused by the reflection of the light
from the instrument.

In addition, we evaluate our trained network for instru-
mentation segmentation on ten different test video sequences,
which consists of 8× 75 frame sequences and two full 300-
frame sequences. TABLE II lists the performances of our



method and that of other ten teams. We show the test result
of our proposed model in ten datasets and compare it to the
results of ten teams. As shown in the table, it is noticeable
that the method we proposed achieves the highest IOU score
in 6 datasets. This result demonstrates the high efficiency and
accuracy of our model for the semantic segmentation task.

IV. CONCLUSION
In this work, we present a novel model for robotic surgical

instrument segmentation, which can address three kinds of
surgical instrument segmentation tasks in surgical scenes.
The model we proposed is a nested U-structure which is
based on the network architecture of UNet. Our method
is compared with the existing state-of-the-art models in
terms of IOU and Dice, and can achieve efficient and
accurate segmentation. We also present comparative analy-
sis of multiple deep network models through experimental
data. The experimental results suggest that our model can
highly optimize the surgical instrument segmentation and has
achieved highly competitive performance for three sub-tasks,
especially for the binary instrumentation segmentation and
the type instrument segmentation.
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