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Abstract

Indoor environments populated by humans, such as houses, offices or universities,
involve a great complexity due to the diversity of geometries and situations that they
may present. Apart from the size of the environment, they can contain multiple rooms
distributed into floors and corridors, repetitive structures and loops, and they can
get as complicated as one can imagine. In addition, the structure and situations that
the environment present may vary over time as objects could be moved, doors can
be frequently opened or closed and places can be used for different purposes. Mobile
robots need to solve these challenging situations in order to successfully operate in
the environment. The main tools that a mobile robot has for dealing with these
situations relate to navigation and perception and comprise mapping, localization,
path planning and map adaptation. In this thesis, we try to address some of the open
problems in robot navigation in non-static indoor environments. We focus on house-like
environments as the work is framed into the HEROITEA research project that aims
attention at helping elderly people with their everyday-life activities at their homes.
This thesis contributes to HEROITEA with a complete robotic mapping system and
map adaptation that grants safe navigation and understanding of the environment.
Moreover, we provide localization and path planning strategies within the resulting
map to further operate in the environment.

The first problem tackled in this thesis is robot mapping in static indoor environ-
ments. We propose a hybrid mapping method that structures the information gathered
from the environment into several maps. The hybrid map contains diverse knowledge of
the environment such as its structure, the navigable and blocked paths, and semantic
knowledge, such as the objects or scenes in the environment. All this information is
separated into different components of the hybrid map that are interconnected so the
system can, at any time, benefit from the information contained in every component.
In addition to the conceptual conception of the hybrid map, we have also developed
building procedures and an exploration algorithm to autonomous build the hybrid
map.
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However, indoor environments populated by humans are far from being static as
the environment may change over time. For this reason, the second problem tackled in
this thesis is the adaptation of the map to non-static environments. We propose an
object-based probabilistic map adaptation that calculates the likelihood of moving or
remaining in its place for the different objects in the environment.

Finally, a map is just a description of the environment whose importance is mostly
related to how the map is used. In addition, map representations are more valuable
as long as they offer a wider range of applications. Therefore, the third problem
that we approach in this thesis is exploiting the intrinsic characteristics of the hybrid
map in order to enhance the performance of localization and path planning methods.
The particular objectives of these approaches are precision for robot localization and
efficiency for path planning in terms of execution time and traveled distance.

We evaluate our proposed methods in a diversity of simulated and real-world indoor
environments. In this extensive evaluation, we show that hybrid maps can be efficiently
built and maintained over time and they open up for new possibilities for localization
and path planning. In this thesis, we show an increase in localization precision and
robustness and an improvement in path planning performance.

In sum, this thesis makes several contributions in the context of robot navigation
in indoor environments, and especially in hybrid mapping. Hybrid maps offer higher
efficiency during map building and other applications such as localization and path
planning. In addition, we highlight the necessity of dealing with the dynamics of
indoor environments and the benefits of combining topological, semantic and metric
information to the autonomy of a mobile robot.



Resumen

Los entornos de interiores habitados por personas, como casas, oficinas o universidades,
entrañan una gran complejidad por la diversidad de geometrías y situaciones que pueden
ocurrir. Aparte de las diferencias en tamaño, estos entornos pueden contener muchas
habitaciones organizadas en diferentes plantas o pasillos, pueden presentar estructuras
repetitivas o bucles de tal forma que los entornos pueden llegar a ser tan complejos como
uno se pueda imaginar. Además, la estructura y el estado del entorno pueden variar
con el tiempo, ya que los objetos pueden moverse, las puertas pueden estar cerradas o
abiertas y diferentes espacios pueden ser usados para diferentes propósitos. Los robots
móviles necesitan resolver estas situaciones difíciles para poder funcionar de una forma
satisfactoria. Las principales herramientas que tiene un robot móvil para manejar
estas situaciones están relacionadas con la navegación y la percepción y comprenden el
mapeado, la localización, la planificación de trayectorias y la adaptación del mapa. En
esta tesis, abordamos algunos de los problemas sin resolver de la navegación de robots
móviles en entornos de interiores no estáticos. Nos centramos en entornos tipo casa ya
que este trabajo se enmarca en el proyecto de investigación HEROITEA que se enfoca
en ayudar a personas ancianas en tareas cotidianas del hogar. Esta tesis contribuye al
proyecto HEROITEA con un sistema completo de mapeado y adaptación del mapa
que asegura una navegación segura y la comprensión del entorno. Además, aportamos
métodos de localización y planificación de trayectorias usando el mapa construido para
realizar nuevas tareas en el entorno.

El primer problema que se aborda en esta tesis es el mapeado de entornos de
interiores estáticos por parte de un robot. Proponemos un método de mapeado híbrido
que estructura la información capturada en varios mapas. El mapa híbrido contiene
información sobre la estructura del entorno, las trayectorias libres y bloqueadas y
también incluye información semántica, como los objetos y escenas en el entorno. Toda
esta información está separada en diferentes componentes del mapa híbrido que están
interconectados de tal forma que el sistema puede beneficiarse en cualquier momento
de la información contenida en cada componente. Además de la definición conceptual
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del mapa híbrido, hemos desarrollado unos procedimientos para construir el mapa y un
algoritmo de exploración que permite que esta construcción se realice autónomamente.

Sin embargo, los entornos de interiores habitados por personas están lejos de ser
estáticos ya que pueden cambiar a lo largo del tiempo. Por esta razón, el segundo
problema que intentamos solucionar en esta tesis es la adaptación del mapa para
entornos no estáticos. Proponemos un método probabilístico de adaptación del mapa
basado en objetos que calcula la probabilidad de que cada objeto en el entorno haya
sido movido o permanezca en su posición anterior.

Para terminar, un mapa es simplemente una descripción del entorno cuya impor-
tancia está principalmente relacionada con su uso. Por ello, los mapas más valiosos
serán los que ofrezcan un rango mayor de aplicaciones. Para abordar este asunto, el
tercer problema que intentamos solucionar es explotar las características intrínsecas del
mapa híbrido para mejorar el desempeño de métodos de localización y de planificación
de trayectorias usando el mapa híbrido. El objetivo principal de estos métodos es
aumentar la precisión en la localización del robot y la eficiencia en la planificación de
trayectorias en relación al tiempo de ejecución y la distancia recorrida.

Hemos evaluado los métodos propuestos en una variedad de entornos de interiores
simulados y reales. En esta extensa evaluación, mostramos que los mapas híbridos
pueden construirse y mantenerse en el tiempo de forma eficiente y que dan lugar a
nuevas posibilidades en cuanto a localización y planificación de trayectorias. En esta
tesis, mostramos un aumento en la precisión y robustez en la localización y una mejora
en el desempeño de la planificación de trayectorias.

En resumen, esta tesis lleva a cabo diversas contribuciones en el ámbito de la
navegación de robots móviles en entornos de interiores, y especialmente en mapeado
híbrido. Los mapas híbridos ofrecen más eficiencia durante la construcción del mapa
y en otras tareas como la localización y la planificación de trayectorias. Además,
resaltamos la necesidad de tratar los cambios en entornos de interiores y los beneficios
de combinar información topológica, semántica y métrica para la autonomía del robot.
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1
Introduction

Robot navigation and mapping serves to provide a robot with navigation capabilities
to move safely in the environment and take intelligent decisions regarding how and
where to move for a certain task. Robots can help others or develop tasks in indoor or
outdoor environments and in the company of humans or not. Thus, the complexity
of robot navigation tasks vary according to the size of the working environment of
the robot, its structureness, the influence of humans and the changeability of the
environment, among others. Indoor environments, such as houses, hospitals, office
buildings or universities, present a high complexity since they contain a great variety
of geometric structures and situations. These environments can be very complex and
can contain hundreds of rooms distributed into multiple floors, areas and corridors
and can present a great diversity of connections between rooms. In addition to the
geometric variety of indoor environments, they may contain a diversity of situations
that change over time, including densely-crowded hallways, corridors with doors
frequently opening and closing, cluttered rooms and furniture that occasionally moves.
Moreover, the complexity of indoor environments does not reside solely in the diversity
of structures and situation, indoor environments are GPS denied and this fact obscures
robot operation compared to open outdoor environments. It is essential that mobile
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robots operating in indoor environments address the scale, complexity and information
acquisition of the environments for robustly performing everyday-life tasks.

This thesis is framed into HEROITEA1 research project that focuses on helping
elderly people with their everyday-life activities at their homes. Tasks such as cooking
or carrying things can become challenging with the age and HEROITEA tries to
give a robotic solution to this problem. For a robot to operate with humans in their
environments, different functionalities are required: perception and understanding of
objects and scenes, human-robot interaction, mapping and navigation through the
environment, etc. This thesis is focused mainly on developing the mapping system for
HEROITEA research project and contributing to its navigation tasks. For this reason,
the proposed method must deal with dynamic indoor environments, be autonomous
in every step of the mapping and navigation processes and capture as much relevant
information as possible of the environment.

1.1 Problem Statement and Motivation
Today, many complex tasks are starting to be carried out by mobile robots: spatial
exploration robots have been deployed to Mars [106] and the moon [169]; autonomous
vehicles are transporting goods in warehouses [24, 44] and cleaning robots are helping
people with their household chores [13, 86, 160]; mobile robots are also deployed to help
humans in other tasks such as inspecting and patrolling in dangerous environments [185]
or taking care of agricultural tasks [72] and livestock [79]. To operate autonomously, all
the aforementioned robots and robotic systems need robust and complete navigation
modules. These works, and many others, offer interesting solutions to limited scopes of
robot navigation in specific domains that will contribute to the achievement of robust
long-term robot navigation. However, in spite of their successes, the goal of long-term
mapping and navigation is far from being achieved.

Depending on the environment and application, mobile robots need to solve different
challenges including localization, mapping, path and action planning, perception,
reasoning and much more. In this thesis, we focus on the tasks of mapping, map
maintenance, localization and path planning. Mobile robots operating in outdoor
environments can be provided with accurate satellite maps and global positioning
systems that contribute to the navigation task. However, indoor environments are blind
spots for satellites and thus, satellite maps and global positioning are not available.

1HEROITEA: Heterogeneous Intelligent Multi-Robot Team for Assistance of Elderly People
(RTI2018-095599-B-C21), funded by Spanish Ministerio de Economia y Competitividad
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For most indoor environments, map construction has to be performed by the robot and
it is a key factor for the success of robot operation. The motivation of this work is to
develop a novel complete representation of the environment that captures the precise
structure and complexity of the environment in a structured fashion and allows further
robot navigation and adaptation to changes in the environment to contribute in filling
the gap of long-term mapping and navigation. For this purpose, this thesis introduces
a new hybrid map representation that contains useful metric, topological and semantic
information for navigation and map maintenance in indoor non-static environments.
We complement this mapping method with a map adaptation algorithm based on
metric and semantic information to overcome changes caused by movable objects.
Moreover, given that indoor environments are GPS denied, we solve localization and
path planning tasks relative to the hybrid map representation.

1.2 Objectives
From the challenges proposed in the previous section, the aim of this thesis is to develop
a robust autonomous mapping method for non-static indoor environments that enables
safe navigation and operation. This aim leads to several specific objectives:

• Defining a model of the environment that allows a map to contain diverse and
useful information of the environment, specially of its structure, the elements con-
tained in the environment, the relation between them and the 3D representation
of the environment.

• Developing an exploration strategy that allows to autonomously build the map
and gather the required information.

• Detecting and managing the changes in the environment in long-term operation
and update the map with the learned information.

• Localizing the robot within the hybrid representation through probabilistic
methods that manage the uncertainty of the environment using the different
sources of information contained in the hybrid map.

• Navigating through the environment using the hybrid map and path planning
strategies to produce efficient and safe trajectories.

This thesis will examine previous attempts to achieve the stated objectives and
it will give a new solution to them. The proposed solution to each objective will be
thoughtfully evaluated and justified through experiments and comparisons.
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1.3 Contributions
This work intends to provide new answers to already-known problems that outperform
or give a new perspective with regard to current solutions. Our primary contributions
to robot mapping and navigation are three-fold: on building the map representation,
maintaining the map representation and using the map representation. Research efforts
on building the map representation focused on including a wider range of information
in a structured fashion and in developing more efficient mapping methods. When
maintaining the map representation, we sought for a novel flexible adaptation of the
map based on objects. Thirdly, we propose an innovative solution in terms of using
the map representation through localization and path planning strategies combining
different components of the hybrid map.

With regard to the definition of the model of the environment, a new hybrid mapping
method is proposed that includes structural, relational, 3D and object information
structured into different layers of the hybrid map. The novel conception of the hybrid
map simplifies the construction and abstraction of the map and enlarges the navigation
capabilities of the robot compared to current works. In addition, thanks to the proposed
method, building the whole hybrid map outperforms standard 3D mapping in terms
of memory consumption and the proposed submapping strategy improves upon fixed
submapping in terms of memory consumption and number of submaps. Furthermore,
a novel exploration algorithm for map construction is proposed. The novelty of the
exploration algorithm lies in a cost-utility function that reduces execution time and
traveled distance with regard to relevant state-of-the-art methods.

The next contribution of this thesis refers to the adaptation to non-static envi-
ronments. We provide a novel probabilistic method that learns the movability of the
objects in the environment. The changes in the environment are captured and added
to the map in a probabilistic fashion that represents how movable or static an object
is and can lately be used for determining the most trustful elements. This method
goes beyond other proposed methods, such as binary classifications between static and
movable elements, and broadens map adaptation applicability.

Thanks to the hybrid definition of the model, novel methods for the usage of
the map can be proposed. From a topological localization perspective, we show how
the hybrid map can improve the estimation of robot location compared to using the
information of just one component of the map. From a path planning perspective, we
have designed a novel path planning strategy that, using several components of the map,
goes beyond standard path planning techniques in terms of planning and execution
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time and traveled distance. Our last contribution lies in the usage of semantic and
metric information for precise pose estimation in static and non-static environments.
The combination of both sources of information provides a more accurate robot pose
than just using one of them.

1.4 Structure of the Document
The presented objectives and contributions have been distributed throughout this
thesis into eight chapters. Chapter 2 revises the related work in hybrid mapping for
mobile robots describing the most relevant works in the topic and positioning this thesis
with regard to them. This revision includes a historical compilation of the proposed
methods, as well as, a detailed description of the trends and current state of the hybrid
mapping paradigm.

Once the related work and the context of this thesis are explained, in Chapter 3, the
proposed model of the environment is described. The model of the environment consists
of a hybrid map structured in several components that contain different information.
The theoretical description and requirements for each component of the map, the
contained information and the relation between components are included. This chapter
states the main definitions and limitations of the model, whereas the subsequent
chapters address specific tasks involving this model.

Chapter 4 presents the construction of the hybrid map. The implementation of the
theoretical model presented in Chapter 3 is explained and evaluated. This chapter
covers how the information of the environment is gathered, how each element of the
map is built and how they behave for specific processes such as loop closure for each
component of the hybrid map.

The construction of the map can be conducted in several ways. For example, a
robot can be teleoperated while it builds the hybrid map. In Chapter 5, an exploration
method that allows to autonomously build the hybrid map is presented. Related work
in autonomous exploration is reviewed and the proposed method is evaluated and
compared to relevant works in the field.

The initial hybrid map and the information collected by the robot will rapidly be
erroneous and outdated in human environments since they are not static and prone
to suffer changes. For this reason, continuous adaptation of the map is a requirement
for a robust long-term operation. Chapter 6 includes the proposed method for map
adaptation in non-static environments. Firstly, a revision of the related work in map
adaptation is presented and, to finish the chapter, the proposed method is evaluated.
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As explained in this introduction, a map of the environment is just a tool so the
robot can perform other tasks in an environment. In Chapter 7, we show how the
proposed hybrid map can be used for topological localization, metric localization and
path planning. These tasks will benefit from specific characteristics of the hybrid map.

Finally, Chapter 8 concludes this thesis giving the reader a general vision of the
achievements and contributions, as well as, the open lines that will be tackled in the
future.

1.5 Evolution of this Thesis
The document of this thesis is arranged following the coherence of the topic focusing,
first, on hybrid maps and their construction, then, on maintaining the maps in the
long-term in order to finish with some applications of the presented hybrid map. This
arrangement differs from the chronological order of the developments during the years
of this thesis. For this reason, I would like to take this space to explain how the
thesis evolved during the years until it resulted in the present document. A graphical
representation relating the document and the evolution of this thesis is shown in
Figure 1.1.

This PhD thesis started as a continuation of the developments of my master thesis
titled Topological Navigation System applied to a Developed Robotic Platform that
consisted mainly in the development of a topological mapping system to perform graph-
based navigation. In that work, we were dealing with mapping and path planning
so the next natural step was to implement a localization method that could operate
with the given topological representation of the environment. This first development
is included in Chapter 7.1. At that state of the work, the maps were built while the
robot was teleoperated, so the mapping process was not autonomous. Thus, our next
step was to make the mapping process autonomous through an exploration algorithm,
that it is presented in Chapter 5 in this document.

Our two aforementioned works inspired us to develop a hybrid representation of
the environment. Initially, we saw the potential of including a higher-level represen-
tation that consisted of rooms given that they would be easy to extract with our
autonomous exploration algorithm and very useful for the topological localization. So,
at this point, we started conceptualizing the hybrid representation that is presented
in Chapters 3 and 4. However, the conception of the hybrid map in the way that it
is presented in this document has been dynamic, including new elements with the
subsequent works. In order to validate the first approach to a hybrid map, we improved
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the topological localization method combining information from different components
of the map. This is presented in Chapter 7.1.

During the first research visit and collaboration with an international lab (ASL in
ETH Zurich), the metric representations were added to the hybrid map. In addition,
we developed a hybrid path planning method that takes advantage of the topological
and metric representations in order to perform more efficient path planning. This
development is presented in Chapter 7.3. The construction of the hybrid map through
autonomous exploration and the hybrid path planning method led to a publication in
the International Conference on Robotics and Automation (ICRA).

At that stage, the map representation was meant for static environments and we
become interested in how to enable mapping in non-static environments. During

Figure 1.1 Graphical representation of the evolution of this thesis. From
left to right, the chapters of this thesis are listed. The black line connects
the different topics in the chronological order that they were developed.
Yellow boxes indicate the topics that are a result of a collaboration with
other research labs.
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the second research visit (CIIRC in CTU Prague), we noticed that objects were key
elements representing the dynamics of an indoor environment. Thus, we included
an object-based representation in the hybrid map and perform map adaptation to
changes in the environment. This development is presented in Chapter 6 and yielded a
publication in the International Conference on Intelligent Robots and Systems (IROS)
and in Robotics and Automation Letters (RA-L).

The last work developed for this thesis was also conducted in an international
collaboration (Photogrammetry and Robotics Lab in University of Bonn). The aim of
this work is to develop a robust localization method for non-static indoor environment
using metric and semantic information to overcome the changes in the environment.
This work is included in Chapter 7.2 and has not been published yet.

As we have described and shown in Figure 1.1, the document structure highly
differs from the evolution of the thesis. However, we believe that the chosen structure
will be more coherent and easy to follow by the reader.



2
Related Work in Hybrid Maps

Hybrid mapping of the environment for robot navigation has been extensively researched
in the last decades. Hybrid maps were firstly proposed as a way to strengthen
map representations and compensate the drawbacks of both metric and topological
approaches in representing the environments [151]. In that work, Thrun stated that
grid-based (metric) approaches are inefficient for planning, space-consuming, they
require accurate determination of robot pose and offer a poor interface for most
symbolic problem solvers. By contrast, he stated that topological approaches are
difficult to construct and maintain in large-scale environments if sensor information
is ambiguous, they may yield suboptimal paths when path planning and recognition
of places may often be difficult. The combination of both paradigms offer the best of
both worlds since one representation compensates the drawbacks of the other.

Nowadays, the drawbacks that Thurn identified in [151] are still a problem and
in some cases they have even magnified. This is the case of memory and space
consumption in metric maps given that the current trend is to build detailed 3D
metric maps. Although some works are focused on efficiently building 3D metric
maps [80, 122], they still present limitations to handle large-scale environments. For
these reasons, hybrid mapping is an up-to-date paradigm that can help us solve some
of the current challenges in robot mapping and navigation.
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Approximately three decades ago, authors started to be interested in the possibility
of using hybrid maps for robot mapping. They developed the theoretical groundwork
for current hybrid mapping, along with the first experimental evaluations and proofs
of concept that validated the hybrid mapping paradigm. Kuipers and Levitt [96]
proposed a four-level semantic hierarchy that organized the environment information
in a sensorimotor level, a procedural level, a topological map and a metric map.
They tested the model in three different navigation approaches using different input
information (such as views or landmarks) and storing different information in the
topological and metric maps (such as landmark covisibility or paths and places, in
the topological level, and metric relations between landmarks or local metric maps,
in the metric level). Based on the aforementioned work, Kuipers [93] presented the
Spatial Semantic Hierarchy (SSH) that established a hierarchy for robot mapping
that consisted of a control level (previously referred as sensorimotor), a causal level
(previously referred as procedural), a topological level and a metric level. The control
level acquired 2D local maps of the surroundings of the robot, the causal level identified
the views and actions performed by the robot and built a view-graph while the robot
moved, the topological level contained the places, grouping views and paths traveled
by the robot, and the metric level contained the 2D global map built from the local
metric maps. Similarly, Duckett et al. [52, 53] proposed to acquire 2D local grip maps
and a topological map to, afterwards, build a consistent global metric map. Bulata
and Devy [30] presented a landmark-based hybrid map that consisted of a geometrical
level, a symbolic level and a topological level. The geometrical level was formed by the
landmarks extracted from sensor information. The symbolic level contained areas that
were defined as semantical entities (rooms, corridors,...) that contained landmarks.
Finally, the topological level represented the whole environment and contained the
relationships between areas in a global frame of reference. This work established
the connection between areas when crossing doors. In the same spirit, in [176] the
environment is modeled as a topological map connecting places (rooms) and a 2D
occupancy grid is built for each place. Different places were identified by gateway
detection and gateways were detected like gaps in sensor readings of a predetermined
size. Thrun et al. [151, 152, 154] presented a hierarchical mapping method consisting
of a global topological and a global metric map. First, they built a 2D occupancy grid
of the environment from which they, then, extracted a topological map using Voronoi
diagram method. Thanks to the identification of critical lines in the Voronoi diagram
(areas that minimize the clearance locally), they partitioned the global metric map and
extracted the topological map of the environment. This partitioning method divided
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the environment according to doorways and narrow areas within rooms. Both, the
metric map and the topological map, were used for path planning. The results from
some of these pioneering developments in hybrid mapping are included in Figure 2.1.

Figure 2.1 Hybrid maps obtained with the pioneering hybrid mapping
methods. In (a), the map built by Thrun [151] is shown. The hybrid
map consists of a 2D occupancy grid of the environment and a topological
map. The global occupancy grid is partitioned according to the topological
map splitting the environment where narrow passages are detected. The
hybrid map built in SSH by Kuipers [93] for the path traveled in the given
environment is shown in (b). A section of the topological map is included
where dots represent places and lines paths connecting them. The global
metric map with the landmarks detected is shown. In (c), the map built by
Duckett et al. [52] is shown. A section of the topological map with the 2D
local occupancy grids associated to each node is included. In addition, the
global topological map and the merged global metric map are shown.
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Later, some authors took over the ideas of those first hybrid mapping methods to
perform more complex mapping strategies or to apply hybrid maps for higher-level
tasks. An example of these approaches is Atlas framework [27, 28] proposed by Bosse
et al. that consisted in a SLAM framework based on hybrid metrical/topological
maps. The representation consisted in a graph of multiple local maps that could
later be merged to obtain a global metric map. The local metric maps were bounded
by the complexity of the map by defining a maximum number of features to be
contained in each map. They proposed a path planning and a loop closing method
within the Atlas framework. In [61, 66], authors proposed the Multi-AH-graph, a
multihierarchical representation of large-scale spaces. In [66], they presented a two-
hierarchy multihierarchical representation that consisted of a spatial representation and
a conceptual one. The spatial hierarchy contained a topological map that identified
rooms and corridors connected by the possibility to navigate among them and grid maps
associated to each node (extracted from a global metric map). The conceptual hierarchy
contained four different levels that determined the level of abstraction of the semantic
information. Things were identified in the first level, then, they were categorized into
objects and rooms, the third level included the specific objects and rooms and the last
one the instances of objects and rooms. In [61], Multi-AH-graph is augmented to drive
a wheelchair by including a localization hierarchy and several route-planning hierarchies
to assist the navigation. In addition, some authors based their works on some of the
pioneering hybrid mapping strategies. This is the case of [95, 117] that proposed some
extension works of the SSH. Kuipers et al. [95] extended the SSH to resolve global
structural ambiguity. To do so, they built local maps of perceptually complex areas such
as gateways and intersections and maintained a topological map containing the different
local maps to robustify the metric representation of the environment. In addition, the
work in [117] studied the uncertainty of the previously mentioned extension of SSH in
local metric uncertainty, global topological uncertainty and global metric uncertainty
in order to build more accurate representations. Buschka and Saffiotti [32] detected
an increasing interest in hybrid mapping and a lack of a systematic analysis of the
different hybrid mapping methods proposed up to then, given that some works were
focusing on hierarchical structures [93], others on flat ones [52], some were building
the topological map on top of metric maps [154] and others were doing the reverse [53].
In order to fill that gap, they proposed a formal definition of a hybrid map and a
classification of hybrid maps (we will talk about their definition and classification in
Chapter 3).
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Different approaches were then proposed towards hybrid mapping. The next
works are going to be classified according to the structures created for mapping.
Firstly, we present works that built both a global metric map and a global topological
map [16, 67, 83, 179, 180, 186]. In some works, such as the work by Zhang [179], a
global metric map is built and afterwards a topological map is extracted from the
metric structure. In that case, Voronoi diagram was used to obtain the topology
of the environment. This approach maintains the global metric map and the global
topological map and search-based planning in the hybrid map was presented in their
other work [180]. On the contrary, in [16], Beeson et al. built the map representation
reversely, in the first place they built the topological map and they constructed the
global metric map on top of it. The global metric map is built upon the skeleton of the
topological map and they also built metric local maps for gateways and intersections.
In [186], Zivkovic et al. studied the creation of a geometric global map (2D occupancy
grid) or an appearance-based map that consisted of a collection of sensor readings from
which authors extract a topological map from any of them. Then, they performed
normalized graph cut to divide the graph in node clusters, each node cluster was
associated to a node of a higher-level graph in order to perform enhanced path planning
strategies. Normalized graph cut consists in dividing the graph through weakly
connected places, that might correspond to doorways or narrow areas. In [83], SLAM
was used to build a global topological and a global metric map. A path planning
strategy on top of the topological map was used to autonomously build the maps of
the environment through exploration while the metric map was used for localization.

The next works built a topological map from a global metric map and then
partitioned the metric map into local metric maps [22, 62, 84, 129, 138]. Local metric
maps offered a more tractable detailed representation of the environment that leaded
to more efficient map building and path planning. An extension of the previously-
described work [83] was proposed in [84]. In the previous work, an occupancy grid of
the environment and a topological map had been built. In this extension, a Voronoi
diagram was extracted from the occupancy grid to partition de environment through a
normalized cut method in which the topological map was divided according to narrow
passages. Afterwards, local metric maps were extracted from the global map for each
area. In [138], Schmuck et al. mapped the environment as a global metric map using
Octomap algorithm [80] and extracted its topology. They divided the global metric map
into 3D fixed-size submaps in order to enhance map optimization and path planning.
Pronobis et al. [129] proposed a semantic mapping system that comprised four layers:
a sensory layer that contained the metric map of the environment, a place layer that
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organized the environment topologically into places and paths, a categorical level that
included objects and landmarks and a conceptual layer that contained relations between
elements. They built a global metric map and a global topological map and grouped
different topological places into rooms by detecting doorways. Although these works
generate submaps, their main problem is the computational requirements to build the
global metric map, specially in large environments. The solution to this problem leads
to the third group of hybrid mapping approaches.

The following works, that belong to the third group, directly built the global
topological map and the local metric maps without the need of a global metric
map [21, 46, 57, 63, 90, 100, 120, 127, 128, 156, 159, 173]. Estrada et al. presented
Hierarchical SLAM in [57]. Their hierarchical mapping method consisted of a global
topological map and feature-based local maps of limited size. Similarly to other
methods, each node of the topological map was associated with a submap and the
creation and size of the submaps depended on the complexity of the submap (maximum
number of features) and on the uncertainty in robot localization. In [159], each node of
a topological map contained the set of images in that region and it was augmented with
metric information at places (nodes) where the robot turned. Similarly, in [156, 46, 173],
metric information was not stored for the whole environment. In [156], Tomatis et
al. presented a localization and map building method based on a topological global
map and they added local metric maps only for some specific areas of the environment.
In [46], Dayoub et al. presented a method in which each of the nodes of a pose graph
was associated to a 3D point cloud and the point clouds of interesting areas such
as intersections could be merged together in a 3D occupancy grid. In [173], metric
maps were only created for complex areas, whereas corridor and simple areas were
maintained through a topological map. Nitsche et al. [120] proposed a hybrid mapping
method consisting in a topological map and fixed-size metric submaps. Each metric
map, built as an occupancy grid, was associated to an area node of the topological
map. The topological map also contained gateway nodes that represented the section
of an occupancy grid edge where two local maps were connected. The method proposed
by Blanco et al. [21] simultaneously built the topological map and the local metric
submaps. Submaps were divided according to the covisibility of observations forming
areas (nodes) that contained observations that would be likely observed together. In
the same spirit, Forster et al. [63] generated submaps according to the detection of
interconnected RFID tags. A metric and a topological map were built for each cluster
of RFID tags and they were also associated to a node of a higher-level topological
graph. Konolige et al. [90] presented a topological graph overlaid with fixed-size local
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occupancy grids. They maintained two topological maps that were the pose graph and
the navigation graph. The pose graph associated robot poses with sensor data, while
the navigation graph contained the traversable edges between nodes. Figure 2.2 shows
an example of the resulting hybrid map for one representative work of each of the
mentioned groups (approaches building global metric and topological map, approaches
building global topological map and global and local metric maps and approaches
building global topological map and local metric maps).

Figure 2.2 Hybrid maps obtained for some relevant works. In (a), the
resulting map built by Jia et al. [83] is shown. This representation consists
of a global metric map and a global topological map. The work by Schmuck
et al. [138] is shown in (b) and the environment is represented as a global
topological map and a global metric map that is then partitioned into
submaps according to topological nodes. In (c), we show the resulting map
built by Konolige et al. [90] where metric submaps and a global topological
map are simultaneously built.

Hybrid maps are also receiving attention from the robotics community recently
and some relevant works have been proposed during the last years [13, 23, 38, 78, 109,
135, 136, 149, 150]. Blochliger et al. [23] present a topological representation that
maps the free space into a navigation graph and 3D convex voxel clusters. A node
of the navigation graph is assigned for each convex area and the adjacency between
areas is mapped through portals in the navigation graph. Convex areas are identified
as they offer safe areas for path planning. In [109], Luo et al. present a hybrid
topological-metric map with semantic information. Semantic information in the object
level generated from a CNN is stored in the topological nodes of the hybrid map. Room
types in the environment are inferred from the information of objects contained in the
nodes. Both, the 2D global metric map and the topological map, are segmented into
areas and clusters of topological nodes based on the room type. The aim of [78] is to
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build a globally deformable map for underwater navigation. For this purpose, they
propose a hybrid map that consists of 3D metric submaps connected through a pose
graph. The size of the submaps is computed by keeping the pose covariance of the
robot below a maximum value. In [135, 136], Santos et al. propose a hybrid mapping
for robot navigation in an agricultural environment. They use satellite images to build
a 2D global occupancy grid of the environment and extract its structure using Voronoi
diagram. They build a topological map of the traversable space in a vineyard and
partition the global metric map into occupancy grids for common areas and vineyard
rows. For efficient path planning, the algorithm focuses on the interesting areas by
only selecting the occupancy grids of the regions of interest. Figure 2.3 shows the
resulting hybrid maps for some of the aforementioned recent works in hybrid mapping.

Figure 2.3 Some relevant recent works in hybrid mapping. In (a), the
resulting map for the work proposed in [23] is shown. They build a 3D
voxel-based map for each convex area in the environment and a navigation
graph that connects the adjacent convex areas. The raw information of the
environment captured as a point cloud is shown in the top figure. In (b),
we show the resulting hybrid map for the work by Luo et at. [109]. The
first figure shows the 2D occupancy grid of the environment, the topological
map and the partition of the environment into rooms. In the next figure
and the table, the room types identified are included (different colors for
each room type). In (c), the resulting hybrid map for the work by Santos et
al. [135] is included. They build a topological graph of the traversable areas
in the environment and, then, divide the 2D occupancy grid into regions of
interest determined by the rows and common areas of the vineyard.
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The presented hybrid mapping methods mainly construct topological and metric
representations of the environment. Most of them keep a global topological representa-
tion and represent the environment locally into metric submaps, although some opt
to maintain both representations globally [16, 83]. The main drawback of building a
global metric representation is the high memory consumption of the map, that will also
propagate to long processing times when using the map. The approaches that build
local maps of the environment mainly differ in the construction of the topological map
(using Voronoi diagram [84, 136, 154], as a pose graph [46, 78, 90, 149], as a navigation
graph [23, 90, 109] or merely as anchoring for the submaps [66, 38]) and the metric
submaps (as 2D occupancy grids [53, 90, 109], as 3D voxel structures [23, 78, 138],
as landmark maps [30, 63, 93] or raw sensor information [46, 149, 150]). In addition,
different approaches for partitioning the environment have been presented (covisibility
of elements [21, 63], complexity of the submap [28, 57], uncertainty in pose covari-
ance [57], fixed-size submaps [90, 120, 138] or environment-related submaps such as
convex areas [23], rooms [109, 129, 176] or doorways and narrow passages [95, 186]).
Different partitioning strategies have different advantages and the decision will be
highly related to the task to perform. However, partitioning the environment according
to rooms is the representation that offers a higher semantic understanding of the envi-
ronment and eases human robot interaction. Furthermore, some approaches present
complex hierarchies with several levels [30, 61, 96, 129] while other are based on a flat
structure in which a single topological map acts like a global map for the multiple
generated submaps [13, 27, 78, 120, 151].

The methods that are more alike to the one proposed in this thesis are [23, 109, 176].
Similarly to Blochliger et al. [23], we propose the construction of 3D voxel-based
maps that are connected through a topological map. In addition, we also build a
representation similar to their navigation graph that contains information of traversable
areas and portals in the environment. In a similar spirit as Luo et al. [109] and
Youngblood et al. [176], we divide the environment into rooms and build a metric
submap for each one. In addition, we assign a node of the topological map to each
room. We are also related to Youngblood et al. [176] in the way of identifying
rooms using gateways and to Luo et al. [109] since we also relate object and room
type information to topological nodes. Differently from these works, we present a
four-level hybrid map structure that distributes all the mentioned information in
different levels. To the best of authors knowledge, our hybrid map is the only one to
contain 3D submaps, navigable paths information and objects and scenes information
distributed into different components. As we will describe in the detail in the following
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chapters of this thesis, our hybrid representation consists of three topological maps
and multiple metric submaps. The topological graph contains a node for each room
of the environment associated with its room type and the edges of the map refer to
the doors connecting the rooms. The traversability graph contains information of the
free areas in the environment and acts as a navigation graph that also contains door
information. The object-based pose graph adds semantic information by relating the
traversability graph with the objects in the environment. Multiple 3D metric maps are
also built, one per room in the environment, that will allow safe path planning.

Once we have introduced the most relevant related works in the field of hybrid
mapping for mobile robots, we are in a good starting position to describe the hybrid
mapping method proposed in this thesis and understand its novelties and advantages
compared to the current state of the art of the field.



3
Model of the Environment

Models of the environment are needed for a wide range of robotic applications and they
should serve for defining in the greatest detail an environment so a robot is certain
about the actions to take in order to reach a goal or perform a task. For example, the
map of a kitchen should contain information so that the robot can safely move in it, it
should provide means to know where the different cooking elements are or how to look
for them. In addition, it should give the information of how the kitchen is connected
to the rest of the house in case it has to move elsewhere. We could also think that
the map should contain information of how the kitchen behaves in the long term and
which elements change more than others. A map could also contain information about
how to interact with objects, how users interact with objects and the list of actions to
perform in each area of the kitchen. As shown, there are many tasks for which the map
could be helpful. In this thesis, we want to focus on providing the robot with a map
that allows it to move safely in the environment, to identify the general structure and
the distinguishable elements of the environment. Moreover, we want to give the robot
the capability to build a detailed reconstruction that, in the future, will allow the robot
to perform higher-level tasks. In addition, to fulfill the goal of autonomous robots, we
want our map to allow the robot to detect anything that has changed over time and
correct it, so it does not have to remap the environment every time something changes.
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Currently, there is not a map representation that allows us to perform all the
desired tasks. Metric approaches such as occupancy grids allow the robot to compute
optimal paths and to localize accurately. However, they are hard to create and maintain
due to inaccuracies, they involve heavy computation costs and do not interface well
with human symbolic thinking. By contrast, topological maps scale well and interface
more naturally with humans. However, they offer more limited localization and path
planning capabilities. With the above description of metric and topological approaches,
we see that we could use a metric approach to obtain a detail representation of the
environment, map the different elements of the environment and move safely in it. Due
to the computational costs, finding feasible paths can become complicated in large
environments in real time. In addition, they do not offer an intuitive representation of
the structure of the environment. Regarding topological maps, we could use them to
easily represent the structure and the elements of the environment and compute rough
safe paths. However, they do not provide detailed information of the environment
not even for path planning. As shown, different representations are more suitable
for different tasks. For this reason, hybrid maps, that contain metric and topological
representations, have been considered as a promising solution in the last decades. Hybrid
maps give the chance to exploit the advantages of both representations, combining the
accuracy and detailed information of metric maps and the robustness and scalability
of topological maps.

In this chapter, we present a novel structure for hybrid maps, that is the core
representation on which this thesis focuses. We will see the importance of representing
and organizing carefully the information in order to enhance the functionality of the
model.

3.1 General Overview of the Hybrid Map
Prior to defining the hybrid map structure proposed in this thesis, we need to introduce
several concepts and common terminology. Firstly, the concept of map for a robotic
system needs to be addressed in order to, afterwards, define what a hybrid map is and
which is our specific proposal for the structure of this map.

Several authors have previously defined the concept of map for a robotic system.
In [32], Buschka and Saffiotti define a map as any digital representation of the space.
Previously, in [154], Thrun et al. defined a map of the environment as an assignment of
properties to each x-y location in the world. In [153], Thrun, Burgard and Fox defined
a map of the environment as a list of objects in the environment and their locations.
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In addition, in [82], Chatila defined a map as a representation of the environment,
or parts of it. Although being different definitions, if we stick to their similarities,
a map is simply a representation of the environment. In this way, all the instances
of representations of an environment that one can think about, are included in the
concept of map.

Given the definition of map, we can intuitively expect a hybrid map to be a
representation of the environment that combines or mixes other representations or
information from several representations. In [32], Buschka and Saffiotti also give
a formal definition of a hybrid map: a hybrid map is a pair H = ⟨M, C⟩ where
M = {M1, ..., Mn} is a set of maps, and C = {c1, ..., cp} is a set of links. Each link is
a pair ⟨mi, mj⟩, where mi is an element of Mi and mj is an element of Mj, with i ̸= j.
Each of the maps that constitute the set of maps of the hybrid map will be referred as
component. A hybrid map is supposed to contain different information in each of its
components whose correspondences are determined by links of the hybrid map. For
example, one of the components can contain information about laser measurements
and the other component information about objects. In this case, the links between
these two components would identify which laser scans correspond to which object.
With this simple example, we can observe that one of the advantages of hybrid maps
is the connectivity or correspondence between components. Without this connectivity,
a hybrid map would simply be a collection of several independent maps.

A taxonomy of hybrid maps along three different dimensions is also presented
in [32]. They state that a hybrid map can be classified according to its heterogeneity,
hierarchy and separability as follows:

• Heterogeneity refers to the type of map of the components of the hybrid map;
if components are of different types or contain different type of information the
hybrid map is heterogeneous, while if all the components are from the same type
it is homogeneous.

• Hierarchy refers to the ordering between components, being hierarchical if one
component represents the environment at a higher abstraction level than other.

• Finally, separability refers to the independence of each component. If all the
components are self-contained and independent the hybrid map is separable. On
the contrary it will be integrated.

They concluded that heterogeneity is a requirement for a hybrid map, while hierarchy
and separability are desirable. At the end of this chapter, the proposed hybrid map
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will be discussed according to this classification and the possible synergies between
components.

According to the definition of hybrid map given previously, the hybrid map presented
in this thesis can be defined as H = ⟨{T1, T2, T3, M1, ..., Mn}, C⟩ where T1, T2 and T3

are topological maps and M1, ..., Mn are geometric maps.
Three topological maps are included as components of the hybrid map since they

contain different interconnected information. For the seek of clarity, let’s define T1

as the topological map TM of the environment that contains the information about
the different places of the environment and their connections; T2 as the traversability
graph TG that represents the traversable paths in the environment; and T3 as the
object-based pose graph OP that represents the objects seen in the environment and
the poses from where those objects were seen. We decided to keep these representations
as different components of the hybrid map because they offer different possibilities for
localization and path-planning and they also behave differently towards changes in the
environment (as will be described in Chapter 6).

The number of geometric maps in our hybrid map will depend on the environment
since one geometric map is built for each place detected in the environment. 3D
information is included in the geometric maps in order to have detailed information of
each place.

Taking into account the above clarifications, we can define our hybrid map as
H = ⟨{TG, TM, OP, M1, ..., Mn}, C⟩. A conceptual representation of our hybrid map
is shown in Figure 3.1 where each of the components for a given environment is included.
Let this figure be an illustrative example of the different components that will be
explained along this chapter. In that sense, in the rest of this chapter, the different
elements and characteristics of the components of the hybrid map are described in
detail and also the connections between components.

3.2 Topological Map
The topological map, TM = ⟨S, T ⟩, refers to the topological representation of the
structure of the environment and it is the higher abstraction level component of the
proposed hybrid map. The topological map contains information about the different
places that integrate the environment and the connections between them. It gives a
general representation of the structure of an environment whose detailed representation
will be provided by lower level components. It is a toposemantic component in which
nodes are called supernodes, S, that are connected between them through transitions, T .
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Figure 3.1 Example of indoor environment and the hybrid map that will
result from mapping it. Each of the components of the hybrid map are
shown: the topological map, the traversability graph, the object-based pose
graph and the six 3D submaps generated for each room.

Each supernode, si corresponds to a distinctive place in the environment. As the scope
of this thesis are indoor environments, we can assume that distinctive places are rooms.
Therefore, each transition, t

[k]
i,j that connects two different supernodes i and j is a door

whose identifier is k. In this sense, in an indoor environment the topological map
contains the information about rooms and their connections through doors.

Each supernode and transition of the topological map contains relevant information
about the structure of the environment and its semantic interpretation. Supernodes
are firstly identified with a unique key, sid

i , that is also related with the number of
rooms (Ns) in the environment, Ns = max(sid

i ). Each supernode is also characterized
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with its semantic class, classi. The semantic class of a supernode refers to the scene
type1 that corresponds to that room (i.e. kitchen or living room). As supernodes are
high-abstraction representations, they also contain references to the elements of the
lower abstraction components that belong to that supernode. This includes references
to the identifiers of nodes of the traversability graph, {vid

i }, and poses, {wid
i }, and

objects, {oid
i }, of the object-based pose graph. The topological map just contains a

reference to the key of the corresponding nodes, poses and objects, further information
about them is included in Sections 3.3 and 3.4. Finally, each supernode is associated
with the supernodes that it is connected to (also referred as priors). A supernode
connected to another given supernode si is referred as ṡi. This information is included
as a vector of keys, ṡid

i = {ṡ1
i , ..., ṡn

i }, since normally one supernode is connected to more
than one other supernode. Then, each supernode can be identified by its parameters
as si = (sid

i , classi, {vid
i }, {wid

i }, {oid
i }, {ṡid

i }).
Transitions represent the connection between two supernodes. As said before,

supernodes are associated with rooms in the environment, therefore, transitions are
associated with the doors that connect rooms. Each transition, t

[k]
i,j , is uniquely identified

with a key, tid
k , and contains the reference to the supernodes si and sj that it connects. In

addition, since they represent doors and every door is also mapped in the traversability
graph (as it is explain later), transitions also contain information about the node of the
traversability graph assigned to the door, d

[l]
k , where l refers to the node index and k

to the transition index (different indexes are needed for transition and node given that
the node of the traversability graph 14 can correspond to the door 3). The information
contained in each transition can be summarized as t

[k]
i,j = (tid

k , sid
i , sid

j , d
[l]
k ). An example

of a topological map and different supernode and transition definitions is shown in
Figure 3.2. The information contained in different supernodes and transitions is shown
along the graph. For example, t5

1,5 refers to the 5th door detected in the environment,
that connects supernode 1 (the hallway) with supernode 5 (the office) and whose
node key is 26. An example of supernode is s3, whose key is 3 and semantic type 1
(bedroom). That supernode contains 5 nodes (20, 21, 22, 23 and 24), 5 objects (17, 18,
19, 20 and 21) and 13 poses (34, 35, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47 and 48) and is
connected to supernodes 1 (the hallway) and 4(the bathroom). Although a graphical
representation of the graph is shown in Figure 3.2, the topological map is stored as a
text file including the list of supernodes and transitions and their parameters.

1The semantic class is obtained through a scene recognition method [77] that has been developed
in other thesis of this group and is beyond the scope of this thesis.
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Figure 3.2 Topological map of an illustrative example of indoor environ-
ment. Black dots in the representation correspond to supernodes of the
topological map and red dots represent the transitions. For this environment,
six supernodes (Ns) and transitions (Nt) are created. Information about
different supernodes and transitions is given according to the templates
in the right. Supernode information includes the supernode unique key,
its class (for this example, the supernodes corresponding to living room
and bedroom are shown), the nodes, poses and objects that belong to that
supernode (this information is shown in detail in Figures 3.3 and 3.4) and
the supernodes that this supernode is connected to. Transition information
includes the transition identifier, the two supernodes that this transition
connects and the door node that relates to this transition (this information
corresponds to the doors shown in Figure 3.3).

The topological map represents the invariant structure of the environment according
to its rooms. We refer to it as invariant structure because in most indoor environments
the structure is likely to remain and only under exceptional situations this structure will
change. Closing doors is not interpreted as a change in the structure of the environment
as, although the robot cannot visit that part of the environment in that moment, in
the future that area will be available again. This situation will be managed through
other components of the hybrid map. For this reason, this component is assumed to
be static and stable to changes in the environment.

There are several applications in which the topological map presents an advantage
for the system, namely for localization and human robot interaction. The topological
map contains scene information for each room that helps in localization disambiguation.
We can imagine a situation in which the robot has several guesses of its location
given its sensorial information. In such a situation, scene information could rise the
probabilities of the guesses that match with the scene type obtaining a better estimate
of the robot position (this is further illustrated and discussed in Chapter 7). In addition,
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this information is also useful in the interaction with humans since it is information
that both, the robot and the human, understand. For example, if the robot tells that
it is in the kitchen, it is more valuable information than saying that it is in coordinate
(7.6, 5.2)m. Moreover, it is more likely that the human tells to the robot to move to
the office than giving a precise coordinate. In this sense, the higher toposemantic level
of abstraction helps in localization and path-planning when semantic information is
available and it becomes specially useful when humans are involved.

3.3 Traversability Graph
The traversability graph, TG = ⟨V, E⟩, is a topometric representation that contains
the collision-free paths in the environment. In the traversability graph, a safe path is
included that generalizes over the set of paths that could connect two points A and
B (that are the nodes). The traversability graph does not force the robot to follow a
specific path, it just indicates that between A and B there is a collision-free navigable
path. The traversability graph is formed by nodes, V , and edges, E. Each node of
the traversability graph, vi, corresponds to a collision-free position that maximizes
the distance to nearby obstacles. Each edge connecting two nodes, ei,j, represents the
collision-free path between two nodes.

Each node and edge of the traversability graph contains important information
for the model. A node, which is uniquely identified with a key, vid

i , contains its 2D
pose, xi = (xi, yi) that will allow the robot to revisit that same node. In addition,
it includes the semantic class of the node, classi. The semantic class defines each
node as being transit node or free-area node. Transit nodes are those that connect
two different places (in this case, rooms) in the environment. Along this thesis, given
that it is meant for indoor environments, transit nodes are also going to be referred
as doors, D = {di

1, dj
2, ..., dl

M}, where 1, 2, ...M refer to the door index and i, j, ...l to
the index of the node identified as a transit node. Free-area nodes are nodes within a
same place that allow the robot to move inside the place. Each node also contains the
information of the key of the prior nodes that lead to it. The prior nodes of a given
node vi are labeled as v̇i and, thus, the keys of the prior nodes are v̇id

i = {v̇1
i , ..., v̇n

i },
given that normally one node is connected to more than one other node. Finally,
each node contains the key of the supernode that it belongs to, sid

i . Only free-area
nodes belong to a supernode and have this parameter, since transit nodes connect
two different supernodes. Regarding edges, which are also identified with a unique
key, eid

i,j, the information that they provide is mainly oriented to successfully moving
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through the graph. Firstly, an edge includes the key of the two nodes, vid
i and vid

j ,
that it connects. It also contains the behavior that has to be performed during the
transition. The robot is allowed to perform several behaviors, as it will be explained
in detail later, these behaviors vary mainly if the robot is moving to/from a transit
node or a free-area node. Finally, each edge has a parameter to determine if the last
time the robot was commanded to travel through it, it was traversable or not, tri,j.
This will help to identify blocked edges due to changes in the environment and to find
other paths to reach the navigation goals. When following a path, blocked edges are
detected using a laser sensor and avoided by increasing the weight of that movement
in the path planning algorithm.

To summarize, we can define every node of the traversability graph accord-
ing to its parameters vi = (vid

i , xi, classi, {v̇id
i }, sid

i ) and, similarly, every edge as
ei,j = (eid

i,j, vid
i , vid

j , behi,j, tri,j). For each pair of nodes i and j, two edges are created,
ei,j and ej,i, as the behaviors required to reach i from j might be different that the ones
required to reach j from i. Along this thesis, for simplicity we will refer to the definition
of an edge, ei,j , but we refer to both edges, ei,j and ej,i. An example of a traversability
graph and several examples of node and edge definitions are shown in Figure 3.3. An
example of edge is given by e15,25 whose identifier is 25 and connects nodes 15 and 25.
The behavior associated with this node is 0 (moving between free-area nodes) and it is
not traversable at that moment in time. This is due to an object that is blocking the
path. Moreover, if the robot is at node 15 it will not be able to reach any of the nodes
that belong to the office since there is not an alternative path. An example of node is
given by v26, whose identifier is 26 and it is located at (13.6, 7.1)m with respect to the
map frame. This node is associated with a door and it is connected to nodes 25, 27,
and 30. In addition, this node does not belong to any supernode, as it corresponds to
a door. Although a graphical representation of the graph is shown in Figure 3.3, the
traversability graph is stored as a text file including the list of nodes and edges and
their parameters.

The traversability graph has to adapt to changes in the environment given that
edges or nodes can be blocked by new obstacles. Assuming that the traversability graph
is static would lead to failures due to collisions to unmapped obstacles. Detecting and
avoiding non traversable edges is a strategy to overcome possible failures.

The traversability graph is used to plan safe paths in the environment as all the
nodes and edges are collision-free areas and it is suitable for fast graph search algorithms.
In addition, it is used for loop closure. The robot will detect when a node has been
reached again and determine if it has been reached through a new path, so it has to
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Figure 3.3 Traversability graph in an illustrative example of indoor envi-
ronment. Black dots in the representation correspond to free-area nodes,
red dots represent the transit nodes (doors) and lines represent edges. For
this environment, 31 nodes (Nv) and edges (Ne) are created. Information
about different nodes and edges is given according to the templates in the
right. Node information includes the node unique key, the pose of the node
(x-y coordinates), its class (free for free area node and door for transit node)
and the nodes connected to this node. Edge information includes the edge
identifier, the two nodes that this edge connects, the behavior that the
robot has to perform to move between the nodes and if the edge is detected
as traversable or not.

create a new edge for this movement, or it has been reached through an already-known
path that will not require any modification of the map. An example of loop closure
is found in Figure 3.3 where there are two entrances from the hallway to the kitchen.
The strategy for loop closure is further explained in Chapter 4.

3.4 Object-based Pose Graph
The object-based pose graph, OP = ⟨W, O⟩, is a topometric representation in 3D that
includes object nodes and pose nodes. The object-based pose graph relates a path
in the environment with its objects offering a semantically-enhanced graph. Up to
now, the components included in the hybrid map only contained 2D representations
regarding the structure and ground traversability. This component merges the 2D
representation of the ground traversability with the 3D information of the objects
present in the environment. Pose nodes (in the following referred as poses), W , track
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the trajectory traveled by the robot and object nodes, O, represent the 3D pose and
type of the objects2 in the environment.

Each pose contains metric information regarding the path and the poses from
where objects were seen. A pose, wi, which is identified by a unique key, wid

i , contains
the global coordinates of the pose, xi = (xi, yi) and the key of the objects that were
detected from it, {oid

i }. Also, like most of the elements in the previous components,
the poses that it is connected to are included, {ẇid

i }, and the supernode that the pose
belongs to, sid

i . Therefore, we can define each pose as wi = (wid
i , xi, {oid

i }, {ẇid
i }, sid

i ).
One object node is added to the map each time that the robot detects a new

object in the environment. Each object, oi, is identified with a unique key, oid
i . It

contains information about the 3D position of its centroid, ci = (xi, yi, zi) and the 3D
bounding box of the object, which is identified by the width, height and length of
the box, bi,3D. Objects are also assigned an object class, classi, that correspond to
the most likely class of the object (chair, table, etc). Objects are also identified by
their behavior in the long term. The persistence probability of an object, p(oi) = [0, 1],
indicates how static that specific object has been during the visits of the robot to
that environment. As we will see later, for long-term operation, we are not removing
objects when they are not present in the environment. On the contrary, we lower
their persistence probability and also indicate that they were not active in the last
visit. For this purpose, we include a binary parameter, ai, that indicates whether an
object was present in the last visit, ai = 1, or not, ai = 0. Lastly, each object contains
information about the poses from where that object was observed, {wid

i }, and the
supernode where the object is, sid

i . Summarizing all these parameters, an object can
be defined as oi = (oid

i , ci, bi,3D, classi, p(oi), ai, {wid
i }, sid

i ).
The object-based pose graph of an illustrative indoor environment is shown in

Figure 3.4. The representation shown includes different pose and object definitions
based on the templates shown at the right. One of the objects illustrated, o8, is a
chair whose centroid is in (13.6, 2.7, 0.6)m. The persistence probability of this chair
is low, 0.32, and it was active in the last visit through the environment. This object
was visible from poses 18 and 19 and it belongs to supernode 2. An example of pose is
given by w54, which is located at (14.5, 6.8)m with respect to the map frame. From this
pose, the objects whose keys are 22, 23, 24 and 25 are visible and the poses 53, 55 and
57 are reachable. In addition, the pose belongs to supernode 5. Although a graphical

2Object detection is beyond the scope of this paper and out-the-box object detector are going to
be used for detecting the different objects found in indoor environments.
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representation of the graph is shown in Figure 3.4, the object-based pose graph is
stored as a text file including the list of poses and objects and their parameters.

Figure 3.4 Object-based pose graph in an illustrative example of indoor
environment. Black dots in the representation correspond to robot poses
and cubes corresponds to object. Each object is represented with its centroid
(colored cube) and its volume (bigger cubes). For this environment, 60
poses (Nw) and 27 objects (No) are created. Information about different
poses and objects is given according to the templates in the right. Pose
information includes the node unique key, the coordinates of the pose (x-y),
the object visible from that pose, the poses connected to that pose and
the supernode that the pose belongs to. Object information includes the
object key, the coordinates for the object centroid (x, y, z), the volume of
the object given by the width, height and length of the bounding box, the
object class, its persistence probability and whether it was active in the last
mapping session. Objects also include the poses that made them visible
and the supernode that the object belongs to.

Objects are the main elements that change in dynamic or non-static indoor envi-
ronments. For this reason, the structure created to store object information has been
prepared to reflect these changes (persistence and active parameters). The object-based
pose graph is the component of the hybrid map that will represent the behavior of the
environment in the long term and capture its movable elements.

In addition to noticing the changes in the environment, the object-based pose graph
allows for learning interesting information about each object and type of object (as
explained in Chapter 6). In addition it can improve localization capabilities of the robot
and contribute in the semantic knowledge of the environment and semantic-demanding
tasks such as object search.



3.5 3D Submaps 31

3.5 3D Submaps
The 3D submaps, M = {M1, M2, ..., Mn}, are 3D dense representations of the environ-
ment. As mentioned above, a submap is built for every place (room) in the environment.
Truncated Signed Distance Fields (TSDFs) are used to build the submaps since they
offer a compressed and informative way of representing the environment [122, 178].
The idea behind TSDFs is to represent the environment as a 3D voxel grid in which
each voxel contains a sdf value. The sdf is a function that provides the signed distance
to the nearest surface for each voxel. The distance will be positive if the voxel is in
front of a surface (free area) and negative otherwise (occluded area). Voxels located in
a surface will return a distance of 0. In TSDFs, distances are truncated to a maximum
value. This simple codification of TSDFs increases its potential compared to occupancy
grids as, in addition to knowing which voxels are occupied or free, it knows how far
from the occupied region the voxel is. In TSDFs, every voxel is also assigned a weight
that indicates how reliable is the sdf value of the voxel. If a voxel is seen several times,
the weight increases and the voxel becomes more trustful.

Standard TSDF’s voxels, ui, are defined with their position, xi = (xi, yi, zi), their
sdf value, sdfi, and their weight, wi. In some works, they also include the intensity
value, Ii of the voxel in RGB, for the voxels in the surface of obstacles [124]. In the
same spirit, in this work, voxels are associated with the object class that the voxel
belongs to, classi. This is only known for voxels in the surface of detectable objects,
for all the other voxels the object type will be -1. Summarizing, we define a voxel as
ui = (xi, sdfi, wi, classi).

As submaps are formed by voxels, each submap contains the information of the
voxels that belong to the submap, {ui}. In addition, every submap is assigned an
identifier that corresponds to the supernode sid

i that the submap represents.
The submaps generated for an illustrative indoor environment are shown in Fig-

ure 3.5. Given that the environment consists of 6 rooms, 6 submaps are created. In
addition, in Figure 3.6 some of the voxels that form a submap are shown. Voxels
lined in white refer to free space and voxels lined with black to surface or occluded
regions. Moreover the definition of some individual voxels is shown. For example, uj

corresponds to a voxel in the surface of the object class bed with a certainty of 0.9. In
Figure 3.5 and 3.6, voxels are colored according to their height.

Although TSDFs are highly efficient, still they cannot manage operating in large
environments. This is one of the reasons why we decided to partition this representation
into submaps. Other reasons are the simplification of assigning each submap with a
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scene type and the possibility to account for the different objects that are in different
rooms.

Figure 3.5 3D submaps in an illustrative example of indoor environment.
Surface and occluded voxels of the TSDF are coloured while free voxels are
not inpainted. For this environment, 6 submaps are generated.

Figure 3.6 Detailed voxel representation for a given submap. Some voxels
are highlighted for illustrative purposes. Voxels highlighted in white are free
area voxels and voxels highlighted in black are in the surface of objects or
occluded. The information contained in three voxels is described according
to the template in the right. Only the voxels in the surface are associated
with an object class.

3D dense representations include a great amount of detailed information of the
environment. Nowadays, almost every approach for autonomous robot operation deals
with 3D dense representations as they open up to a wide range of applications. In
this work, 3D dense representations are used for localization and path planning. Since
it is the representation that contains more information, it is the most suitable for a
precise and robust localization. In the case of path-planning, a hybrid method will be
presented, that uses the 3D representation to accurately reach the goal. In the future,
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this representation could be also used for 3D object segmentation and planning paths
in the 3D space.

3.6 Component Integration
Once all the components that constitute the hybrid map have been individually ex-
plained, we are going to focus on component integration and its sinergies. As a
summary, every component serves a different purpose and is in charge of represent-
ing some information of the environment. The topological map represents the static
structure of the environment and serves as a link between robot and human under-
standing of the environment. The traversability graph represents the free paths in
the environment that the robot can follow to move between different places. This
component is used for efficient path planning and exploration. The object-based pose
graph represents the position of objects in the environment and the free paths between
them. This component serves to identify the movable elements of the environment and
manage the navigation in the long term. Finally, the 3D submaps represent the 3D
metric information of the environment and serve mainly for accurate localization and
path-planning. These purposes are the ones developed in this work, however many
more functionalities could be given to each level in the future.

Regarding component integration, the strength of hybrid maps is that different
components exchange information in order to make better decisions and increase
the efficiency of the whole method. Figure 3.7 shows the connections between the
components. Given that it is the most abstract representation, the topological map is
the one that exchanges more information with other components. It receives the doors
and nodes from the traversability graph and the poses and objects from the object-based
pose graph. In addition, it sends the supernodes to all the other components. The
object-based pose graph also shares the information of objects with the 3D submaps.
In this way, the basic structure on which every component is built (supernodes, nodes,
poses and objects) is shared among all the components but stored separately. As shown
in the previous sections, these connections are mainly performed using identifiers to
match with the actual elements (i. e. the topological map contains the identifiers
of the nodes in each room. If more information is needed for a specific node, in the
traversability graph, the node with such identifier has to be consulted).

The above explanation directly leads us to analyse how the proposed hybrid map
relates to the taxonomy of hybrid maps given at the begining of this chapter proposed
by Buschka and Saffiotti [32]. This taxonomy stated that hybrid maps can be classified
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Figure 3.7 Component integration in the hybrid map. The information
that each component provides to the others is represented through arrows.

according to three properties: heterogeneity, hierarchy and separability. According to
that work, heterogeneity is required and hierarchy and separability are desirable.

The proposed hybrid map is heterogeneous. Our hybrid map is formed by three
topological maps and 3D metric submaps, so two different types of representations
are distinguishable according to the representation model. In addition, each of the
topological maps differs in the type of information contained. The topological map is
a toposemantic map in order to understand the environment, and the traversability
graph and the object-based pose graph are topometric maps to determine the position
of the robot and objects in the environment. Moreover, all the representations differ in
the purpose of the information they contain.

The proposed hybrid map is hierarchical. Firstly, it is hierarchical because one of
the components represents partially the environment while others represent it fully.
In addition, the level of abstraction of the information varies between representations.
The reader must have noticed that in this chapter, components were presented from the
most abstract one (the topological map) to the most concrete one (the 3D submaps).
This hierarchy is also observable in the flow of information between the different
components.
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The proposed hybrid map is not fully separable. The traversability graph and
the object-based pose graph are independent of the other representations and can
be built and used on their own (although their functionality might be reduced). On
the contrary, the topological map requires information of the traversability graph to
be built and the 3D submaps require information from the topological map. If they
do not have the required information available, the topological map will identify the
whole environment as a single room (which might be erroneous) and a whole 3D map
of the environment will be built (which is not recommendable). So, although some
components of the hybrid map are separable, the desired performance is only obtained
if the components are integrated.

In this chapter the theoretical aspects of the proposed hybrid map have been
described and analysed in detail. The remainder of this thesis addresses how the hybrid
map (and in detail each of the components) is autonomously built, the strategies to
maintain it in long-term operation and how the hybrid map is used for localization
and path-planning.





4
Building of the Hybrid Map

Chapter 3 described the theoretical approach for the hybrid map structure that this
thesis proposes in order to map indoor environments. The hybrid map consists of
several components that need to be built by the robot or provided to it so it can
identify its position and the relevant elements to perform autonomous robot navigation.
In the luckiest case, the robot will be provided with an a priori map of the environment
that contains all the required information. This a priori map could be built by the
user or obtained from the abstraction of other representations such as the architect’s
building layout. However, in most of the cases the robot will not have any prior
information of the environment. For this reason, in this chapter, we propose a strategy
for building hybrid maps of indoor environments without any prior knowledge. Mapping
is the problem of integrating the information gathered with the robot’s sensors into a
representation and can be described by answering the question "what does the world
look like?" [145].

While the robot moves through the environment, each component of the hybrid
map will be incrementally built. In addition, the mapping system has to autonomously
include the correspondences and links between the different components of the hybrid
map. We have designed the mapping process to work concurrently with an autonomous
exploration method that will be explained in Chapter 5. Autonomous exploration is
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performed from a frontier-based perspective in which the system identifies the frontiers,
limits between the known area and the unknown one to prioritize the areas to explore.
It is and iterative process that visits all the frontiers until the environment is fully
discovered. In this chapter, we focus on the construction of the map and we will slightly
refer to the exploration algorithm when necessary.

In the following, the method to build each of the components of the hybrid map
is explained including the required information for each one and the interconnections
between them. Differently from the figures included in Chapter 3, the representations of
the maps included in the method explanation of this chapter correspond to the result of
mapping the given simulated environment with the described methods. We will firstly
describe the method to build the traversability graph since it is the straight-forward
representation obtained from the exploration and upon which the other representations
are built. We will then explain the construction of the object-based pose graph to finish
with the topological map and the 3D metric maps that correspond to each supernode of
the topological map. When describing the method to build each map, we will focus on
mapping non-cyclic environments but also refer to some specific situations that happen
when the robot is facing a loop. We have developed a loop closure algorithm in order
to enable the construction of hybrid maps for cyclic environments. After describing the
building of each component, we will describe the method for closing loops in the map
and we will include an experimental evaluation in non-cyclic and cyclic environments.

4.1 Building of the Traversability Graph
The traversability graph TG = ⟨V, E⟩ is a topometric graph of the free space that is
built directly using the decision of the exploration method. This representation is built
with the navigable areas at the time of exploration and maps the whole environment
since the exploration algorithm only finishes when the whole environment has been
discovered. The initial pose of the robot is assigned to the first topological node, v0, of
the map and from there the map will grow as the exploration algorithm discovers the
environment. The middle point of each visited frontier, mi, (position that the robot
reaches in the exploration strategy) corresponds to a topological node, vi, registering
the number of nodes as Nv. The paths traveled between one node, vi, and the middle
point of the next frontier, mj , are the topological edges, ei,j , accounting the number of
edges as Ne.

Every time that the robot arrives to the middle point of a new frontier, mj, a
new topological node is generated, vj where j = Nv + 1, and it is linked to the
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previous node with the corresponding topological edge. Each edge is annotated with
the behavior performed by the robot to reach that node. The performed behaviors
will depend on whether the newly created node is semantically labeled as a transit
node or a free-area node (as explained later, they are Move to next free area, Approach
transit area and Cross transit area). In addition, the semantic information of each
node (transit node, free-area node) is stored in the node along with its geometric
information (pose) and topological information (connectivity between nodes). The
graphical representation of the traversability graph for a simulated indoor environment
and the storage representation of the highlighted section of the traversability graph
(green box) is shown in Figure 4.1. The list of nodes and edges in the selected region
is included. Each node contains information about its identifier, its pose, its type,
the list of adjacent nodes and the supernode to whom it belongs. Each edge contains
its identifier, the nodes it connects, the behavior for that translation (0 for Move to
next free area and 1 for Approach transit area and Cross transit area) and whether it
is tranversable or not (true for all the edges at this stage). Note that we create two
edges per pair of nodes, one for the movement from i to j and vice versa given that
the behaviors to execute may vary.

Figure 4.1 Example of a traversability graph built with exploration in a
simulated environment. Lines correspond to edges, red squares to nodes that
are classified as free areas and yellow squares to nodes that are classified as
transit areas. The list of nodes and edges correspond to the area highlighted
in green.
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In order to build the traversability graph, the robot must track the current node
that the robot is heading, vj, the last node that the robot visited, vi, and the total
number of nodes, Nv, and edges, Ne, in the map. In this sense, the robot always knows
where it comes from, where it is going and the index that will correspond to the next
node and edge. This is especially useful in complex situations when the robot may
have fully discovered an area in the environment and has to plan a path to continue
mapping somewhere else or when the robot reaches a known area from a new path.
In the aforementioned cases, keeping track of node and edge information allows to
successfully link the new node after path planning to the already-mapped nodes or
link the last node that the robot visited with the node that closes the loop when
a loop is detected. In the case of path planning, the current node, vj, and the last
node visited by the robot, vi, will be updated as the path through the known area is
executed between initial node for planning, vinit, and the node that connects to the
unmapped area, vgoal. When the new frontier is reached, the new topological node
will be created, vk where k = Nv + 1, and it will be linked to the last position of the
path, vgoal, through a topological edge, egoal,k. In the case of loop closure, an original
node, vi, and a looping node, vloop, are identified as the same node by the loop closure
strategy (described later in this chapter). The edges that connected vloop to its priors
will be changed in order to connect the priors with the original node vi.

The traversability graph allows the robot to travel safely through all the environment
as the nodes are built with the middle position of the frontiers that is the position
that maximizes the distance to the obstacles. In further stages, this representation
will be used to plan trajectories and move autonomously according to the extracted
information.

4.2 Building of the Object-based Pose Graph
The object-based pose graph, OB = ⟨W, O⟩, captures the objects and trajectory while
the robot explores the environment for the first time. This process implies generating
robot poses, wi, mapping the detected objects, oi, and connecting poses with objects.
In addition, identifying whether the detected objects have been already mapped is
required for pose graph consistency.

Robot poses, objects and connections are the three main elements of our object-
based pose graph (Figure 4.2). Poses are generated according to a fixed traveled
distance and connected to its neighbors. In addition, they are connected to the objects
that are observable from them and the objects are annotated with the poses from
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where they were seen. Since poses are generated according to the traversability graph,
whenever to robot plans a path or closes a loop the object-based pose graph will behave
similarly to the traversability graph. To enable long-term operation, objects are marked
according to their persistence probability and active parameter, which are the two
attributes that will allow us to manage the presence of objects over time (this will be
further described in Chapter 6). When building the object-based pose graph, all the
objects will be marked as active and their persistence probability will be initialized
according to:

p(oi)0 = 0.5p(oi|Ik) , (4.1)

where oi refers to a specific object, p(oi)0 to the initial persistence probability of object
oi, p(oi|Ik) refers to the detection confidence of the object detector for a given image
frame, Ik, and 0.5 is used as we still can not predict if the object will tend to be static
or movable.

Figure 4.2 shows the object-base pose graph in a simulated indoor environment. In
addition, it includes the list of poses and objects for the area highlighted in green. Each
pose contains its identifier, its 2D position, its supernode, the objects detectable from
that pose and the adjacent poses. Each object contains its identifier, the 3D position of
its centroid, the dimensions of the 3D box, the object class, the persistence probability
and active value for the object and the poses from where the object is observable.

Object detection and representation are two of the main requirements for adding
objects to a pose graph. In this thesis, object detection is performed in RGB images
through ResNet-101 [75] trained with COCO Dataset [105]. Detections contain the
objects, oi, their detection confidence, p(oi|Ik), and the 2D bounding boxes of the objects,
bi,2D, for that given image frame, Ik, in the time step k. Regarding object representation,
the most common approaches for pose graphs are object reconstruction [113] and
cuboid generation [175]. Both methods require an object detector that provides the
information of the object position and class. With this information, reconstruction
approaches group the 3D points that belong to an object and extract the object
geometry; on the contrary, cuboid generation approaches identify the 3D bounding
box of the object representing the space that it occupies. Regarding limitations, object
reconstruction is highly demanding for memory and processing requirements but gives
an individual and detailed representation of objects. Cuboid generation overlooks the
specific characteristics of each object instance within the class with the advantage of
reducing the computation cost. In this work, a cuboid generation method is proposed
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Figure 4.2 Example of an object-based pose graph built with exploration
in a simulated environment. Black lines and dots represent the path traveled
by the robot and the poses generated. Each object is represented with
its 3D bounding box (cuboid) and its centroid. Different centroid colors
refer to different object classes. In addition, the centroid of the objects are
connected to the poses where the object was observed. The list of poses
and objects correspond to the area highlighted in green.

because we are interested in classifying objects according to their class but we do not
require a detailed description of the object.

As the object detector used provides the 2D bounding box of each object detected,
we use 2D bounding boxes and point cloud information to calculate the centroids,
ci = [xi, yi, zi], and vertices of the 3D bounding boxes (cuboids), bi,3D = [wi, hi, di],
where the object, centroid and bounding box are linked through their indexes. Only
objects with high detection confidence, p(oi|Ik) > 0.7, are included in the map. Since
the details of the object detection algorithm are out of the scope of this thesis, we
consider the recognitions over that confidence value reliable without further parameter
tuning. Object detection in a simulated environment is shown in Figure 4.3 (a) and
cuboid generation is shown in Figure 4.3 (b). There are two cuboids because two
instances of the object were detected.

Point cloud information is used to calculate transformations between image pixels
and coordinates in the map, as presented in [76]. Such transformations are firstly used
to obtain the object depth. Object depth is characterized using its minimum, mean and
maximum values. Minimum and maximum values are calculated for defining vertex
depth and mean value for centroid depth. Minimum object depth is calculated as the
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median of the 2% smallest depths within the 2D bounding box of the object. Maximum
object depth is calculated through an adaptation of the flood fill algorithm, starting
from the minimum-object-depth pixel and visiting its neighbors. If the two pixels are
connected (difference in depth smaller than a threshold, θ), the pixel is considered to
belong to the object. On the contrary, it is considered part of the background and it
is discarded. The maximum object depth is the maximum value within the depths
that belong to the object. Mean object depth is calculated as the mean value between
minimum and maximum object depths.

3D coordinates of the object centroid are obtained using the mean object depth
and pixel-to-coordinate transformation. Similarly, 3D coordinates of the bounding box
vertices are estimated using the minimum and maximum object depths and the width
and height of the 2D bounding box.

This method provides a representation of every object that the robot sees using a
3D cuboid characterized by its vertices and its centroid from RGB images and point
cloud information. However, we do not want to map all the objects detected as objects
could be mapped several times if they are seen in multiple occasions. For this reason,
object merging is the third requirement for adding objects to a pose graph.

Object merging involves identifying that an object detected in image frame, Il, in
time step l was previously seen from the same or another position in image frame, Ik

where l > k. In this work, every object to be added to the map is analyzed according to
its class and position. Firstly, two objects are only going to be merged if they belong to
the same object class. Secondly, two conditions are introduced to evaluate the relation
between object positions:

• In first place, the centroid of the new object is evaluated in order to check whether
it lies inside the cuboid of the already-mapped object, cj = (xj, yj, zj) ∈ bi,3D. If
it happens so, they are automatically merged without any modification.

• If the previous condition is not met, the area of influence, ainf (oi), of the already-
mapped object is calculated. The area of influence of an object is defined as a
sphere centered in the object centroid where, given the size of the object, no other
centroid of the same object class can be found, eq. 4.2. This sphere is defined by
the diagonal of the object

√︂
b2

i,3D multiplied by a tolerance factor α, since objects
from the same object class may have approximately similar sizes but not exactly
the same. Once the area of influence for the already-mapped object is calculated,
if the centroid of the new object lies within this area, the two objects are merged
and the cuboid of the object is reshaped.



44 Building of the Hybrid Map

Figure 4.3 Object detection and generation of object cuboid. In (a), the
frame, class and confidence of a detected object is shown. In (b), the cuboid
and centroid for the object is calculated using the frame of the object and
the current point cloud. As the centroid of the second detection (right) is
within the area of influence of the first detection, in (c) both instances are
merged.

ainf (oi) = α
√︂

b2
i,3D . (4.2)

If the centroid lays in the area of influence, cj ∈ ainf (oi), the cuboid of the already-
mapped object is reshaped to include the centroid of the new detection. This situation
is illustrated in Figure 4.3 (c).

The described object detection, object reconstruction and object merging strategy
allows to build a consistent object-based pose graph of the environment.

4.3 Building of the Topological Map
The topological map TM = ⟨S, T ⟩ is a toposemantic representation of the structure
of the environment in which nodes are related to rooms. For the seek of clarity, the
nodes of the topological map are called supernodes, si, given that they group nodes
from other more detailed layers of the hybrid map. Specifically, they group the nodes
of the traversability graph, vi, and the poses, wi, and objects, oi, of the object-based
pose graph that belong to a given room. Each transition between supernodes, t

[k]
i,j , is

identified with the transit node from the traversability graph, vl, that connects the two
rooms i and j. Transit nodes are also denoted as doors, where each door d

[l]
k links the

transition k with the topological node l. In this way, the topological map establishes
the connectivity between rooms in the environment, as shown in Figure 4.4. In addition
to a graphical representation of the topological map, Figure 4.4 shows the list of
supernodes and transitions of the highlighted region of the environment. Supernodes
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Figure 4.4 Example of a topological map built with exploration in a simu-
lated environment. Lines correspond to edges, purple squares to supernodes
and yellow squares to transitions. The list of supernodes and transitions
correspond to the area highlighted in green.

contain information about their identifiers, the type of room, the nodes, objects and
poses that belong to the supernode and the adjacent supernodes. Transitions contain
information about their identifier, the supernodes they connect and the topological
node linked to the transition.

In order to build the topological map, the robot starts by assuming that it is in the
initial supernode, s0, until a transit area node, t

[0]
0,1, is detected, checked and crossed.

That is the moment in which the first connection of the topological map is created
and the supernode is updated, si where i = Ns + 1 and Ns is the total number of
supernodes. As the traversability graph maps the nodes and tracks the current node,
the topological map assigns the supernodes to each room in the environment and tracks
the current supernode and maximum supernode, smax = Ns. In addition, a similar
process to the one described for the traversability graph takes place when dealing with
path planning and loop closure.

Regarding path planning, if the robot is planning a path through a known area that
leads to a new frontier to visit in a different room, it must keep track of the current
supernode in order to successfully connect the new discovered room to its adjacent
known room. For example, in Figure 4.4, the robot might have completely visited
supernode 1 (s1) and in order to continue exploring the environment it has to return to
supernode 0 (s0) to then start mapping supernode 2 (s2). To successfully represent this
sequence, the robot needs to track the change to supernode 0 and correctly establish the
transition between supernode 0 and supernode 1, t

[0]
0,1, and supernode 0 and supernode

2, t
[1]
0,2.
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Regarding loop closure, if the robot was in a room, sj, and it enters an already-
mapped room from another path, it will first think it is a new room (until the loop
closure strategy confirms that it is an already-mapped room) and it will assign a new
supernode identifier to the room, sk where k = Ns + 1. When the loop is confirmed,
the information of the original room, si, and the loop room, sk, will be merged under
the original supernode, si. Also the new transition to the supernode will be added to
the original supernode, t

[l]
j,i.

The topological map corresponds to the stable structure of the environment as
rooms and transitions between them are not very likely to change in standard indoor
environments.

4.4 Building of the 3D Submaps
In the proposed hybrid mapping method, a 3D submap is built for every room in the
environment. Two 3D mapping systems have been used in this thesis, Voxblox [122]
and TSDF Fusion[178]. In this first part of the thesis, we will be using Voxblox and
TSDF Fusion will be used for the metric localization method presented in Chapter 7.
Voxblox is mainly meant to build Euclidean Signed Distance Fields (ESDFs) out of
Truncated Signed Distance Fields (TSDFs). TSDFs are built from point clouds while
the robot moves in the environment and are included in the ESDF global map. ESDFs
give Euclidean distance to the nearest obstacle at any point in the map which makes
them suitable for mobile robot tasks.

In order to build the 3D submaps, Voxblox is integrated with a method to partition
3D maps according to the topological map. The topological map and the 3D submaps
are built simultaneously in real-time. Submaps, M = {M1, M2, ..., Mn}, are generated
according to the traversability of doors, D = {da

1, db
2, ..., dc

m}, as every time the robot
crosses a door, it enters a new supernode and, thus, it must start mapping a new
submap.

In order to build the 3D submaps, Voxblox is launched to start building submap M0.
When crossing a new door, da

i /∈ D, the current submap, Mi, is saved and a new one
starts to build, Mj where j = N + 1. When crossing a previously crossed door, da

i ∈ D,
that connects the current submap, Mi, to another submap, Mj, current submap is
saved, Mi, previously built submap loads, Mj, and continues building it. The task of
saving and loading the maps is performed through Voxblox methods. As a result, the
environment is partitioned according to its rooms without the need of post-processing
the map. The number of submaps generated will correspond to the number of rooms
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in the environment. Each submap will be associated to a supernode and the transit
area nodes that lead to it. Similarly to what happened with the topological map when
a loop is found, current submap, Mloop, and original submap, Mj, are merged and
stored in Mj. The method proposed in combination with Voxblox outputs a dense 3D
submap for each of the rooms of the environment as shown in Figure 4.5.

Figure 4.5 Example of a the submaps built with exploration in a simulated
environment. A submap is built for every room and the correspondence
of the environment and the resulting submaps can be observed with the
annotated doors.

During the description of all the map structures, we have been referring to how
the maps will behave when encountering a looping situation. Prior to evaluating the
described methods with simulated and real-world experiments, the loop closure method
is presented.

4.5 Loop Closure for Cyclic Environments
The hybrid mapping strategy described up to now is able to map indoor non-cyclic
environments but a loop closure algorithm is required to map cyclic environments.
We have already mentioned how each component will behave when a loop is detected.
However, we have not presented the method to identify a possible loop in the envi-
ronment. Since our robots will have to face loops or cyclic situations (i. e. kitchens
with two entrances or complex office environments), loop closure algorithms must be
provided to them. An example of looping situation is shown in Figure 4.6 (right).

Loop closure has been widely addressed by researchers. Most of SLAM approaches
only considered geometric conditions to perform loop closure [60] although some
authors added visual features to the geometric information in order to have more
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robust results [97, 118]. Other authors have tackled loop closure through localization.
In [156], a probability distribution is maintained during the exploration and whenever
there are two peaks in the distribution (two nodes with high probabilities) the algorithm
tracks those nodes to look for a convergence, loop, or divergence, different locations.
Another approach, [157], is maintaining a tree with every possible hypothesis. Each
hypothesis is associated with its probability and the tree is pruned until a decision is
taken.

We propose to use the geometric, topological and semantic information available
for the nodes of the traversability graph to estimate the uncertainty of being in a loop.
We consider that the robot is in a loop when it is visiting (or closely visiting) an area
that it has already visited. According to the proposed algorithm, this situation only
happens when an area is reachable from two different paths from the same starting
position. For the seek of clarity, if the robot is visiting an area from the same path
it is because the robot is performing path planning, so it is already aware that the
areas visited are known. The process for identifying and accepting a loop is described
in Figure 4.6 (left). The robot will check the semantic, geometric and topological
correspondences in a staged fashion.

Figure 4.6 Loop closure strategy and example of a simulated environment
with two loop situations (one connecting two rooms and the other one
connecting three rooms). The loop closure strategy first evaluates the
semantic correspondence, afterwards the geometry proximity and finally
the topological similarity through graph isomorphism.

In this thesis, loop probability is built from geometric, semantic and topological
information. Firstly, semantic information is considered as the condition for the original
node and the loop node of belonging to the same semantic type (free area or transit
area). If this condition is met, the geometric proximity is evaluated. Geometric
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proximity is considered as the difference between the expected position of a node and
the current position of the possible loop node. Geometric loop probability for a node
vi, pg(vi), has been computed using a Gaussian distribution, according to eq. (4.3) and
it determines how likely it is that the robot is geometrically close to an already known
area. Terms xe and xi refer to the expected and loop positions of the node, respectively,
and σg refers to a variance value that has been experimentally tuned.

pg(vi) = e
−(xe−xi)2

2σ2
g . (4.3)

In the case that two nodes of the same semantic type obtained a geometric loop
probability greater than a threshold (experimentally set to 0.3), a process to check the
topological correspondence starts. This is performed through graph isomorphism over
the traversability graph. Graph isomorphism consists in replicating the morphology
of the graph associated to the original node starting from the possible loop node. In
other words, once the robot has identified the original node, it will check whether it is
possible to travel the same path that it traveled the first time that it visited that node.
In this process, the first step is to verify that a prior of the original node is reachable
from the loop node. A prior is considered reachable when there is not any obstacle
between the current position and the prior position. If it is reachable, the robot moves
until it reaches the prior node. The expected distance and the loop traveled distance
are compared to determine the topological loop probability pt(vi), eq. (4.4). Terms xe,
xi and xj refer to the expected, loop and prior position of the nodes, respectively, and
σt refers to a variance value that has been experimentally tuned.

pt(vi) = e
−(∥xe−xj ∥2−∥xi−xj ∥2)2

2σ2
t . (4.4)

This process iterates and compares the graphs until a positive or negative decision
is reached according to the global loop probability, ploop(vi). Normalized global loop
probability, eq. (4.5), relates geometric and topological uncertainties. Index k refers to
the number of graph isomorphism iterations.

ploop(vi) = ηpg(vi)
∏︂
k

(pt(vi)k) . (4.5)

A positive decision implies the acceptance of the loop and the update of the maps
to this new situation. A positive decision is reached when the global probability
surpasses a threshold value (set to 0.9, high certainty that the robot has detected a
loop) within five iterations of graph comparison. A negative decision implies that the
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loop is rejected and the maps are not modified. A negative decision is reached when the
global probability does not surpass the threshold value within five iterations, or when
any of the priors is not reachable from the loop node or any of the nodes generated
during the graph isomorphism process.

Once the methods for building of the hybrid map and loop closure are explained,
we can proceed with their experimental evaluation. Different simulation and real-world
experiments will show the results for building the different layers of the hybrid map in
non-cyclic and cyclic environments.

4.6 Experimental Evaluation
An incremental evaluation of the map building methods is presented according to the
different maps that constitute the hybrid map for cyclic and non-cyclic environments.
Firstly, we include the construction of the traversability graph and the topological map
in Section 4.6.2. In Section 4.6.3, also the 3D submaps are built and we compare to
other submapping strategies. Section 4.6.4 includes an experiment to build the object-
based pose graph in a real indoor environment. Finally, in Section 4.6.5, the whole
hybrid mapping system is evaluated through simulated and real-world experiments.

4.6.1 Experimental Setup

Our mapping methods have been evaluated both in simulated and real-world envi-
ronments. The robot was autonomously moving through the environment for all the
simulated environments and also the real-world environments except for the object-
based pose graph experiment, in which the robot was teleoperated. A frontier-based
exploration method was used to drive the robot autonomously. This algorithm is
explained in Chapter 5.

Mapping experiments were conducted firstly using Gazebo simulation environment.
The performance and resulting maps were visualized using RViz since the work was
developed using ROS (Robot Operating System framework) and C++. Several indoor
environments were created to develop the experiments as close as possible to real
situations. The simulated version of Turtlebot 2 robot is equipped with the simulated
sensors Hokuyo URG-04LX laser sensor and Asus Xtion Pro camera to perceive the
environment. Regarding the computational resources, for both simulated and real-world
experiments, a PC with IntelCore i7-6500U CPU@2.50Hz 12GB RAM was used.
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Real-world experiments in different indoor environments (a corridor area and a
meeting room in University Carlos III of Madrid and several houses) are also presented.
Turtlebot 2 robot was used for the experiments and RViz visualizer was used to observe
the resulting map of the environment. As in the simulated experiments, Turtlebot 2 is
equipped with a Hokuyo URG-04LX laser sensor and an Asus Xtion Pro camera.

All the experiments presented in this thesis involving the object-based pose graph
were performed with the same values for the depth threshold, θ and tolerance factor
for merging, α. The value of θ was set to 15 cm and α to 0.9. We have empirically
evaluated that these choices are suitable for different objects present in the environment
and for different environments, see Table 4.1. The first three columns in Table 4.1
refer to θ: mean diff. represents the average difference between depth of neighboring
pixels for each object class (cm); % DIFF refers to the percentage of differences that
are greater than 15 cm; and % Error refers to the final error in size comparing the
real and calculated depth for the object. Although several objects have differences
between individual pixels higher than the defined threshold, this only affects the chairs
with a 5.91% error (a 50 cm-wide object will be detected as 47.05 cm wide). Next three
columns refer to α: separation column shows the minimum separation (m) between
objects of the same class present in any of the environments; Diagonal column shows
the maximum diagonal value (m) for each of the object classes; and finally, Diagonal*
refers to the area of influence of the object which corresponds to 0.9 times the maximum
diagonal. Although the maximum diagonal values for some objects are larger than the
minimum distance (what would lead to an error), using 0.9 as α value solves these
possible errors.

Table 4.1 Evaluation of parameters θ (depth threshold) and α (tolerance
factor for merging).

object θ α

mean diff. % DIFF % Error separation Diagonal Diagonal*

chair 1.62 1.86 5.91 0.67 0.69 0.62
sofa 1.23 1.06 0 1.85 1.89 1.70
plant 1.57 1.41 0 - 0.63 0.57
cup 0.41 0 0 0.44 0.15 0.13
bottle 0.42 0 0 1.54 0.09 0.08
laptop 0.35 0 0 - 0.46 0.41
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4.6.2 Evaluation of the Topological Map and Traversability
Graph

This evaluation includes simulated experiments in medium-size house-like environments,
a big office environment and a real-world house environment.

Evaluation in Simulated Medium-size House-like Environments

The construction of the topological map and the traversability graph was tested in
two different non-cyclic simulated house-like environments, one medium-size house
environment (130.5m2) and one big-size house environment (235m2) and in a cyclic
indoor environment (342m2). The cyclic environment has two loops, one connecting
two rooms together and the other one closing a loop that traverses three rooms.
Figure 4.7 contains the traversability graphs from different starting positions for the
three environments. In addition, Figure 4.8 contains the information of the topological

Figure 4.7 Result for simulated non-cyclic and cyclic indoor environment.
The first row shows the big-size non-cyclic simulated environment and
the traversability graphs obtained from different starting positions. The
second row shows the medium-size non-cyclic simulated environment and the
traversability graphs obtained from different starting positions. The third
row shows the cyclic indoor simulated environment and the traversability
graphs obtained. Correspondences between doors and starting positions are
included to facilitate the interpretation of the graph structures.
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map for one of the traversability graphs shown in Figure 4.7 per environment. The list
of the supernodes and transitions that constitutes the topological map is also included.

The big-size house environment and the resulting traversability graph from the
exploration are shown in Figure 4.7 (first row). Four resulting traversability graphs
from initial random positions are shown. A similar structure is observable in the
graphs and the tested environment. Differences are due to the difference in the initial
position. In all of the cases, the eight doors were detected and the whole environment
was mapped. The topological map is also successfully built for this environment, an
example that corresponds to the fourth traversability graph is listed in Figure 4.8 (a).

Regarding the experiments for the medium-size house environment, results are
shown in Figure 4.7 (second row). Four resulting traversability graphs from initial
random positions are shown. All the rooms were mapped in the four cases and the

Figure 4.8 Example of topological maps (characterized by the supernodes
and trasitions) for the shown traversability graphs. One example is included
for each of the house-like environments in (a), (b) and (c). Images show
the traversability graph annotated with its nodes (black), the supernode
assigned to each room and the identifier of the transition that connects
each supernode (red). Lists show each supernode along with the nodes
that belong to it and the transitions that connect two supernodes (X, Y).
In addition, the node of the traversability graph that corresponds to the
transition is included.
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influence of initial position in the resulting maps is minimal. Although different
starting positions result in different graph structures, the obtained traversability graphs
faithfully represent the environment. The topological map is successfully built for all
the initial positions, an example that corresponds to the second traversability graph is
listed in Figure 4.8 (b).

Experiments that evaluate the map building and the loop closure algorithm are
included through a simulated cyclic environment, Figure 4.7 (third row). Traversability
graphs were created from different starting positions; all of them successfully mapped
the environment and closed the two loops. The two loops are observable in the resulting
graphs where the robot mapped the whole environment and detected all the doors.
The loop connecting door 1 and door 5 was successfully closed after 2 iterations of
graph isomorphism and the loop connecting doors 2-4 was successfully closed after
3.75 iterations (average values). The topological map that corresponds to the third
traversability graph is listed in Figure 4.8 (c).

Evaluation in a Simulated Big Office Environment

The construction of the traversability graph and the topological map was also tested in
a more complex and bigger simulated office environment. This environment (1141.26m2)
is composed of 24 rooms of very different sizes and includes four short loops (connecting
2 or 3 rooms together). The environment is shown in Figure 4.9 (a) and the resulting
traversability graph in Figure 4.9 (b). The robot mapped the whole environment,
visited all the rooms and closed the four loops. The traversability graph consists of 67
nodes and 69 edges. 27 nodes were recognized as transit areas and 40 as free areas.

Evaluation in a Real-world Environment

Experiments in a house were developed using Turtlebot 2 robot to verify the viability
of the proposed method in the real world. Experiments were performed in an empty
house of approximately 60m2 consisting of five rooms (four rooms and a corridor). In
Figure 4.10 (a) the robot is shown in the real house environment and Figure 4.10 (b)
shows the resulting map of the environment. A schematic view of the environment
is shown along with the generated graph. The graph is built with 15 nodes (four of
them classified as transit areas) and 14 edges connecting them. The nodes identified
as transit areas divide the supernodes of the topological map, since 4 nodes were
identified as transit areas 5 supernodes were mapped that correspond to the rooms in
the environment.
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Figure 4.9 Results building the traversability graph for a big office envi-
ronment. The environment and the different rooms and loops are indicated
in (a); the resulting traversability graph is shown in (b).

Figure 4.10 Real topological mapping experiment in a house environment.
A picture of Turtlebot 2 robot during the mapping process is shown in
(a). In (b), we show the traversability graph of the real house environment.
The traversability graph consists of 15 nodes (4 of them classified as transit
area and 11 classified as free area) and 14 edges.
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4.6.3 Evaluation of the Topological Map, the Traversability
Graph and 3D Submaps

This evaluation includes mapping a simulated big office environment, the comparison
to fixed submapping of the environment and evaluation in a real-world hallway area of
University Carlos III of Madrid.

Evaluation in Simulated Environments

The first validation regarding the construction of the 3D submaps is to test the
improvement in memory requirements when mapping an indoor environment. RAM
resources used when building the topological map, the traversability graph and 3D
metric submaps (in the following, topological-submap representation) are compared to
when building only a global 3D map of the environment. Experiments were conducted
in a simulated big office environment of 1137.5m2 (shown in Figure 4.12 (a)) and map
resolution (voxel size) was set in both cases to 5cm. The environment consists of 22
rooms and 4 loops (3 simple loops connecting together 2 or 3 rooms and 1 complex
loop).

The resulting representations for global 3D map and topological-submap represen-
tation are shown in Figure 4.12 (b) and (c), respectively. For the topological-submap
representation, the traversability graph and the submaps built in the environment are
shown. The comparison in the increment in RAM resources during mapping is included
in Figure 4.11. Grey line corresponds to global 3D map and purple line corresponds
to topological-submap representation. Final memory value with topological-submap
representation is 3.2 times smaller than with global 3D map. This is due to the contin-

Figure 4.11 Comparison in RAM resources required when building global
3D map of the environment and building the topological-submap represen-
tation.
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uous mapping for global map, whereas for submapping, the map is continuously saved
and reset maintaining a smaller merging area (resulting in small peaks on memory
consumption). It is worth mentioning that the resources requirement for global 3D
mapping grows continuously whereas for topological-submap representation a steady
behavior is obtained as its upper bound is set by the largest room in the environment.

Figure 4.12 Mapping experiment in a simulated environment. The en-
vironment for the simulation is shown in (a). In (b) the resulting map
when building directly the global 3D map is represented. The resulting
traversability graph and the submap generated for each room is shown in
(c). The detected doors are shown in the traversability graph and associated
to the connection between submaps.
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Comparison of 3D Submaps to Fixed Submapping of the Environment

Some works define submapping with a fixed size or a fixed distance traveled by the
robot (as the work presented in [100]). In this experiment, a comparative result
between submapping based on fixed traveled distance and the proposed method is
shown. Experiments were conducted in the environment shown in Figure 4.12 (a)
and mapping efficiency was compared using different fixed traveled distances (1.5m,
2.5m, 5m, 10m). Efficiency is considered in terms of RAM requirements and number
of submaps generated as shown in Table 4.2. Regarding RAM requirements, just the
approach with fixed distance 1.5m outperforms our method but generating ten times
more submaps. While fixed travel distance grows, the number of submaps decreases
but increasing the RAM required to store the submaps. In addition, fixed distance
methods do not offer any semantic information and, while the number of submap
increases, semantic interpretation is harder.

Table 4.2 Fixed traveled distance submaps VS proposed method.

Submapping method 1.5m 2.5m 5m 10m Prop. Meth.

RAM increment [GB] 1.31 2.11 2.94 3.27 1.55
nsubmaps 253 131 64 21 22

Evaluation in a Real-world Environment

An experiment in a hallway environment of University Carlos III of Madrid was
performed. The area mapped corresponds to a hallway area with security doors. A
submap is generated for each section of the hallway. In Figure 4.13 (a), the robot in
the real environment is shown. In the back of the image, we can observe one of the
security doors that the robot traverses. The resulting traversability graph and the
3D submaps built are shown in Figure 4.13 (b). The traversability graph and the 3D
submaps are related through the nodes identified as doors. The robot started in a
small room next to the right ending of the hallway and traveled to the right until the
end of the hallway is reached. Then it plans a path through the already mapped area
to continue mapping the left side of the corridor. It built 7 supernodes (resulting in 7
submaps) and 48 nodes.
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Figure 4.13 Real-world experiment for construction of the topological
map, the traversability graph and 3D metric submaps. The picture in (a)
shows the Turtlebot 2 robot in the real hallway environment. Resulting
topological-submap representation for the university environment is shown
in (b).

4.6.4 Evaluation of the Object-based Pose Graph

The construction of the object-based pose graph was evaluated in a real-world meeting
room environment at University Carlos III of Madrid of approximately 56m2. The
environment was cluttered by different types of objects such as sofas, tables, chairs,
lamps, plants, etc among which we only detected sofas, chairs and plants. A picture
taken from the environment and the occupancy grid of the environment (built just for
illustration purposes) are shown in Figure 4.14 (a) and (b), respectively. The object-

Figure 4.14 Result for object-base pose graph in a real-world environment.
A picture taken from the environment is shown in (a) and the occupancy
grid of the room in (b). The resulting pose graph along the color legend for
the objects mapped is shown in (c).
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based pose graph is shown in Figure 4.14 (c) in which the centroids of the objects are
colored according to the legend. The resulting pose graph shows an occupied area in
the center of the room that corresponds to the table and it is surrounded by objects
detected as chairs that matches with the disposition of the environment that we see
in 4.14 (a). In addition, we can find the sofas at both ends of the environment and
the plant close to the table. In the occupancy grid we can find also the occupied cells
that belong to the mapped objects in the object-based pose graph. The pose graph
contains 17 poses and 14 objects (3 sofas, 1 potted plant and 10 chairs).

4.6.5 Evaluation of the Complete Hybrid Map

In this last mapping evaluation, we include the construction of the whole hybrid map
for a real-world house environment. The house size is approximately 70m2 and it
contains 4 rooms: a kitchen, a bedroom, a living room/dinning-room and an office.
The environment contains plenty of objects as it is a living space. Figure 4.15 shows
five images captured by the robot in the environment, one for each room (and two for
the living room).

The resulting hybrid map is shown in Figure 4.16 and it contains each of the
components of the hybrid map. For illustrative purposes, in Figure 4.16 (a), a 2D
occupancy grid of the environment is included where each room in the environment is
labeled. In Figure 4.16 (b), we provide the topological map built from the environment.
Since it is a toposemantic representation that does not contain metric information, we
include it as the list of supernodes and transitions and their attributes. The mapping
system identified 4 supernodes in the environment connected through 3 transitions or
doors. Each of the supernodes is characterized by its identifier, its priors or connected
supernodes and the nodes, objects and poses contained in the supernode. In this
case, supernode 0 represents the office, supernode 1 the living room, supernode 2

Figure 4.15 Images captured from the house environment: (a) office, (b)
living room, (c) bedroom and (d) kitchen.
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the bedroom and supernode 3 the kitchen. Observing the topological map, the room
that contains more nodes, objects and poses is the living room. We can check the
correspondence of nodes, objects and poses listed in the topological map through the
traversability graph and the object-based pose graph (that we will describe bellow).
Regarding transitions, they contain the information of the supernodes that they connect
and the node of the traversability graph that is identified as the door. According to the
topological map, in Figure 4.16 (c) we present the four 3D submaps of the environment,
one per supernode and room. For the seek of clarity, the transitions and supernodes
are indicated along the submaps. As we can see in these two representations, each
transition connect the living room (s1) with one of the other supernodes: transition 0
connects to the office (s0), transition 1 connects to the bedroom (s2) and transition 3
to the kitchen (s3).

In Figure 4.16 (d), the traversability graph of the environment is shown. The
traversable paths in the environment were fully mapped using 10 nodes, three of them
corresponding to transit nodes or doors (1, 4 and 6) and the remaining seven to free
area nodes. Node 1 represents the door that connects supernode 0 to supernode 1, so
node 0 is the only node that belongs to supernode 0. Node 4 and 6 connect to the
bedroom and kitchen, respectively. Thus, node 5 is the only free area node contained
in the bedroom and node 7 is the only free area node contained in the kitchen. The
remaining nodes (3, 2, 8 and 9) determine several traversable paths in the living room.

Finally, Figure 4.16 (e) shows the object-based pose graph of the environment
and the correspondence of centroid colors to object types. In addition, each pose of
the pose graph is annotated with its identifier in black and each object is annotated
with its persistence probability and its identifier in red. Regarding poses, we can see
the similarity between the pose graph and the traversability graph, as they are built
simultaneously. Poses 0 and 1 belong to the office, 8 and 9 belong to the bedroom, 10
and 11 to the kitchen and the rest belong to the living room. Regarding objects, in
this environment the system mapped a total of 23 objects: 3 chairs, 1 sofa, 4 potted
plants, 1 bed, 6 screens, 1 cup, 3 bottles, 1 dinning table, 2 handbags and 1 bicycle. In
the office the system mapped three screens that correspond to laptops and computer
screens and two chairs. In the living room, the sofa, TV screen, two bottles of water
and a cup were mapped. In addition, it mapped three potted plants, a dinning table
and a chair, a bicycle and a handbag. Some errors can be discussed in the living
room. In first place, detection errors such as the cup that was actually a vase and the
handbag that was a bicycle helmet. These errors are caused by missdetections of the
object detector used. In the second place, there were object that were not included
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Figure 4.16 Result for the complete hybrid map in a real house envi-
ronment. In (a), we provide an illustrative 2D occupancy grid of the
environment just for visualization. The topological map is included in (b)
as the list of supernodes and transitions. In (c), we show the 3D submaps
built for each supernode. The traversability graph is shown in (d). Finally,
(e) shows the object-based pose graph and the correspondence of colors for
the objects.

in the map, such as a three more chairs close to the dinning table and another table
between the sofa and the TV. The small dinning table and two of the chairs were not
detected by the object detector, however the third chair was detected but not mapped.
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In this case, it was an error of our mapping system that considered the mapped and
unmapped chair as the same one. Another missdetection happened in the kitchen,
where the handbag was actually detected but the screen was a detection error. In the
bedroom, the bed, a bottle of water and a potted plant were successfully detected. In
addition, the detected screen was actually a framed picture.

With this experiment, we showed the complete hybrid map for a real indoor
environment and the connections between the different components of the hybrid map.





5
Autonomous Exploration

Maps can be autonomously built even if the movement of the robot is not autonomous
and it is teleoperated or commanded by the user. In that way, the robot will acquire the
information of the areas of the environment where the user drives it and the robot does
not have any control over the decisions to discover and map the environment. If the
objective of the robot is to completely map the environment, it is possible that, due to
the gap between the commands of the user and the robot perspective, the objective is
not achieved. On the contrary, if the robot moves autonomously through an exploration
strategy, it can take its own decisions based on the information gathered until that
moment assuring the completeness of the map. In addition, it avoids excessive user
intervention and increases the autonomy of the robot.

The objective of this chapter is to develop an autonomous exploration algorithm that
enables the autonomous construction of the hybrid map. Autonomous exploration and
map building deals with the complexity of autonomously exploring an unknown area
while acquiring the most important information to be mapped. Commonly, exploration
and map-building strategies are related as the robot can build a representation of the
environment while it explores (although not all of the exploration applications require
mapping the environment). An exploration strategy finishes when all the environment
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is mapped or the goal of the application beyond the exploration strategy is reached (i.
e. finding an object that has been moved or finishing a surveillance duty).

Exploration is meant to answer the question: "given the current knowledge of the
environment, where should the robot move next to acquire the maximum information
of the unknown environment?" The main purpose of previous research in exploration
strategies is to satisfy this question using the existing technologies. One of the most
common approaches for exploration is frontier-based exploration [174] which is also the
foundation of most current exploration algorithms. Frontier-based exploration answers
to the question presented above with a simple concept: frontiers. Frontiers are regions
on the boundary between open space and unexplored space and, according to this
approach, moving to the frontiers the robot will gain as much information as possible.

In this chapter, we propose a mobile robot exploration algorithm that combines
frontier-based concepts with behavior-based strategies for indoor environments that will
provide the robot with all the information to build the hybrid map of the environment.
Differently from Yamauchi’s approach [174], we propose a frontier exploration algorithm
based on a cost-utility function that uses the information of the environment to select
the best next frontier. Traveling through the different frontiers (until the environment
is fully explored) the robot acquires the information of rooms, doors and objects along
with the 3D information of the environment that will be used to generate the different
components of the hybrid map.

5.1 Related Work
Mobile robot exploration has attracted researchers attention since the beginnings of
mobile robot developments as it is the way to autonomously build a representation of
the environment. Some of the first approaches dealt with external markers to help the
exploration like the breadcrumbs in Hänsel and Gretel story. This is the case of [54],
where Dudek et al. designed a robotic system that could identify, put down and pick
up some markers that were used to guide the exploration. Kuipers et al. [94] presented
an exploration algorithm that could built a topological map of the environment without
any external help. This system recognized qualitative properties as distinctive places
and travel edges between them leading to a topological representation where geometry
is assimilated into local descriptions of places and edges. Other authors also gave
importance to topological representations through points of interest that were identified
as the robot moved [55]. Points of interest were defined as the free borders of a virtual
bubble that was built around the robot occupying all the space that it perceived and



5.1 Related Work 67

growing while it moved. The exploration finished when the bubble had occupied all
the environment. Points of interest can be understood as a precursor of the frontier
concept presented by Yamauchi [174]. Frontiers are regions on the boundary between
open space and unexplored space. Yamauchi proposed that moving to the frontiers the
robot will gain as much information as possible. In this first approach to the frontier
concept, the selection of the best frontier to move corresponded to the nearest frontier.
Frontier-based exploration has become one of the most used and robust exploration
algorithms and many authors have based their exploration algorithms in the frontier
concept. In [111], authors added information about navigation and localization to the
decision process for the next frontier to visit. Their algorithm maximizes the global
utility which consists of information utility (maximize the amount of new information
that can be acquired), navigation utility (minimize the displacement to the place)
and localization utility (minimize the localization error). Other authors [4] defined
an exploration strategy through multi-objective optimization of separated features
where the selected candidate frontier is the one that is nearest to the individual ideal
values. In the same direction, in [14] multiple features were proposed to optimize
the decision making process but the selected candidate corresponded to the one that
maximized a global utility function. Amigoni et al. [3] used frontier-based exploration
to build geometric maps. In [2] and [87], comparisons of different exploration strategies
were presented. In both works, they concluded that depending on the application the
decision would vary but generally frontier-based exploration using only cost (moving
to the nearest frontier) required less time. On the contrary, using cost and utility, such
as the work in [70], extensive knowledge of the environment was acquired more quickly,
which is important in rescue and surveillance tasks.

Meanwhile, other authors worked on improving behaviour-based approaches for
exploration. In [56], a topological map called navigation chart containing the actions to
move between distinctive places was presented. In [137], authors presented a behaviour-
based control approach to build a topological map that established connections between
rooms. A topological exploration strategy was also presented in [141] in which the
behaviours were grouped in node detection, node matching and edge travelling using a
Voronoi diagram.

Recently, other exploration strategies have been proposed. Such as the work
presented by Fermin-Leon et al. [59] [60] where rooms are identified by topological
segmentation of contours. Each room or region is associated with a node and they
use Tarry maze-searching [71] algorithm to move through the environment. In [119],
authors propose an exploration and rescue method based on Partially Observable
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Markov Decision Processes which directly incorporates uncertainty in the decision
process. In [143], a multirobot exploration algorithm in which each robot auctions for
the next positions to reach is presented. Based on the observed part of the environment,
the system estimates the outer border of the environment by the convex hull of the
observed map and infers the structure of the unknown area. In [19], random next best
views are connected through a RRT algorithm. The selection of the next best view is
performed with regard to the amount of visible unmapped area and with a penalization
for high costs. This work deals with 3D mapping and 2D surface inspection and shows
a better performance of RRT exploration compared to frontier-based exploration for
fine-grained, complex and detailed mapping. However, in house or office environments
frontier-based exploration obtained a faster result.

Many recent works have also presented variations of the frontier-based exploration
algorithm. In [33] and [34], authors develop a frontier exploration algorithm where the
function to chose the best candidate depends on the localizability and uncertainty based
on entropy. This algorithm leads to a conservative exploration strategy that maintains
a good uncertainty value through loop closure and revisiting poses. Some works, such
as [8] and [9], have focused on frontier-based exploration to perform navigation in
an unknown environment. In these works, robots do not build a representation of
the environment nor completely explore the environment, they collaboratively reach
their desired goals within the environment. In [81], a method for online mapping
through Gaussian Processes occupancy maps (GPOMs) is proposed. An algorithm
to extract probabilistic frontiers from GPOMs is used as frontier detection. Frontier
selection is performed based on information gain and path length, but just considering
geometric information. They show higher performance than standard frontier-based
exploration for big indoor environments. Lately, frontier exploration has also been
applied to multirobot exploration establishing a routing priority for the frontiers and the
robots [140]. Other works with multirobot frontier exploration have also added semantic
and scene information to the decision process in order to separate the trajectories of
the robots [108] or to obtain a higher reward of certain kind of areas [101]. However,
these methods just use semantic information for the exploration process and build grid
maps for specific areas.

In our work, an exploration strategy is presented that differentiates from the
previous works in that it builds a lightweight and efficient map representation that
contains geometric, topological and semantic information. This same information is
taken into account to lead the exploration strategy. Semantic information is considered
with regard to the traversing of transit areas and it is included in the decision process
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through the cost-utility function. The exploration algorithm combines frontier-based
concepts with behavior-based strategies for indoor environments. The purpose of the
exploration method described in this chapter is to improve the efficiency with regard
to distance traveled and execution time, to increase the robustness of exploration
algorithms dealing with indoor environments and to acquire the required information
to build the hybrid map that includes all the geometric, topological and semantic
information required for further navigation.

5.2 Frontier-based Exploration
The exploration algorithm proposed in this thesis is based on the frontier concept
presented originally by Yamauchi [174]. According to that work, a frontier is a region
on the boundary between free space and unknown space. Authors stated that if the
robot moves to the frontiers it gains the maximum information for each movement.

In our work, the first step for the robot is to detect the frontiers and decide where
in that frontier it is going to move (section 5.2.1). We propose to classify frontiers
according to their semantics. As a consequence, a frontier is semantically classified
as free area or transit area depending on the information obtained from the frontier
detection (this information will be then stored in the nodes of the traversability graph
since each node is classified as transit area node or free area node). Transit areas
are defined as the frontier where the robot changes between two places (rooms) and
regardless of the size of the transit area the information gain that they offer is significant.
In addition, free areas are defined as the frontiers within a room that drive the robot
through the different areas of that place. Semantic frontier classification is presented
in section 5.2.2. This semantic information, along with the cost of moving to each
frontier and the utility estimated for the frontiers, is used to determine the next best
frontier (section 5.2.3). The utility estimated for each frontier depends on the size of
the frontier and whether it corresponds to a transit area or not. The robot is now
ready to move to the desired position. In order to do so, it executes the behaviors
corresponding to the current situation, as explained in section 5.2.4. The exploration
algorithm depends on the loop closure strategy explained in the previous chapter since
looping situations drive the robot to an already-explored area and the exploration
algorithm has to chose a new best frontier to visit to continue exploring the unknown
areas. This exploration process is executed iteratively until the termination condition is
reached. The termination condition in our case is defined as the absence of interesting
frontiers to visit, as explained in section 5.2.5.
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Once the exploration algorithm has finished, the hybrid map of the environment
is completely built and can be used for further navigation. The whole process of
frontier-based exploration is illustrated in the diagram presented in Figure 5.1. Sensor
information from a laser, a camera and wheel odometry are used as inputs to the
system to drive the exploration and, simultaneously, map the environment. When
the exploration process has reached the termination condition, the hybrid map of the
whole environment is available for further operations. As mentioned before, the direct
output of the exploration decisions is used to build the traversability graph, this is also
represented in Figure 5.1.

Figure 5.1 Processes involved in the exploration algorithm. The inputs of
the system are the scans from a 2D laser and the odometry of the robot.
The output of the system is the traversability graph of the environment.

5.2.1 Frontier Detection

Frontier detection is the process of detecting the boundaries between free-known
space and unknown space. 2D laser information gives a measurement of the elements
surrounding the robot. If the laser reaches an obstacle within its field of view, it
will provide the distance to that object. Moreover, we can assume that all the space
within that distance in that direction is free. On the contrary, if there is not any
obstacle in a particular direction, the measurement in that direction will be assigned
to the maximum range of the sensor and correspond to an unknown space area. Laser
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measurements corresponding to free, occupied and unknown space are easily separable
into groups that can be associated to frontiers P = {p1, p2, ....pN}. We consider that
every group of laser measurements is a frontier if:

• The value of all the measurements corresponds to the maximum range value.
This means that in that direction there is not any obstacle in the seen region.

• Within the group of laser measurement there is a significant gap between the
distance value of consecutive measurements. Even though range values do not
reach the maximum value, it is possible to have occlusions between obstacles
which are recognized through a significant difference between consecutive scans.
If there is just one gap within the group, the frontier will be bounded to the
gap. On the contrary, if there are two adjacent gaps (i.e. one gap with depth
values from 2.3m to 4m and another gap with depth values from 4m to 2.3m)
the group of measurements with the larger distance (4m, in the above example)
is considered to be the gap.

This method allows to cluster laser scans into frontiers (interesting areas to discover)
and already-known or occupied areas. Once a frontier, pi, is detected from a particular
robot position, it is characterized using its middle point, mi, and the size of the frontier,
where frontier and middle point are linked through their indexes. The middle point,
mi, corresponds to the position to be reached within the frontier and the size of the
frontier will be used to determine the geometric utility and the semantic type of the
frontier. In Figure 5.2 (a) and (b) different frontiers have been detected and their
middle points are marked with a square. Both frontiers detected in Figure 5.2 (a)
correspond to groups of laser measurements whose range corresponds to the maximum
laser range. However, in Figure 5.2 (b), the frontier at the bottom left part of the
image corresponds to a group of laser measurements that contains a significant gap
between consecutive scans. After frontier detection, frontiers are classified according
to the gathered information to afterwards select the next best frontier to visit.

5.2.2 Semantic Frontier Classification

Frontiers are semantically classified as free area or as transit area based on their
geometric characteristics using laser and camera information. In this work, transit
areas are identified with doors, D = {di

1, dj
2, ..., dk

m}, as they connect two different
places. However, they could be defined differently for other environments and the
autonomous exploration will work similarly. Free areas relate to frontiers within a
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room and drive the robot through the free area of the room until it is fully explored
and the different entrances to that room are identified.

In order to classify free areas and transit areas, a preliminary door detector has
been developed in this work, in which only the geometric characteristics obtained from
the laser and a depth camera are taken into account. For a frontier to be considered a
door, its size must correspond to a typical doorway between two coinciding segments
(see Table 5.3 for parameter description). In Figure 5.2 (a) and (b), the robot identified
three frontiers characterized as transit area or door (yellow) and one as free area (blue).
In addition, in Figure 5.2 (b), an example of a frontier where there is a gap between
measurements is shown. In this case, although the wall across the door is detected,
the frontier is considered as the doorway. Once a gap is selected as a possible door
thanks to laser information, camera information is used to confirm that hypothesis. A
simple vertical line detector using Hough Line Transform was implemented. Vertical
lines must be found close to the door frame in order to finally consider that gap as a
door. In Figure 5.2 (c), the detection of the door frames of a door is shown.

Behaviors to check and confirm that a frontier detected as a transit area is really
a transit area are executed in order to solve the misclassification that could occur
in corners or dead-ends. As we will explain in Section 5.2.4, these behaviors are
approaching to the center of the door and stopping before reaching it. From that new
position the door detection algorithm is run again and it will confirm or discard that
the frontier is a transit area. We assume that from this ideal position, the chances of
misclassification are low and the detection is reliable.

Before continuing with the theoretical explanation of the method, we would like to
include a proof of concept of the semantic frontier classification through door detection.

Figure 5.2 Semantic classification and different types of frontiers to be
detected. (a) shows the case where a free area and a transit area are detected
and (b) shows the case where two transit areas are detected, one of them is
successfully detected as door even though the wall behind it is detected. In
(c), door frames detection from an image using Hough Line Transform is
shown.
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Although detection methods are beyond the scope of this thesis, we consider that the
classification results for the develop method are worth a brief description. Semantic
frontier classification was tested in a simulated environment in order to evaluate its
performance. The test was performed in the environment shown in Figure 4.12 (a)
due to the number of doors present in the environment. Frontier classification was
executed from 50 different random positions leading to the results shown in Table 5.1.

Table 5.1 Results for semantic frontier classification.

Measurement Value Measurement Value
Prevalence 0.5263 Sensitivity 0.9333
Accuracy 0.9298 Specificity 0.9259
Misclassification rate 0.0702 F1-score 0.9333

The obtained results show a good performance of the classifier in the detection of
doors considering the high percentages of accuracy and sensitivity. Regarding accuracy,
in 92,98% of the cases the classifier detects the doors correctly. In addition, failing
situations were mainly due to dead ends or corners and sharp angles to doors. After
performing the behavior to check doors, most failing situation will be reduced as
the doors and non-doors would be successfully identified from the new advantageous
position.

This semantic classification plays an important role in the exploration algorithm as
it is one of the key points for the decision process of the frontier selection. Further
more, it is crucial for the map building as the construction of supernodes and 3D
submaps depends directly on the successful detection of transit areas.

5.2.3 Frontier Selection through Cost–Utility Function

Newly detected frontiers and the previous ones that were not visited are grouped
as Pu = {pu,1, pu,2, ..., pu,N} where only the unvisited frontiers from the whole set of
frontiers, P , are included. Given the set of unvisited frontiers, Pu, the robot has to
decide which of them is more worthy to visit first, p∗

u. In this thesis, this decision,
which depends on the expected gain for each frontier and the distance to it, is taken
through a cost-utility function. A cost-utility function is defined as the function that
the system tries to maximize as it represents the most optimal value. In this case, the
cost-utility function, f(pu,i), for a given frontier, pu,i, results from the combination of
the geometric utility, the semantic utility and the topological cost or distance. The
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cost-utility function must maximize the utility while minimizing the cost. These three
elements are defined as follows:

• The geometric utility, A(pu,i): this utility corresponds to the size of the frontier.
Its influence to the utility of the frontier comes from the fact that bigger frontiers
will offer a bigger range to acquire new information of the environment. The
geometric utility value ranges from 1 to the maximum number of scans that can
occupy the frontier (according to the scan size), A(pu,i) ∈ [1, 640].

• The semantic utility, S(pu,i): this utility gives a semantic importance to the
transit areas. In spite of its small size, transit areas open to a new space that
will make the robot gain valuable new information. For this reason, transit areas
should have a positive influence over the utility of the frontier, S(pu,i) = 30,
whereas free areas are not influenced, S(pu,i) = 1.

• The topological cost, C(pu,i): this cost refers to the topological distance that
the robot will have to travel to reach the frontier. This cost is associated to the
connectivity between frontiers. Consecutive frontiers will have a cost value of 1.
However, if to reach one frontier the robot has to travel through already-explored
frontiers (nodes of the traversability graph) its cost value will correspond to
n + 1, where n is the number of frontiers (nodes) to cross. To summarize, the
topological cost ranges from the natural values starting from 1 to the maximum
distance between current frontier and non-visited frontiers, C(pu,i) ∈ [1, n + 1].

Taking into account the geometric utility, the semantic utility and the topological
cost, our cost-utility function for frontier selection is:

f(pu,i) = A(pu,i)S(pu,i)e1/C(pu,i) , (5.1)

where different utilities are multiplied whereas between utility and cost the relation is
a reverse exponential. Since both utilities are bounded to values higher that 1, when
they are multiplied the global utility of the frontier increases. In addition, although
the geometric utility of transit areas is generally smaller than for free areas, this is
compensated with the semantic utility. Regarding utility and cost, using a reverse
exponential, we are penalizing the transitions that are not directly connected to the
current frontier, as they imply path planning and several transitions. The impact of this
penalization is evaluated in Table 5.2 since the cost-utility function, f(pu,i), is calculated
for fixed geometric and semantic utility values, A(pu,i) and S(pu,i) respectively, and
increasing the topological cost, C(pu,i). This results in a great penalization between
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cost value 1 (0%) and cost value 2 (39.35%) to avoid excessive path-planning and
revisiting of nodes. As the cost increases, lower penalization increments are applied
(as once the robot is performing path planning, the number of revisited nodes is not so
determining). This effect is due to the reverse exponential related to the cost.

Table 5.2 Study of the relation between cost and utility and the influence
of cost in the proposed cost-utility function.

C(pu,i) A(pu,i) S(pu,i) f(pu,i) % of penalization

1 60 1 163.09 0%
2 60 1 98.92 39.35%
3 60 1 83.71 48.68%
4 60 1 77.04 52.77%

The cost-utility function is calculated at each exploration iteration for each possible
non-visited frontier and the best frontier p∗

u corresponds to the one that maximizes the
cost-utility function:.

p∗
u = argmax

i
(f(pu,i)) . (5.2)

The autonomous exploration process described up to now can be summarized as
the sequence presented in Figure 5.3. From a starting position the robot seeks for
the best option to start exploring the environment. Two frontiers have been detected
and semantically classified as free areas. Both frontiers are placed at a cost value
of 1 and the geometric utility of frontier 2 is much bigger than the one of frontier 1.
For this reason, in the first stage the robot decides to move to frontier 2. When the
required position for that frontier is reached, the second exploration stage starts. The

Figure 5.3 Sequence for the detection, classification and selection of fron-
tiers in two exploration stages. Frontiers are analyzed and visited until the
termination condition is met and the environment is fully explored.
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robot detects three new frontiers. Frontier 3 is discarded since it corresponds to an
already-visited area and frontier 4 and 5 are evaluated along with frontier 1 that was
not explored in the previous stage. Frontier 1 has a cost value of 2 and the new frontiers
a cost value of 1. In addition, frontier 4 opens to a much wider area, so frontier 4 will
be the next one selected to explore. This sequence will continue until the termination
condition is met.

5.2.4 Behavior-based Exploration Strategies

The robot can perform three different behaviors to fulfill the exploration process. The
behaviors implemented are Move to next free area, Approach transit area and Cross
transit area. Move to next free area behavior is performed for frontiers classified as free
area and it reaches the middle point of the next best frontier. Approach transit area
and Cross transit area are performed for frontiers classified as transit area. The robot
first performs Approach transit area which consists on moving towards the middle point
of the frontier but stopping 90 cm before reaching it (90 cm is selected as stopping
distance given that it gives reliable measurement values according to the sensor used).
When that approaching position has been reached, the robot checks that it is effectively
a transit area. In order to check if the frontier is actually a transit area, the door
detection algorithm is run again from this closer position. If the transit area has been
checked, the behavior Cross transit area is executed. It moves the robot through the
transit area and beyond until it has entered the new room. If the transit area has been
discarded (from the closer position the robot has sensed it as a dead-end or corner), a
new frontier to visit is sought. Each behavior requires different speed and precision
conditions.

When the next best frontier is situated in a topological cost higher to 1, prior to
executing the required behaviors the robot has to plan the path to reach the next best
frontier. This path planning is performed using Dijkstra path planning algorithm [142]
that finds the shortest path between the known nodes of the environment and executes
the corresponding behaviors for each of the nodes it has to traverse.

5.2.5 Termination Condition

This frontier-based exploration algorithm finishes when the environment is fully explored
or nearly fully explored. In the algorithm level, full exploration of the environment
is equal to the absence of any frontier to visit. When the robot has explored all the
frontiers that it has detected, we assume that all the reachable space by the robot
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has been explored. However, after some exploration time, most of the frontiers that
remain unvisited belong to small regions that do not offer any additional information
of the map. For this reason, we introduce the concept of interesting frontiers for those
frontiers that achieve that, when all of them have been visited, the environment is
nearly fully explored and all the relevant information has been gathered.

A frontier is considered interesting if its cost-utility value is higher than an experi-
mentally defined value, α. If none of the remaining possible frontiers has a cost-utility
value higher than the minimum considered interesting, f(p∗

u) < α, the algorithm
finishes. This procedure avoids time-consuming explorations that lead the robot to
areas that do not add extra information of the environment.

The minimum interesting function value has been determined experimentally in
the simulated indoor environment shown in Figure 5.4 (a) in order to determine the
highest value that allows nearly full exploration of the environment without over-
exploring it. The chosen value for the minimum interesting function is the same for all
the experiments shown in this chapter. In Figure 5.4, the covered area for different
minimum interesting function values is shown. Figure 5.4 (b) was performed with
α = [80 − 70]; Figure 5.4 (c) with α = 60; Figure 5.4 (d) with α = 50; and finally,
Figure 5.4 (e) corresponds to the covered area with α = [40 − 10] and shows a fully
covered environment.

Figure 5.4 Evaluation to determine the termination condition of the
frontier-based exploration. In (a) the simulated environment for the eval-
uation consisting of 9 rooms connected through 8 doors is shown. The
subsequent figures show the covered area for different minimum interesting
function values: for α = [80 − 70] in (b), for α = 60 in (c), for α = 50 in (d)
and for α = [40 − 10] in (e).

Some of the differences can be observed at first sight, for example it is obvious
that the explorations for Figure 5.4 (b), (c) and (d) are not complete, but some other
differences are not so obvious without some metrics. The metrics used for determining
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the minimum interesting function value are the execution time, the distance traveled
and the percentage of non-visited rooms. As shown in Figure 5.4 (a), this environment
consists of 9 rooms and it is essential that the exploration algorithm explores each of
the 9 rooms. In Figure 5.5, the execution time (minutes) is shown in red, the distance
traveled (meters) is shown in orange and the percentage of non-visited rooms is shown
in purple. The minimum value must guarantee that all the rooms of the environment
are visited, this corresponds to α equal or inferior to 40. Analyzing the execution time
and the distance traveled both minimize at 40 (within the valid values according to
the number of visited rooms), so 40 will be the optimal value. However, we decided to
set α to 30 penalizing the distance traveled but setting a tolerance for other situations.
From now on, all the experiments took place with a minimum interesting function
value for termination of the exploration of 30.

Figure 5.5 Comparison of the exploration results for the different minimum
interesting values. X-axis for the function value and Y-axis for the metrics:
traveled distance(m), execution time(min) and percentage of non-visited
rooms.

The autonomous exploration method described covers the strategy to move the
robot in order to explore efficiently the environment. Decision making was conducted
through frontier-based exploration and execution was performed with behavior-based
strategies. We proposed using semantic, geometric and topological information of
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the environment to determine the next best frontier to visit in indoor environments
through a cost–utility function. The autonomous exploration process finishes when
the robot has discovered nearly the whole environment. While the robot explores the
environment, each layer of the hybrid map will be incrementally built. In the following,
we include the experimental evaluation of the explained autonomous exploration
method. Different simulation and real-world experiments will show the results for the
autonomous exploration. In addition, comparisons to other methods are included to
uphold the improvement due to the proposed method.

5.3 Experimental Evaluation
This section includes robot exploration evaluations both in simulated and real-world
environments, the parameter description for all the experiments is included in the
experimental setup. In addition, we include comparisons to other exploration strategies.

5.3.1 Experimental Setup

Exploration experiments were conducted firstly using Gazebo simulation environment.
The performance and resulting maps were visualized using RViz since the work was
developed using ROS (Robot Operating System framework) and C++. Several indoor
environments were created to develop the experiments as close as possible to real
situations. The simulated version of Turtlebot 2 robot is equipped with the simulated
sensors Hokuyo URG-04LX laser sensor and Asus Xtion Pro camera to perceive the
environment. Regarding the computational resources, for both simulated and real-world
experiments, a PC with IntelCore i7-6500U CPU@2.50Hz 12GB RAM was used.

Real-world experiments in a house environment are also presented. Turtlebot
2 robot was used for the experiments and RViz visualizer was used to observe the
resulting map of the environment. As in the simulated experiments, Turtlebot 2 is
equipped with a Hokuyo URG-04LX laser sensor and an Asus Xtion Pro camera. The
robot’s speed was limited to 0.4 m/s in linear velocity and 0.7 rad/s in angular velocity.

The performance of the exploration method is going to be evaluated using the
distance traveled and the time spent in the exploration. In addition, we will show the
resulting paths traveled by the robot during the exploration process.

For all the exploration experiments presented in this chapter, the same set of
parameters was used (maintaining the same configuration also for the compared
algorithms). The employed parameters are summarized in Table 5.3.
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Table 5.3 Set of parameters used for the experimental evaluation.

Parameter Value Parameter Value

Maximum Laser Range [m] 5 Semantic utility value for a transit area 80
Laser ranges corresponding to front [275, 365] Semantic utility value for a free area 1
Laser distance to consider front free [m] 1.5 Geometric loop variance 0.9
Scan difference to accept gap [m] 0.8 Topological loop variance 0.85
Min. scans amount for interesting gap 10 Loop probability to start loop closure 0.3
Small door size (single leaf) [m] [0.8, 1.2] Loop probability to accept loop 0.9
Big door size (two leaves) [m] [1.6, 2.4] Number of iterations to discard loop 5
Safe distance to approach door [m] 0.9 Frontier reaching tolerance [m, rad] 0.1, 0.02
Distance to cross door (after door) 0.5 m Min. function value for termination 30

5.3.2 Evaluation in Simulated Environments

Exploration was tested in the simulated environments shown in the map building
experimental evaluation (Figures 4.7) that contains two small non-cyclic house-like
environments and a small cyclic environment. In this experimental evaluation, we are
showing the path traveled by the robot during the exploration of each environment,
Figure 5.6. In addition, we include average execution time and distance traveled for
the exploration of each environment in Table 5.4.

The paths traveled by the robot during the exploration process are shown in
Figure 5.6. Squares are used to represent the detected frontiers, in red free area
frontier and in yellow transit area frontiers. The starting and ending position for each
exploration is also indicated. As shown, the whole environment was explored in the
three cases and all the doors were successfully detected as transit areas. The sections
of the paths that the robot drove multiple times due to path planning or loop closing
are also observable.

Figure 5.6 Paths traveled during the exploration process in several simu-
lated environments. The squares in red indicate the free area frontiers and
the the squares in yellow the transit area frontiers.
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Execution time and distance traveled during the exploration process in the three
environments using the proposed method is shown in Table 5.4. In the next experimental
evaluation, we include a comparison to other exploration methods for the second
environment.

Table 5.4 Average time and distance traveled during exploration in the
simulated environments.

Environment

Execution time [min] 59 44 52.2
Traveled distance [m] 84.46 57.5 99.43

5.3.3 Comparison with Other Exploration Strategies

To validate the results obtained for non-cyclic indoor environments, a comparison to
other state-of-the-art algorithms is presented. The proposed algorithm was compared
to: wall-following exploration [89], frontier-based exploration using cost function [174]
and frontier-based exploration using GB-L cost-utility function [70]. Wall-following
algorithm consists in simply following the walls until the starting point is reached again.
This algorithm is not valid for cyclic environments given that it would explore just one
of the loops. Regarding frontier-based exploration using a cost function, we used the
same structure as for the proposed algorithm but the cost function is adapted to meet
the requirements of Yamauchi’s proposal [174]:

f(p) = λ/L(p)) , (5.3)

where L(p) refers to the topological length to reach the frontier and λ is a constant.
Finally, frontier-based exploration using GB-L cost-utility function works with the

cost-utility function included in eq. (5.4) presented by Gonzalez et al. It is a well-known
and robust definition for frontier-based exploration where A(p) refers to an estimate
of the unexplored area visible from p, L(p) refers to length or cost of the path (as
only topological distance is considered in this work, L(p) refers to connectivity and
not geometrical length) and λ weighs the new information and the cost.

f(p) = A(p)e−λL(p) . (5.4)
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The four exploration strategies were implemented and their performances were
compared according to average execution time and average distance traveled for the
middle-size environment shown in Figure 5.6 (second column). Execution time and
traveled distance were computed for 10 exploration sessions for each algorithm from
random initial positions. Average results are shown in Table 5.5. All the exploration
strategies were evaluated under the same conditions (removing non-interesting frontiers
and same parameter definition).

Table 5.5 Comparison of different exploration strategies according to
execution time and traveled distance: wall-following, frontier exploration
with cost function, frontier exploration with GB-L function and the proposed
method.

Method Execution Time [min] Traveled Distance [m]

wall-following 56 97.2
cost function 51 57
GB-L function 43 59.4
proposed algorithm 44 57.5

Frontier-based exploration algorithms had a much better performance than wall-
following, which could be predictable. The experiment that led to a lower execution
time was GB-L function frontier exploration and the experiment that traveled a lower
distance was the cost function frontier exploration. However, the proposed algorithm
gave the overall best performance considering both average execution time and average
traveled distance.

5.3.4 Evaluation in a Real-world Environment

Exploration experiments were also performed in the three real-world environments
presented for mapping. Two houses shown in Figure 4.10 and Figure 4.16 and a corridor
area of University Carlos III of Madrid shown in Figure 4.13. The traversability graphs
and the traveled paths for the house environments are shown in Figure 5.7 and
Figure 5.8. It is observable how the nodes of the traversability graph correspond to the
frontiers of the exploration process. Frontiers in red represent free areas and frontiers
in yellow represent doors. In addition, the edges of the traversability graph correspond
to the paths traveled by the robot. The first house environment was totally explored
in 12.2 min and the robot traveled 34.5 m and for the second one the exploration
time and distance were 5.1 min and 27.26 m, respectively. For the exploration shown
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in Figure 5.7, the robot started in a room (left) and crossed its door to a corridor
connecting to the other rooms. It enters in the next room (right, down) and explores it
until it is fully covered and has to plan a path to exit the room and continue exploring
the corridor. Going up through the corridor two other rooms are found. The first one
(right, up) is explored and then a path is planned to exit and explore the last room.
When that room is fully covered the exploration finishes. For the exploration shown in
Figure 5.8, the robot starts in a room (right) and exits through its door to another
room. From there, the system has to decide to go up or to the left to continue the
exploration. It continues to the left until two rooms are found. Firstly, the system
explores the room in the left, when it is fully explored, it plans a path to exit the room
and visits the other room. When that other room is fully explored the system plans a
path to explore the area of the second room that was still not explored and, then, the
exploration finishes.

Figure 5.7 Real-world experiment for exploring a house environment: (a)
shows the resulting traversability graph for the house (red squares represent
nodes); (b) shows, the path traveled by the robot during the exploration
(red squares are free area frontiers and yellow squares transit area frontiers).

Figure 5.8 Real-world experiment for exploring a house environment.
Similarly to Figure 5.7, the path traveled by the robot the traversability
graph, free area frontiers and transit frontiers are shown.
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The traversability graph and the traveled path for the corridor environment is
shown in Figure 5.9. It is observable how the traversability graph corresponds to
the path traveled by the robot. Frontiers are not included along the path as in this
environment 48 frontiers were detected. The environment was totally explored in
19.5 min and the robot traveled 178 m. The robot starts in a small room next to the
corridor area. When it reaches the corridor area, it decides to explore it to the right
first. When the right end of the corridor area is reached, it plans a path to continue
exploring the corridor to the left until the exploration is ended.

Figure 5.9 Real-world experiment for exploring a corridor environment.
In (a), the resulting traversability graph for the house is shown. In (b), the
path traveled by the robot during the exploration.

The presented exploration method along with the building methods described in
Chapter 4 allows to autonomously build an initial representation of the hybrid map
that contains information of all the components and the links between them. As shown
the method outperforms other state-of-the-art frontier-based exploration methods and
completes a successful exploration, both, in simulated an real-world environments.



6
Map Adaptation for Non-static
Environments

Relying on static representations of the environment limits the use of mapping methods
in most real-world tasks as real-world environments are not static and continuously
undergo changes. These changes present a major challenge for mobile robots given
that maps rapidly become outdated. An outdated map can cause problems in mobile
robot operation such as crashing with unmapped elements, wrong elections during
path planning, localization failures or impossibility to perform higher level tasks such
as looking for objects. This is a problem that needs to be solved in order to enable
mobile robots to autonomously operate in real-world environments.

The changes that affect an environment can be classified as high-dynamic changes
(or high dynamics) and low-dynamic changes (or low dynamics) [25, 125, 163]. High
dynamics refer to changes that occur while the robot is present in the environment (i.e.
a person walking or a car driving through a road). Dealing with these changes consists
in registering the dynamic elements and track them in order not to collide with them.
In contrast, low dynamics refer to changes that happen while the robot is elsewhere or
not sensing (i.e. returning to a room after any rearrangement of the furniture or daily
register of cars in a car park). These changes are harder to detect since the robot has to
compare its current representation with the new state of the environment and this can
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be as demanding as mapping again the whole environment. However, map adaptation
consists in determining the strategies to efficiently acquire the new information without
the need to remap again the environment. In this thesis, given that we are mainly
dealing with mapping, we are only going to handle low dynamics because they affect
the structure of the map. Managing the high dynamics is important for moving safely
in the environment, but high-dynamic elements are rarely worthy to get mapped.

Given an initial representation of the environment, map adaptation deals with
modifying the original representation so it matches with the current state of the
world at every mapping session. Map adaptation implies change detection and map
management. Change detection approaches based on vision mainly use features or
objects as perception elements and compare the perceived ones with the expected
ones in order to determine the changes. Map management refers to the procedures
to include the change that has been detected. Some approaches are just interested in
the static parts of the environment, so whenever a change is detected that element is
removed from the map.

Regarding our hybrid map, map adaptation could concern every of the components
of the map although it will be more useful for some components than others. The
topological map represents the structure of the environment with respect to rooms and
doors. Any change in the structure will imply a reform in the building, which does
not happen very often, and it will involve the change of the other components of the
hybrid map. For these reasons, we think that whenever it is necessary to include any
change in the topological map, it is better to remap the whole environment. However,
we approach small temporary changes, such as closed doors. The traversability graph
represents the skeleton of the free areas in the environment where the robot can move.
This representation is highly affected by the changes in the environment since paths
can become impassable or new paths can appear due to moved elements. Similarly, the
object-based pose graph is highly affected by the changes as, in addition to including
the possible paths in the environment, it contains information of objects and their
position. This requires to represent any object that has been moved even if it does not
affect the passable areas (i.e. a book that has been moved from a bookshelf to a table).
Finally, the 3D submaps are the most affected by the changes in the environment as
they contain the exact voxel-wise distribution of the environment and the most slight
change (in addition to all the aforementioned changes) could affect the representation.

In the current state of our work, we have only dealt with two types of changes:
paths that have become impassable, that are detected and managed like explained
in Chapter 3, and changes in object positions in the object-based pose graph, that is
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going to be described in the following. We acknowledge that there is still work to do
in making the whole hybrid map robust against low-dynamic changes, but managing
changes in the transitability of the environment and adapting the 3D submaps to object
and appearance changes remains as a future work.

In this chapter, we are performing map adaptation in the object-based pose graph.
We are detecting whether an object remains static in the environment or whether it
is added, moved or removed from the environment. In order to handle these possible
changes, we present a probabilistic method in which each detected object will be
assigned a probability to remain static during the subsequent mapping sessions or,
on the contrary, be movable. For this purpose, we will use some attributes of objects
(presented in Section 3.4): the persistence of an object, p(oi), and their active parameter
ai. We are going to use the persistence of an object to determine how static the object is.
A higher persistence value means that the object is unlikely to be moved. We will use
the active parameter to build the active map of the environment, that indicates which
of the objects were present in the last mapping session. This parameter is important
because we are not removing any of the detected objects, so if a chair is moved from
one position to another, we will have that chair represented twice. In that case, the
first representation will become inactive while the second one will remain active as
long as the chair is in that position. If the chair remained in the second position for a
long time, the persistence of the chair in the first position would progressively decrease
and the persistence in the second position would progressively grow.

In the rest of this chapter, we will first present the related work in vision-based map
adaptation to low dynamics in order to highlight the novelty of the proposed method
given that it deals with objects for change detection and quantifies the movability of
an object (opposite to binary approaches). We will, then, present our method for pose
graph adaptation over time and how it can benefit the semantic understanding of the
environment by inferring the movability of object classes. We will finish this chapter
with an experimental evaluation that validates our approach and a discussion.

Our main contribution in this chapter is the design of a novel method to maintain
object-based pose graphs in low-dynamic environments based on a probabilistic function
that captures how static or movable an object is according to the experience of the
robot.
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6.1 Related Work
Methods that adapt to the changes occurring in real-world dynamic environments
have received much attention from the robotics community in the last decade. Most
low-dynamics approaches are based on features extracted from laser scans, images or
point cloud information [10, 31, 114]. However, such developments have not occurred
equivalently with other sources of information such as objects.

Regarding feature-based methods, some authors propose a binary classification
of these features just considering if they are stable or not. In [163], a pose graph is
updated to remove the scans that no longer match the environment. In such a way, the
resulting map is built with the scans that belong to static objects. Similarly, in [68], a
grid map, initialized with the architectonic map, is augmented with the features that
persist in time.

Other authors found binary classification very limited and defined methods to
measure and quantify the stability of the features. The Feature Stability Histogram
(FSH) was proposed in [10], where image features are gathered for each node of a
topological map. Over time, a voting scheme is used to register the local feature
stability and the resulting map is built with the most stable features. With the same
spirit, the work presented by Bürki et al. [31] applies a ranking function that estimates
how likely a landmark is observable under the current situation. Top-ranked landmarks
are stored for the resulting map. In [114], Meyer-Delius et al. present a method
for grid maps in which the belief about the occupancy of a cell is represented with
hidden Markov models. The resulting map includes the change probability for each
cell, which is a novelty in contrast to the aforementioned works. Rosen et al. [132]
proposed the persistence filter, which provides a probabilistic Bayesian belief over the
persistence of features in a semi-static environment. In [10, 68, 163], mapping is only
carried out for the most stable features, which is a limitation since the information
that could be inferred from the dynamic objects is overlooked. In [45], another solution
is proposed based on maintaining different representations following a memory model.
The sensory memory stores the most current features. An attention mechanism selects
which features are moved to the short-term memory. And finally, through rehearsal,
static features can be committed to the long-term memory.

Other works focus on maintaining the most updated version of the environment by
having a record of the static and current dynamic elements. In [99], a pose graph based
on point clouds uses matching techniques to accumulate the aligned data and remove
the outdated ones. A more sophisticated approach is introduced in [25], where a pose
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graph is maintained using the belief of scan matches given a certain robot position
and observations. A pose is removed if its belief drops below a tolerance value. These
approaches, although partially representing the environment, neglect prior situations
and forget about the former presence of elements and their locations. Some works
solve such issues by maintaining multiple representations. The work presented in [43]
keeps maps from different experiences that are evaluated simultaneously selecting
the most adequate one for the current situation or creating a new one. Similarly,
in [18], several representations are maintained simultaneously from multiple timescales,
allowing the robot to detect patterns. Patterns between different experiences are
also sought in [91, 92] through spectral representations that model the frequency of
appearance of different features.

The main drawback of the aforementioned works is the lack of semantic meaning of
the information stored in the map. Features extracted from images or point clouds and
scans are abstract sources for which the correspondence between the point and the
semantic element it belongs to is not straightforward. For this reason, some authors
started to focus on objects as the elements to map the environment. Relevant works
based on objects in static environments are [113, 134], where robust pose graphs of
indoor environments and object reconstruction are proposed. Recently, an adaptation
of this work for coping with high-dynamic environments was proposed in [171]. Xu
et al. use semantic, geometric and motion information for object tracking and pose
estimation within the pose graph. Other solutions for high-dynamic environments have
been proposed [17, 103, 133, 175]. In [103], a static weighing method estimates whether
an object is static or not based on the Euclidean distance between object edges in two
situations.

Regarding low-dynamic environments, changes at an object level can be detected
inferring if they are static or movable. In [58], Fehr et al. introduce an approach
where a map of the static environment and a database of the discovered objects is
maintained over time. Both the map and the objects are 3D reconstructions that are
refined as the robot discovers the environment. In [112], several representations of
the environment are maintained and overlaps between objects and representations are
checked for changes. An object-based pose graph is developed in [167], where the most
up to date representation of the environment is maintained by merging new objects
and removing old ones. In [26], Bore et al. propose tracking of objects in 3D maps
while mantaining an updated representation of the environment over time. When an
object has disappeared from its mapped position, the system looks for it until its new
location is found.
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In contrast to the related work, we propose to maintain the object-based pose
graph of our hybrid map over time and capture the movability of the objects. To
the best of our knowledge, such works have been proposed for features but not for
objects. In addition, a new definition for describing the probability of an object to
be in an already-mapped position is presented. Our resulting map is a probabilistic
object-based pose graph where static and movable objects are included and improved
object classification is obtained.

6.2 Pose Graph Adaptation over Time
The initial pose graph captures the objects and trajectory while the robot explores
the environment for the first time. This process implies the generation of robot poses,
mapping the detected objects and connecting poses with objects. Once the first
mapping session has finished, every time the robot visits the environment again, the
pose graph has to be updated. For every mapping session, m, the robot is assumed
to follow the same path as in the first mapping session (as we said before, we are
not updating the traversability graph nor the paths up to now) although it can drive
it partially or in different directions. Updating the pose graph implies adding new
objects and detecting whether the already-mapped objects are still present or have been
moved/removed. While objects detected within one mapping session are updated and
merged online, matching objects between different mapping sessions is performed offline
when the mapping session has finished. Therefore, object probability is just evaluated
and modified once and efficiency is improved given that unnecessary evaluations are
avoided while the robot is moving.

In the initial pose graph, objects are initialized with the default value for the
persistence of the object and active parameter. As the persistence of the object works
like a probability that ranges between 0 and 1, the default initial value is 0.5 times the
confidence of the detection system. This value will be close to 0.5 since most objects
are detected with a high detection confidence. This is a good initial value given that we
still do not know if the object will tend to be static or movable (this value could also be
initialized differently according to the semantic class of the object). In addition, all the
objects are labeled as active in the first mapping session. Managing the low dynamics
of the map consists in updating the already-mapped objects while the robot visits
the environment, especially varying their persistence value and active parameter, and
adding the newly detected objects. The process of building the initial pose graph and
adapting the pose graph to the changes of the environment is illustrated in Figure 6.1.
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Figure 6.1 Illustrative example of building the initial pose graph and the
adaptation of the pose graph. In the environment (left), one chair, a screen
and a bottle were newly added in the second mapping session and one
chair was removed. In the pose graph (right), the new objects are included
with the initial probability (0.5), the object that was removed decreases its
persistence probability and the rest of objects increase it.

An illustrative example is presented to represent the effect that changes, such as moved
objects and added objects, has in the map, especially in the persistence value of the
objects. In the following, we will describe the mechanisms to perform both tasks and
also how the system can infer object class movability based on single objects movability.

6.2.1 Updating Already-mapped Objects

Map adaptation requires to identify and register the changes that affect already-mapped
objects. In a new mapping session, an already-mapped object can remain in its place
or be missing from its previous place. In addition, since the robot does not need to
execute the same exact path as in the previous mapping session (it can travel the path
partially or in opposite direction), it is possible that an already-mapped object is not
visited. For that reason, in order to manage the map over time, we consider different
lists of objects: already-mapped objects, expected objects and observed objects. As we
have been already referring to during this chapter, the list of already-mapped objects
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contains all the objects that have been detected in the previous mapping sessions.
An object of the already-mapped object list becomes an expected object when it was
already mapped from the current robot pose and its mapped position enters the frustum
of the camera, ci ∈ F , where ci refers to the centroid of the object and F denotes
the frustum defined by the vertical and horizontal angles along with the minimum
and maximum detection distances of the camera. Finally, the list of observed objects
contains all the objects that have been perceived during the current mapping session.

As the robot moves, the observed objects are registered. When the mapping
session has finished, the register of expected objects is compared to the observed
objects detected during the session. In this process, several situations can appear: an
expected object was observed in the current mapping session, an expected object was
not observed or the observed object was not expected and seems to be new. In this
section we will tackle the first two situations, while the addition of new objects will be
presented in the next section.

If an expected object has been observed again, it means that the object has remained
or gone back to an already-mapped position and it will be more likely to find that
object in that position in the future. This implies that the object has to be marked as
active and its persistence probability should be increased. The persistence probability
of an object is increased when it has been observed again according to:

p(oi)m = s(cm
i , cm−1

i )p(oi|Ik) + ξ + p(oi)m−1

2 , (6.1)

where s(cm
i , cm−1

i ) refers to the similarity between the centroid position of both de-
tections according to their Euclidean distance, p(oi|Ik) is the detection confidence of
the object detector, ξ is a marginal value that relates to the false-negative rate of the
detector and p(oi)m−1 and p(oi)m refers to the previous and current persistence value
for the object, respectively. The similarity takes values between 0 and 1, where the
higher the measure is, the closer the two detections are; and it is computed as follows:

s(cm
i , cm−1

i ) = 1
1 + ∥cm

i − cm−1
i ∥2

. (6.2)

If an expected object is not detected again, it probably means that the object has
been moved to other place or removed from the environment. This implies that the
object has to be marked as inactive and the probability of finding it in that position
on the future should be reduced. In this case, there is not any detection and thus the
probability of detecting that object, p(oi|Ik), is zero and the new persistence probability
is decreased by simplifying eq. 6.1 as follows:
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p(oi)m = ξ + p(oi)m−1

2 . (6.3)

Given the differences in the path between the mapping sessions, it can also occur
that an already-mapped object is not included in the list of expected objects. This
means that the place where that object is has not been visited by the robot. In our
map adaptation method, the objects that were not visited are labeled as unknown in
their active parameter and the persistence value remains unchanged since it can not
be affected by the current mapping session.

6.2.2 Adding New Objects

When adapting the map over time, we consider that new objects can appear at new
places. The objects to add are those ones detected by the robot that do not correspond
to any of the expected objects. Before adding a new object, we compare the new object
also with the whole list of already-mapped objects to verify that the object was not
seen before from any other pose. If it was already mapped, a new connection is created
that links the current pose with the already-mapped object. Otherwise, the new object
is added and annotated with its persistence probability, class and cuboid. Given that
the object was detected in the current mapping session it will be also marked as active.
The persistence probability for newly added objects is calculated similarly to the initial
probability (first mapping session), as described in Section 4.2, according to which it is
assigned an average value since we do not know still if the object will tend to be static
or movable:

p(oi)0 = 0.5p(oi|Ik) . (6.4)

Updating the already-mapped objects and adding new objects are the two strategies
that we have designed to adapt an object-based pose graph over time. This strategies
are based on determining the active objects in each mapping session and learning about
the movability of single objects while the robot visits the environment.

6.2.3 Inferring Object Class Movability

The knowledge that the system acquires from single object movability can be used
to learn higher-level behaviors of the environment. Given that the system knows
how movable or static the different individual objects are, that information can be
abstracted to object classes. In this sense, if the robot observes multiple cups in
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changing positions, all the cups will have low persistence values and it could infer
that the object class cup is highly movable. This achievement, could seem naive since
it might be common sense and could be provided to the robot as prior knowledge.
However, it might not be so trivial in different environments and the prior knowledge
could not fit every situation while learning the information from the environment will
always succeed. For example, given common sense, we could say that cups are highly
movable. This is the case if the robot operates in cafeteria and cups appear in different
positions. On the contrary, if the robot operates in a household shop, cups are likely
to be static on the shelves and common sense will fail. Our method will succeed as, in
the first case, cups will have a low persistence value and the object class cup will be
identified as highly movable, and in the second case, cups will have a high persistence
value and the object class cup will be identified as mostly static.

In order to infer object class movability, we group the individual object probabilities
according to object class after each mapping session. This reveals valuable information
about object movability and allows to classify static and movable objects. Movability,
Mm,a ∈ [0, 1], is the measure that captures whether an object class, a, tends to be static
or movable given the information gathered until a mapping session m. Movability is
the complement of the mean object probability for all the objects that belong to an
object class, na, defined by:

Mm,a = 1 −
∑︁

i∈a p(oi)m

na

. (6.5)

Movability for different object classes is inferred by the robot based on its own
experience in the environment.

6.3 Experimental Evaluation
Real-world experiments are presented for map adaptation obtained with a mobile robot
traveling through an environment during a month. In the experimental evaluation, we
first analyze two mapping sessions and we see in detail how the persistence probability
evolves. Later, we evaluate all the mapping sessions showing the results for persistence
in the individual-object level and object-class level after the month of operating in the
environment. Then, we compare our system to binary classification and we include
a discussion where we compare our system qualitatively and quantitatively to other
approaches.
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6.3.1 Experimental Setup

Experiments were conducted in an indoor environment (15 x 6) m2 using a Turtlebot 2
robot equipped with an Asus Xtion Pro depth camera. All the processing took place
on a PC with IntelCore i7-6500U CPU@2.50GHz 12GB RAM. The robot gathered
information in 20 different mapping sessions during a month where 22 object were
present in the environment: 12 chairs, 3 sofas, 2 cups, 3 bottles, 1 plant and 1 laptop.
Images gathered by the robot during some of the mapping sessions are shown in
Figure 6.2. Red boxes in mapping sessions 1 and 2 highlight the changes in the
environment with regard to mapping session 0.

Figure 6.2 Sample of images captured by the robot in three different
mapping sessions. Changes as movement of chairs, presence of new objects
such as cups or bottles are introduced between mapping sessions (red boxes).

Regarding parameter description, in this experimental evaluation, the false-negative
rate, ξ is assumed to be 0.

6.3.2 Two-mapping-session Evaluation in a Non-static Envi-
ronment

This first experiment evaluates the performance of the mapping system and map
adaptation to the changes in the environment after a second mapping session. For
this purpose, two mapping sessions (m = 0 and m = 1) are evaluated in detail. The
initial map, generated in mapping session 0, is shown in Figure 6.3 (a) where the
traversable path in the environment is created and connected to the objects detected
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in this first mapping session. Figure 6.3 (b) shows the active elements for the second
mapping session which refers to the objects that were detected in that session. Finally,
Figure 6.3 (c) shows the resulting map after the two mapping sessions where all
the objects detected during the two mapping sessions are included. Every object is
represented using its cuboid, object class (color-coded) and the connections to the
poses where they were detected. In addition, we include the persistence probability of
each object on top of its centroid. These persistence probabilities are also included in
Table 6.1 to ease the reading.

Table 6.1 shows the detail of object probabilities. In the first mapping session,
m = 0, 14 objects were detected. Probability values closer to 0.5 belong to objects
that were reliably detected by the object detector and as the values decrease the more
uncertain the detector was. In the second mapping session, m = 1, 10 objects were
detected, 6 of them in a new position different from m = 0. The objects that were
not detected in the second mapping session are given a persistence value of 0 and
the objects that did not enter the frustum of the camera are listed with "-", since the

Figure 6.3 Result for two mapping sessions. In (a) the objects of the first
mapping session are included (10 chairs, a plant and 3 sofas). In (b), the
objects detected in the second mapping session are shown (9 chairs, some of
them were in a different position than in the previous mapping session and
2 sofas). Finally, in (c), the adaptation of the map to the new situation is
shown.
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Table 6.1 Object probability for the two first mapping sessions.

Object Type m = 0 m = 1 m = 0 & m = 1
0 Chair 0.4919 0.00 0.2460
1 Chair 0.4954 0.00 0.2477
2 Chair 0.4901 0.5956 0.5428
3 Chair 0.4961 0.6477 0.5719
4 Chair 0.4981 0.8087 0.6534
5 Sofa 0.4861 0.5414 0.5138
6 Sofa 0.4961 - 0.4961
7 Chair 0.4896 0.00 0.2448
8 Chair 0.4279 0.00 0.2139
9 Chair 0.4733 0.00 0.2366
10 Plant 0.4785 - 0.4785
11 Chair 0.4856 0.00 0.2428
12 Chair 0.4864 0.00 0.2432
13 Sofa 0.4904 - 0.4904
14 Chair 0.4975 0.4975
15 Chair 0.4978 0.4978
16 Chair 0.4787 0.4787
17 Chair 0.4983 0.4983
18 Chair 0.4030 0.4030
19 Chair 0.4980 0.4980

system does not know if those objects were present in the second mapping session.
When combining the two mapping sessions, m = 0 & m = 1, for the objects that
were not detected in the second mapping session (inactive), the system decreases their
probabilities. For the objects that were detected in both mapping sessions, the system
increases their probability and finally, for the objects that were not visited in the
second mapping session the probability remains.

6.3.3 Long-term Inference of Object Movability

After validating the performance of the proposed method for two mapping sessions,
we want to validate the map adaptation after visiting 20 times the environment. The
resulting map from each mapping session is used as the initial map for the next mapping
session and each map contains all the objects detected until that moment along with
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their presistence probabilities and active parameter. The initial map (first mapping
session) and the resulting map after 20 mapping sessions are shown in Figure 6.4 (a)
and (b), respectively. The active map for the last mapping session (objects present
in that mapping session) is shown in Figure 6.4 (c). In that mapping session, the
robot detected 3 sofas, 3 chairs and a plant. In addition, if we define that a static
object should have a persistence probability higher than 0.5, we can obtain the static
map only containing the objects that exceed this value, as shown in Figure 6.4 (d).
The objects that the robot would consider static after including the complete set of
mapping sessions are: the 3 sofas, the plant and three chairs, which corresponds to the
elements that were not moved during the experiments.

Updating object probabilities during 20 mapping sessions results in a polarization
between the objects that have not being detected in most of the sessions (movable
objects) and those that remain for almost all the sessions (static objects). As shown in
Table 6.2, object movability is scaled in a realistic fashion for an office environment
and the robot has effectively learned which objects are more movable (higher values of

Figure 6.4 Results after 20 mapping sessions and the adaptation in the
environment. Figures in (a) and (b) show the resulting map for the first
and last mapping sessions respectively, (c) shows the active elements for the
last mapping session and (d) shows the objects that are learned as static
after the 20 mapping sessions.
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movability). The evolution of movability within all the mapping sessions is shown in
Figure 6.5.

Table 6.2 Movability according to object class.

Object class Movability
Bottle 0.8765
Cup 0.8302

Laptop 0.7516
Chair 0.7343
Plant 0.3007
Sofa 0.2319

Figure 6.5 Evolution of the movability for each object class during the
mapping sessions.

6.3.4 Comparison to Binary Classification Methods

Comparison to binary object classification is included to further evaluate the perfor-
mance of the method. Binary object classification identifies objects as movable or
static. Most of the approaches that use binary classification are meant to map the
static objects and discard the movable ones [112, 167, 26]. In order to replicate this
behavior, only the objects that have been labeled as active or unknown for all of the
mapping sessions are included in the resulting map since they are supposed to be
static. Figure 6.6 (a) and (b) show the resulting static map for binary classification and
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the static map of the proposed method after evaluating the complete set of mapping
sessions, respectively.

Figure 6.6 Comparison of object classification according to the movability
of objects between the binary classification method (a) and using the
proposed method (b) after evaluating all the mapping sessions.

As shown in Figure 6.6, the binary classification identifies three objects as static (2
sofas and a chair) and our method identifies 7 objects as static (3 sofas, a plant and 3
chairs). Binary classification overlooks static objects just because they were not detected
in one mapping session. An error in the detection is propagated to the classification,
like the case of the third sofa and the plant, that were not moved during the mapping
sessions. Binary classification obtained a 42.85% of successful static objects mapped in
contrast to the 100% of the method proposed. Therefore, robustness is increased in
our method thanks to employing the proposed object movability calculation in object
classification. In addition, binary classification can just infer about static and movable
objects, but it does not give any insight in the degree of movability of the objects.

6.3.5 Discussion

Quantitative results of the proposed method and comparison to binary classification
have been presented in this experimental evaluation. Comparison to other methods
that define the movability of the environment elements is not appropriate given that
those works map the environment using features instead of objects. Although both
methods pursue the same objective, as they do not use equivalent information, methods
based on feature descriptors cannot be applied to objects. Therefore, here we provide
an extensive discussion on how our method presents a contribution in the light of these
prior works.
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Feature-based approaches [10, 31, 114] gather information from the salient regions
of images, scans or point clouds. Features can be merged, removed or assigned a
probability that could be registered for dynamic environments, but the meaning of
these features is not easy to transfer to the real world. Features represent an abstraction
level that allows to know which regions of the environment are prone to changes, but
they need a second step to determine which elements are located in that region to gain
environment understanding. In contrast, object-based approaches implicitly provide
environment understanding, since changes are directly associated to objects. They also
share the advantages of feature-based approaches, as they determine the regions of the
environment that change more.

Although it was not possible to compare to any other specific method, the mov-
ability of objects can be calculated with other well-known methods, such as Bayesian
filtering [132]. Here we briefly discuss the comparison of our method with a standard
Kalman filter [42]. Kalman filters can estimate the belief of a specific object remaining
static or being movable. As proposed for our method, object class movability can
be calculated by grouping the objects probabilities (or beliefs) for each object class.
Kalman filter and our method can be compared through the results obtained regarding
object class movability as shown in Figure 6.7. Our method (orange) and three instances
of Kalman filter (blue) are compared for a static object and a highly movable object.
The process model for the Kalman filter (defined according to [153] Section 3.2) is
initialized with µ0 = 0.5 and Σ0 = 0.2, and it is assumed to be static if measurements
are not received (µt = µt−1 and Σt = Σt−1). The measurement model is defined by
each new observation and the measurement noise covariance, Rt. The results show that

Figure 6.7 Comparison of object movability between the Kalman filter
and our method for a sofa and a bottle.
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noisier measurements (higher Rt) lead to a slow evolution of object movability, being
more difficult to distinguish between static and movable objects. On the contrary,
more precise measurements (lower Rt) lead to a more polarized estimation of object
movability, especially for movable objects. Our method performs similarly to a Kalman
filter of Rt = 0.2 for increasing movability (bottle). However, our performance for
static objects is increased (sofa), since the system infers faster that the object is static.
For these reasons, we conclude that our method performs better than a simple Kalman
filter for the task of object movability estimation.

Some advantages can also be found regarding the resulting map. In our method,
object probability and active objects are maintained through the different mapping
sessions resulting in an improvement compared to other works. Active elements for
each mapping session are included, as for [99, 25]. Also the static and dynamic maps of
the environment, as for [163, 68]. Comparing the different representations, we can say
that the resulting map for the proposed method gives more complete and representative
information of the environment than other state-of-the-art methods.



7
Localization and Path Planning in
the Hybrid Map

Localization and path planning are two of the key tasks that a map representation
enables and they play an important role in robot autonomy. Both tasks have been
extensively researched by the robotics community from a topological, metric or combined
perspective. In this chapter, we present localization and path planning methods based
on the proposed hybrid map.

Localization is the process of knowing and updating continuously a robot position
with regard to a map of the environment based on sensor information. Localization
is key for autonomous navigation in an environment as otherwise the robot can get
lost or move in wrong directions. The localization problem highly depends on the
knowledge available initially. Three types of problems are distinguishable according
to the difficulty of the problem [153]: position tracking, global localization and the
kidnapped robot problem. Position tracking assumes that the initial robot pose is
known and consists in robustly tracking that position while the robot moves. In global
localization, the initial pose of the robot is unknown and the robot has to identify
and track the most promising areas in the environment until a convergence is found.
Finally, the kidnapped robot problem is a variation of global localization in which
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the robot can be moved to other point in the environment and it has to detect and
overcome this change.

Once the robot has a good estimate of its pose in the environment, it can perform
higher level tasks whose performance depend on that estimation. An example of these
tasks is path planning, that consists in calculating the path to reach a goal from the
estimated current robot position. Path planning should take into account the global
path that drives the robot from the current position to the goal position and local
perceptions to avoid colliding with walls and other obstacles. In addition, it could
also notice changes in the terrain and other factors that may affect the performance of
robot path planning. In order to deal with a global path and local perceptions that
may vary the path, path planning has been classically approached as twofold: global
path planning using the map of the environment that determines a first path to follow
and local path planning that includes variation to the path according to the local
perceptions of the robot.

In this chapter, we are presenting a topological localization (position tracking)
method that combines information from different components of the hybrid map and
a fine-grained metric localization (global localization) that uses the 3D metric maps
to estimate robot pose in non-static environments. Regarding path-planning, we are
presenting a hybrid global path planning method that combines information from
several components of the hybrid map and also different path planning strategies.

7.1 Topological Localization in the Hybrid Map
Topological localization refers to the process of knowing and updating a robot position
within a topological map structure. For topological localization, nodes of the topological
map correspond to the possible robot poses. Therefore, pose estimation will be as
coarse as sparse the topological map is. Denser topological representation will lead to
a more geometrically accurate position, however, our aim for topological localization
is different from geometric accuracy. For us, it is important to have a topological
estimation of the robot location in addition to the metric one (as it is presented in
Section 7.2) because topological localization refers to a node that corresponds to a
distinguishable area of the environment where the robot will be able to identify different
elements and act differently. For example, in the coarsest level, topological localization
could serve to distinguish in which room the robot is. If the robot is in a corridor, a
living room or a study room, it could act differently independently of its metric pose.
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Our topological localization is approached as a position tracking problem in which
the initial position (node) of the robot is known prior to localization. Then, the purpose
of the algorithm is to robustly track the robot while it moves in the environment. As
we will see later, we have also developed a fine-grained metric localization that could
provide the initial pose for the topological localization, and the later will be mainly
used when the robot is moving through planned paths in the environment.

Our hybrid map contains several topological maps and knowing where the robot
is in the different components decreases the localization uncertainty and may help in
situations where the robot may get lost. In addition, external semantic information such
as scene recognition can be used to enhance the performance of certain components.

In this section, we present an approach to robot topological localization in static
environments based on the hybrid map proposed in this thesis. The system exploits
topological, semantic and geometric information in order to estimate the most likely
nodes in different components of the hybrid map. In addition, the estimations obtained
for some components are then used to improve the estimation in other components.

We approach topological localization from a probabilistic perspective based on
hidden Markov models (HMMs). A HMM is a probabilistic Markov process in which
the states to estimate are unknown or hidden. Its aim is to estimate the distribution
of probability of the hidden states based on the available information, which is the
previous state of the system and its observable outputs or measurements.

In the following, we are going to briefly summarize the related work regarding topo-
logical localization in static environments. Later, we will summarize the components
of the hybrid map included in the environment model used for estimation and present
in detail the proposed localization method in each component and how components
can benefit from each other. We will finish the section about topological localization
with an experimental evaluation of the approach.

7.1.1 Related Work

Robot localization, including topological approaches, has been widely researched by
the robotics community for the last decades. According to [139], there are three types
of approaches to the topological localization problem: structure-based methods that
represents the environment as a topological map and predicts robot pose by finding
the sequence of observations and transitions that best matches the structure of the
map [1, 11, 35, 41, 144, 168, 184]; image-based methods that model the environment as
a database of images linked to locations [5, 7, 20, 29, 158, 166]. They use image retrieval
techniques to identify the database images most relevant to the query, which are then
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used to estimate the pose of the robot; and, learning-based methods that represent the
scene by a learned model, which either predicts matches for pose estimation or directly
regresses the pose [6, 107, 123].

Regarding structure-based approaches that rely on predicting robot pose based on
the map of the environment and current transitions and observations, Bayesian filters
have been widely used. Cassandra et al. [35] apply a Markov process to represent the
belief state of the robot over topological nodes. The observations used in the prediction
are walls, doorways, open areas and unknown. HMMs are also used in [144] to infer
current robot location by comparing the mapped Generalized Voronoi Diagram (GVD)
with the observations. The comparison is performed by a geometric descriptor of the
GVD meet points based on emanating edges and their angles and, distance to obstacles.
In [184], Zhu et al. exploit the landmark sequences of steady objects using a second
order HMM. Common objects are used as landmarks and the occurrence order allow
to match the current location of the robot to the topological map. In [1], a simple
linear classifier and HMMs are used to determine the floor of a building where the
robot is and identify two motion patterns: within-floor motion and motion between
floors through WiFi signals. This method defines different transition matrices for the
HMM for inter and intra level motion. In [168], pipe network localization includes a
measure of the distance traveled in the HMM. The topological map contains a node
for each pipe junction and observations are based on distance traveled and the number
of exits in the current junction.

Different approaches for image-based methods have been also proposed. Ulrich et
al. [158] built a database where images are associated to the topological adjacency map
of the rooms of an apartment. Given color images, topological localization consists in
identifying the most similar image to the observation. For that purpose, each color
band is analyzed separately in oder to determine the best match and a voting scheme
is used to select the current location. In [166], a coarse-to-fine strategy for topological
localization is presented where global and local features are computed from the input
image. Global features are used for coarse localization to select a set of promising
locations. Then, local features are used to make the final decision. In [20], sets of color
histograms are grouped according to their location. Histogram matching is performed
to determine the best match by treating each color band separately.

Some approaches have benefited from the advantages of both, structure-based and
image-based methods [12, 50, 102, 121, 172]. In [172], topological localization is first
performed through feature matching in order to select promising locations. Then,
particle filters are used to precisely determine the robot location within the promising
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locations through metric information. SeqSLAM++ [121] is based on the well-known
method SeqSLAM [115] in which image sequences are compared to a reference image
to predict robot location. One of the improvements included in SeqSLAM++ is the
combination with a Markov process in order to select a set of promising robot positions
before applying image matching. Similarly, in [50] HMM are used to exploit temporal
look-ahead by selecting promising candidate images to narrow the best match search.

Recently, approaches for topological localization using deep learning have gained
importance. In [6], Convolutional Neural Networks (CNN) are used to calculate
descriptors for images and perform descriptor matching. Similarly, in [107], CNNs are
used for extracting semantic information (objects and rooms) and room inference.

In this section, we present a structure-based approach to identify the most promising
location of the robot in two components of the hybrid map through HMMs. Our final
result could be considered a coarse-to-fine approach since the estimation of the higher
level component (rooms) influences the precise estimation within the rooms. In the
same spirit as [168], we use metric information in the prediction process in addition to
topological and semantic data.

7.1.2 Localization in the Object-based Pose Graph

Topological localization in the object-based pose graph has been approached using
a HMM as state estimation. As explained before, HMM is a probabilistic discrete
estimation method that can be considered as the simplest Bayes filter. In this case, we
use the observations and transitions of the robot to estimate the most likely node for
the robot. Objects are used as observations and an initial observation probability is
built from the objects linked to different pose nodes. Transition probability is initially
defined according to the connectivity of the pose graph. In addition, we reestimate the
transition probabilities after each observation. Figure 7.1 shows the flowchart of the
proposed method. First, the HMM is initialized by defining its parameters A, B and π

according to the map of the environment (these parameters will be described later in
this section). Then, every time that a new observation is received the system calculates
the state probability distribution that reflects the most likely pose nodes for the robot
location. Observations contain the probability distribution of different objects.

Robot localization requires sensor information to match the current observation of
the robot with the nodes of the map. In the same way, the nodes of the topological
map have to be linked with the observations registered from them. For this reason we
are using the object-based pose graph to estimate the node where the robot is. The
object-based pose graph consists of two types of nodes: object nodes and pose nodes.
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Figure 7.1 Flowchart of the topological localization algorithm in the object-
based pose graph. First the HMM is initialized according to the information
stored in the map (connection between pose nodes and objects detected
at each pose node) and the robot known initial pose. Then, every time
the robot receives a new observation, where the distribution probability
of different objects is given, the system calculates the state probability
distribution or forward probability. For the second a subsequent observation
a reestimation of the transition probability is performed prior to state
estimation. In the state probability estimation step, we have represented
the probability of each pose node according to its size. The bigger, the most
likely that state is.

Pose nodes refer to different poses of the robot and they are connected between them
through feasible paths. In addition, pose nodes are connected to the object nodes that
were detected from them. This relation between pose nodes and object nodes allows us
to estimate the current pose node given the observations captured by the robot sensors.
In this case, the observation captured by the robot consists in RGB-D images from
which object entities have been extracted through the object detector ResNet-101 [75].

A localization algorithm based on hidden Markov models is applied on top of the
object-based pose graph to determine the probability of being at each node of the
map. HMMs are used as they offer a robust and efficient solution for the probabilistic
definition of discrete representations. HMM is a probabilistic model used to characterize
systems where it is assumed that future states depend only on the current state, not
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on what occurred before. In a HMM, the system is assumed to have unobserved
(hidden) states. Although HMMs have been widely studied, it is one of the most robust
algorithms to manage discrete data probabilities, as the case of topological maps.

HMMs are commonly represented using the tuple λ = {Q, V, A, B, π}. Q refers to
the set of possible states, which we will call individually as xi. V refers to the set of all
possible observed values in each state. A, B and π will be described in detail and refer
respectively to the state transition probability distribution, the observation probability
distribution, and the initial state probability distribution.

The state transition probability distribution, A or p(xt | xt−1, ut, m), determines
the probability of transiting from a state xt−1 to a state xt given the motion model
of the robot ut and the map of the environment m. For us, states are the pose nodes
of the object-based pose graph. The transition probability A is a square matrix in
which the number of columns and rows corresponds to the number of pose nodes, N ,
and it is estimated according to eq. (7.1) based on the existence or non-existence of a
connection between state xi and xj in the object-based pose graph. If the connection
exists xj ∈ {priorsi}, ai,j is assigned to 1 and otherwise it is assigned to a very small
value, εA. The individual ai,j values of the state transition probability distribution are
then normalized so they all add up to 1 through the normalization factor η.

A =

⎡⎢⎢⎢⎣
a0,0 · · · a0,n

... . . . ...
an,0 · · · an,n

⎤⎥⎥⎥⎦ ; ai,j =

⎧⎨⎩ η if xj ∈ {priorsi}
η εA otherwise

. (7.1)

The formulation of the state transition probability depends only on the connectivity
of the underlying pose graph. We have also proposed a variation of the state transition
probability that also depends on a qualitative geometric coefficient based on the
expected and real orientations to see the objects from the pose nodes. The difference
between the expected orientation and real orientation was used to penalize transitions
according to plane quadrants. Small penalization was applied if expected and real
orientations belong to adjacent quadrants, large penalization was applied for opposite
quadrants and none for same quadrants. Further details of this variation can be
found in [69]. This heading penalization, wh, was then included in the state transition
probability:

ai,j =

⎧⎨⎩ η wh if xj ∈ {priorsi}
η εA otherwise

. (7.2)
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The observation probability distribution, B or p(zt|xt), refers to the probability of
observing a certain observation zt given a state xt. In this work, observations refer to
detected objects. B is a matrix in which the number of rows are the number of object
types, M , and the number of columns corresponds to the number of pose nodes, N .
The observation probability is estimated according to eq. (7.3) taking into account
the objects associated to each pose node of the object-based pose graph. If the object
zk was observed from pose node xi, zk ∈ {oi} where {oi} refers to the set of objects
associated to pose node xi, bzk,i is assigned to 1. Otherwise, bzk,i will be assigned
to a very small value εB. The individual bzk,i values of the observation probability
distribution are then normalized so they all add up to 1 through the normalization
factor η.

B =

⎡⎢⎢⎢⎣
b0,0 · · · b0,n

... . . . ...
bm,0 · · · bm,n

⎤⎥⎥⎥⎦ ; bzk,i =

⎧⎨⎩ η if zk ∈ {oi}
η εB otherwise

. (7.3)

The initial state probability distribution, π, determines the probability of being
at each state xi at the beginning of the localization process. As the initial position of
the robot is known, 1 will be assigned to the pose node of the initial estimation, x0̂

(current node and first pose node of the path to perform), and a residual value, επ, to
all other pose nodes:

π =
[︂
π0 ... πn

]︂
; πi =

⎧⎨⎩ η if xi = x0̂

η επ otherwise
, (7.4)

where η represents the normalization factor. If we were dealing with a global localization
problem, a uniform distribution would be used for π.

HMMs are the simplest Bayesian filters and can be applied through different
implementations. In this work, a simple forward algorithm is used in which the forward
probabilities are calculated as the posterior probabilities. Forward probabilities α are
calculated as the probability of being at state xi given the observation zt, p(xi|zt).
Forward procedure is iterative and new probabilities are calculated at each time t.
Different expressions are used to calculate the forward probability distribution for t = 0
and the subsequent estimations since the initial probability distribution π is only used
in the first case:

α0(i) = p(xi|z0) = η π bz0,i p(z0) , (7.5)



7.1 Topological Localization in the Hybrid Map 111

where η is the normalization factor, p(z0) the probability of the first received object
and bz0,i the probability of having perceived that object class given each pose node
xi. The probability of the perceived object, p(z0), is related to the certainty of the
detection provided by the object detection method. The probability distribution α0(i)
provides the first estimation for all the pose nodes of the object-based pose graph and
the most likely pose node, Xt will correspond to the maximum value obtained in α0(i)
using the the maximum a posteriori (MAP) estimate:

Xt = argmax
i

(α0(i)) . (7.6)

Forward probabilities for subsequent pose estimations, t > 0, depend on the
transition probability between two nodes and the prior probability of each node:

αt(i) = p(xi|zt) = η (
N−1∑︂
j=0

αt−1(j) aj,i) bzt,i p(zt) , (7.7)

where η is the normalization factor, αt−1(j) the forward probability distribution
obtained for the previous time step, aj,i the transition probability from node xj to
node xi, p(zt) the probability of the received object and bzt,i the probability of having
received that object class given each pose node xi. As calculated for α0, the estimated
location of the robot will correspond to the one with the largest probability, eq. 7.6.

A reestimation procedure is also implemented in order to improve the transition
probability distributions after each observation. The new value for each state transition
ai,j is calculated from every previous forward probability αt−1(j), its prior state
transition probability ai,j and the probability of receiving the observation that occurred
in that state, bzt,j:

New ai,j = η
N−1∑︂
j=0

αt−1(j) ai,j bzt,j , (7.8)

where η refers to the normalization factor of the probability distribution.
Reestimation of the state transition probability adjusts the method to the current

state of the robot given the last observation and the probability of having that
observation at each state. As we will see later, the reestimation of the transition matrix
has a positive impact in the final state estimation.

The explained method allows us to estimate the robot location regarding the pose
nodes of the object-based pose graph. In the following section, we will see how this
method can help in the estimation of the robot location in other components of the
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hybrid map. Results will be then shown, both, for this method on its own and the
joint method on the hybrid map.

7.1.3 Localization in the Topological Map

Localization in the topological map consists in determining the most likely room in
the environment given robot observations. As a reminder of the topological map, it
consists of supernodes (rooms) that are connected through transitions (doors). Each
supernode is associated with a class or scene type and all the elements of the other
components that belong to that supernodes: objects, poses, etc. In this sense, we
approach localization in the topological map as a combination of two of its main
attributes: scenes and poses. Figure 7.2 shows the flowchart for topological localization
in the topological map. Supernode probability is computed through the estimation
of the scene type and the most likely pose nodes given an observation. The observed
scene type is compared to the scene type stored for each supernode and the probability
of the pose nodes is grouped according to the supernode they belong to.

Through a scene recognition algorithm [77] we can estimate the probability for each
scene type given the current observations of the robot. Given that each supernode has
been previously associated with a scene type, comparing the sensed scene with the
stored ones for each supernode gives a first estimate of the most likely supernodes for
the robot location.

In addition, as we have seen in the previous section, we already have some informa-
tion of the probability of finding the robot in each pose node of the object-based pose
graph. As we know which pose nodes belong to each supernode, we can accumulate
the probability of each single pose node according to supernodes. This will lead to a
new probability distribution for the supernode, p(si | x), that is built according to:

p(si | x) =
N−1∑︂
j=0

p(xi̇ | zt) , (7.9)

where xi̇ refers to the pose nodes that belong to supernode si.
We can merge scene probability, p(si | ξ) where ξ represents the probability

distribution obtained for the sensed scene, and pose nodes probability, p(si | x), for
each supernode in order to obtain the probability distribution of the supernodes:

p(si) = η p(si | x) p(si | ξ) , (7.10)

where η is the normalization factor between all the supernodes probabilities.
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The new enhanced probability distribution for supernodes can be propagated back
to the object-based pose graph level:

p(xi | zt, si) = p(xi | zt) p(si)
p(si | x) , (7.11)

where p(xi | zt, si) refers to the pose node probability once the supernode information
is added; p(xi | zt) refers to the original pose node probability distribution also referred
as α(i); p(si) refers to the final supernode probability distribution and p(si | x) to
the supernode probability distribution only taking pose node information (not scene
information) into account.

This operation leads to an improvement also in the estimation of the pose node
where the robot is. Propagation maintains the probability distribution between nodes
of the same supernode but strengthens the nodes that belong to the most probable
supernode.

Figure 7.2 Flowchart of the topological localization algorithm in the
topological map. Scene probability distribution from a scene recognition
method and pose node probability distribution is combined to estimate
supernode probability. Given the observed scene and the scene stored in
each supernode from one side and the probability of each individual pose
node and the pose nodes that belong to each supernode, we can estimate the
most likely supernode for the robot location. Blue is used for the supernode
and pose nodes that belong to the kitchen and purple to the supernode and
pose nodes that belong to the corridor. The size of supernode probabilities
represent how likely they are (the bigger, the most likely).
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In this section, we have first seen the mathematical development to compute
supernode probability from pose node and scene probabilities. Afterwards, we have
shown how the computed supernode probability can be used to update the original
pose node probability. In the following, we see the experimental evaluation of the
proposed method.

7.1.4 Experimental Evaluation

We present experiments to evaluate both topological localization methods. First,
the topological localization algorithm for estimating the robot pose in the object-
based pose graph is presented. Since this method includes different steps and evolved
during the time of this thesis, the experiments show the original method and posterior
modifications. Then, the combined method for topological localization in the topological
map and the object-based pose graph will be evaluated. We will show the improvements
both in the topological map and the object-based pose graph due to the proposed
method.

Experimental Setup

The experiments in the object-based pose graph have been performed in a quasi-realistic
manner, as the robot was teleoperated through the environment while it was estimating
its pose. It is quasi-realistic because the observations of the robot were provided by the
user. On the contrary, experiments in the hybrid map were performed in a real-world
environment where the robot was teleoperated while the localization and perception
modules were autonomously running. Both experiments were performed using Mob-E
(a differential drive robot built at our lab), Figure 7.3 (left). For the experiments in
the hybrid map, Mob-E was equipped with an Asus Xtion Pro camera for perception.

Topological localization experiments were performed and published in a previous
version of the object-based pose graph that was called observation adjacency graph.
For this reason, the map presented in the following results differs slightly from the
object-based pose graph presented in Chapter 3. As a reminder, the object-based pose
graph consisted of pose nodes and object nodes. Pose nodes defined the trajectory
traveled by the robot and object nodes were connected to the pose nodes from where
the object was observed. On the other hand, the observation adjacency graph consisted
of object nodes that were connected to each other based on their adjacency. We decided
to modify the observation adjacency graph and convert it into a pose graph due to
the complexity in autonomously building the observation adjacency graph and the
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Figure 7.3 Mob-E mobile robot is shown in the left, as it is the robot
with which we performed the experiments. In the right, the correspondence
between the object-based pose graph and the observation adjacency graph
is shown. In addition, the environment and the observation adjacency graph
shown are the ones used in the first topological localization evaluation.

arbitrariness of the connections between nodes. Both graphs and the environment that
they represent are shown in Figure 7.3 (right). The object-based pose graph is shown
on top of the observation adjacency graph.

Evaluation of Localization in the Object-based Pose Graph

Experiments consisted in moving the robot through the environment and capture
the localization results according to the received observations. The impact of the
reestimation of the transition matrix and the inclusion of the qualitative geometric
coefficient, wh, is studied in two paths in the environment. The sequence of observations
for these paths are shown in Figure 7.4, one traversing the living room and the other
one moving from the bedroom to the bathroom.

To test the failures of the localization system and its recovery capacity, several
errors were intentionally introduced within the observations. The evaluated localization
cases are:
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• correct observations according to the path.

• missing one observation within the path.

• repeating one observation within the path.

• including one extra observation.

In addition, observations are provided as a probability distribution between the
different possible objects. None observation used in these experiments corresponds
100% to one observation type as we try to simulate the uncertainty found in real
perception systems.

Figure 7.4 Sequence of observations for the two evaluated paths. Blue for
the bedroom path and purple for the living room path.

First, we want to study the impact of the reestimation of the transition matrix
and the inclusion of the geometric coefficient in the calculation of the probability
distribution along a path. For this, we compare the probability of the ground-truth
node in the three situations: original, with reestimation and with reestimation and
geometric information. Figure 7.5 shows the probability distribution along the living-
room path. Each group of three columns refers to one estimation and each of the
columns refers to the original estimation, including reestimation of the transition
matrix and adding geometric information, respectively. In addition, in Table 7.1, the
quantitative results for the two paths and the overall improvement compared to the
original method, and the method with reestimation is presented.

As observed in the results, the probability for the ground-truth node always increases
when using geometric information and reestimation of the transition matrix, meaning
that the system is more certain that the robot is located in the right position. It is



7.1 Topological Localization in the Hybrid Map 117

Figure 7.5 Probability distribution for four observations along the living
room path. Light blue represents the original probability of the ground-
truth node, medium blue the probability including reestimation of the
transition matrix and dark blue the probability including the reestimation
and geometric information. Gray is used to represent the probability of all
the other nodes.

Table 7.1 Probability results for the correct nodes of living room and
bedroom paths when correctly executed.

Test α0 α1 α2 α3 α4

Living room
original 0.9301 0.4536 0.3911 0.4071

reestimation 0.9301 0.4874 0.5004 0.4765
geometric 0.9301 0.5192 0.6613 0.6845

improvement - 14.46% 69.08% 68.14%

Bedroom
original 0.9854 0.9592 0.8874 0.5765 0.7783

reestimation 0.9854 0.9689 0.9032 0.6016 0.8720
geometric 0.9854 0.9693 0.9083 0.6389 0.9213

improvement - 1.05% 2.35% 10.76% 18.37%

worth mentioning the transitions between α0 and α2 for the living room path and the
transition between α2 and α3 for the bedroom path. In the first case, the two first
observations received by the robot are chairs and the initial position of the robot is
surrounded by four chairs which will produce four different probability modes. As
two of the chairs are further, they will receive a lower probability and for this reason
the initial probability is not 0.25, as could be expected, but 0.45. In addition, since
the heading of the robot coincides with the required heading for the ground-truth
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nodes, the estimation using geometric information highly improves the prediction.
In the second case, the observation received by the robot is a door and the robot is
surrounded by two doors, the door to the corridor and the door to the bathroom. This
leads to a reduction of the confidence in the ground-truth node, however with the next
observation (a WC) the uncertainty is highly reduced again.

Up to now, the results presented concerned only the correct execution of the path
and sequence of observations. In the following, in order to test the robustness of the
system against detection errors, we are showing the results for the four mentioned
cases (correct execution, missing observation, repeating observation and including
observation). The results for performing these tests for the three evaluated methods,
original (or.), with reestimation (re.) and with reestimation and geometric information
(ge.), are included in Table 7.2. The results refer to the % of right goal probability, this
means that the last goal of the path is correctly estimated although the robot might
have gotten lost in between, notice that the higher the percentage the more robust the
system is; the % of middle error probability, this refers to bad probability estimations
in nodes that are not the goal of the path, notice that the lower the percentage the
more robust the system is; and the % of recovery, which refers to amount the middle
nodes error that the system has been able to overcome, notice that the higher the
value the more robust against failures the system is. If the localization system has not

Table 7.2 Overall probability results for the different types of tests for
living room and bedroom paths.

Test
% right goal
probability

% middle error
probability % recovery

or. re. ge. or. re. ge. or. re. ge.

Living
room

correct 100 100 100 0 0 0 - - -
miss 61.5 66.67 66.67 47.35 44.44 22.22 67.5 75 50

repetition 95.67 100 100 25.4 20 6.67 97.3 100 100
inclusion 59.31 66.67 100 27.9 20 20 61.33 66.67 100
global 79.12 83.33 91.66 25.16 21 12.16 75.37 80.55 83.33

improvement 15.85 51.67 10.56

Bedroom

correct 100 100 100 0 0 0 - - -
miss 96.67 100 100 28.22 25 18.75 93.25 100 100

repetition 87.33 100 100 26.67 12.5 0 85.67 100 -
inclusion 66.67 100 100 20 16.67 12.5 70.51 100 100
global 87.66 100 100 18.72 13.54 7.81 83.14 100 100

improvement 14.07 58.28 20.28
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miscalculated the probability for any middle node, the % of recovery is shown as "-"
because there was no need of recovery.

The most robust results were obtained for the localization method including ge-
ometric information and reestimation of the transition matrix as they obtained the
highest percentage of right goal estimations in both paths, the lowest percentage of
middle error estimations and the highest percentage of recovery after error.

With this experiment, we validate the positive effect that the reestimation of
the transition matrix and the inclusion of geometric heading information has in the
estimation of the location of a mobile robot in a topological map based on objects. In
the following experiment, we combine these results with localization in a higher level
map in order to observe the effect that the estimation of each level has in the other
and vice versa.

Evaluation of Localization in the Hybrid Map: Object-based Pose Graph
and Topological Map

Real-world experiments consisted in moving the robot through the environment while
it captures the objects observed and predicts its current location based on those
observations and the movement of the robot. In this evaluation, we want to show the
localization results both in the preliminary version of the object-based pose graph (the
observation adjacency graph) and the topological map. We will focus our evaluation in
comparison of supernode and node estimation if the information of the other component
is taken into account or not.

Figure 7.6 Environment for topological localization evaluation. The en-
vironment consists of three supernodes and multiple nodes that belong to
those supernodes.
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This experiment was performed at the University Carlos III of Madrid and consisted
of three rooms as shown in Figure 7.6: a classroom, a laboratory and a garage. In
Figure 7.6, it is shown the topological map of the environment and the observation
adjacency graph. Regarding the topological map, three different rooms are shown (each
identified with a color, blue for classroom, green for laboratory and yellow for garage)
connected through the transition nodes or doors marked in red. The observation
adjacency graph is also shown for the environment and we can see the nodes that
belong to each supernode.

First, we evaluate the influence of the inclusion of node information in the supernode
probability. As stated before, we are calculating supernode probability in a twofold:
using semantic scene information and combining the original node prediction of the
nodes that belong to each supernode. Figure 7.7 shows the probability distribution
for the supernodes while the robot moves in the environment. Each color is used for
a supernode type and the ground-truth supernode is included along the prediction.
Two columns are included for each prediction where the first column refers to the
prediction just using semantic scene information and the second one for the prediction
including also node estimation. Since the probability of the ground-truth supernode
increases at every iteration, the inclusion of node estimation leads to an improvement
in the certainty of the supernode prediction. It is remarkable that scene classification
errors are overcome, as the laboratory which at some instants was misclassified as a
classroom.

Figure 7.7 Probability distribution for supernode estimation using only
scene information and including also node estimation in the observation
adjacency graph. Yellow is used to represent garage probability, blue for
classroom probability and green for laboratory probability. The ground-
truth supernode over time is also included in the graph.
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Figure 7.8 Probability distribution for nodes of the observation adjacency
graph. The original probability (light blue) is compared to the probability
after backpropagation of supernode information (dark blue).

In addition, we want to evaluate the effect that the improved supernode estimation
has in single node prediction. As described before, we propagate the improvement
of the supernode probability to the nodes that belong to that supernode. Figure 7.8
shows the probability distribution of node estimation overtime. The estimation for the
ground truth node is represented in blue and gray corresponds to all the other nodes.
In the first column, in light blue, the original node probability is included and, in the
second column, in dark blue, the probability estimation after backpropagating the
supernode estimation is shown. The average improvement in node estimation including
backpropagation of supernode estimation for the ground-truth node probability is
7.72 %.

With this experiment we validate that topological localization in a hybrid map can
be improved thanks to the combination of the estimation in different components of
the map. Especially, we show how the estimation of supernodes (rooms) can benefit
from the estimation of individual nodes and individual nodes can benefit from the
estimation of the supernode.

7.2 Metric Localization in Non-static Environments
Fine-grained and precise localization is an essential capability for a mobile robot
operating in real-world environments since it represents a key factor for the autonomy
of the robot. Despite being researched for several decades, robot localization in the
real world still has many challenges, especially if the world is not static. Dynamic
environments are affected by moving and movable objects, things that can change
the appearance, as well as the change caused by external factors such as lighting or
seasonal changes. All these conditions increase the difficulty in localization.
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Among the changes that affect dynamic environments, we focus in this thesis on
objects that can be moved or may change their appearance. We will refer to these
environments as non-static. Changes in non-static environments can be challenging for
robot localization as the internal representation of the environment that the robot has
built no longer matches the current state of the world. This problem can cause the
robot to make wrong pose estimations or even get lost.

In this section, we present an approach to global robot localization in non-static
indoor environments but also static environments can benefit from our proposed
method. The system exploits metric and semantic information for pose estimation in
environments in which objects are movable or can change in their geometric appearance.
We use an environment representation based on a truncated signed distance field
augmented with semantic information estimated by the mobile robot. For localization
in the environment, we use a particle filter to estimate the pose of the robot.

In the following we are going to briefly summarize the related work regarding metric
localization exploiting semantic information in non-static environments. Later, we will
summarize the components of the hybrid map included in the environment model used
for localization and present in detail the proposed pose estimation and the experimental
evaluation of the approach.

7.2.1 Related Work

Several works have previously used semantics for metric visual localization in both,
static and dynamic environments. The inclusion of semantic information is useful in
static environments as it helps in pose disambiguation [181, 15]. In the work by Bavle
et al. [15], object semantics are included in probabilistic localization by comparing the
average semantic distance of a given object in the image with the mapped elements.

In the context of localization in dynamic and non-static environments, approaches
that use semantics in indoor environments have mainly focused on dealing with high
dynamics such as people moving in the environment [170, 73, 124, 103, 171, 175].
These approaches work in small environments where the robot or camera is always
facing to the same scenario and only small camera movements occur. Most approaches
eliminate dynamic elements and rely only on the static parts for pose estimation. In
the works by Xiao et al. [170] and Xu et al. [171], in addition to the localization
rejecting dynamic elements, a semantic map of the static elements is built. On the
contrary, approaches such as CubeSLAM [175] take into account dynamic elements
to improve pose estimation. CubeSLAM generates cuboids around objects and uses
bundle adjustment to optimize camera and objects poses. Cuboid dimensions and
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semantic types are used to compute measurement errors and improve camera pose
estimation. In addition, the semantics of static objects are also used in the estimation
process.

Works dealing with low dynamics, such as objects that are moved or change in their
appearance, have been mainly approached from a feature-based perspective [126, 45, 49].
In the work by Patel et al. [126], semantically enhanced features are used for pose
estimation. Images are firstly semantically segmented in an object level and then,
features are extracted for each detected object. Features can only be matched if they
belong to the same semantic type. Other works such as the work by Dayoub et al. [45]
and Derner et al. [49] assign weights to each feature according to their stability in the
environment. In the work presented by Stachniss and Burgard [146], laser information
is used to estimate robot pose in a non-static environment through a Rao-Blackwellized
particle filter. In that work, the robot collects non-static information of the environment
and pose estimation takes into account several configurations of the non-static parts of
the environment computed through clustering.

Localization in outdoor dynamic environments have been approached from multiple
perspectives: appearance-based methods that exploit image sequences [161, 162] or
navigation sequences [115] and methods that exploit semantics [147, 39]. Our work is
more similar to the later, especially localization systems where robot observations are
semantically labeled and both, static and movable elements are used for localization [147,
155, 131, 37, 39]. In the work by Toft et al. [155], localization combines feature matching
and semantic information. Similarly to Patel et al. [126], images are semantically labeled
and each feature is assigned a semantic type. They generate camera pose hypotheses
and assign a score to them according to the number of semantically-labeled matches.
Stenborg et al. [147] proposes a particle filter based on semantic localization in which
each pixel in the image and 3D point in the map are compared according to their
semantic type. In addition of using semantic information to filter dynamic elements,
Chen et al. [39] integrate the semantic information into a surfel-based map in order to
improve ICP matching in the context of SLAM.

In our work, we present a probabilistic localization algorithm for indoor environments
that includes semantic information in the estimation process, similarly to [15, 147].
Unlike most approaches for non-static indoor environments [45, 49, 126], we exploit
semantic segmentation for every pixel and 3D point in the environment. However,
we share with Dayoub et al. [45] and Derner et al. [49] a weighting method in the
estimation process. In the case of the previous works, each feature is weighted according
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to its stability. In our case, we implement a weighting method between metric and
semantic information, which can be associated with the persistence of objects.

7.2.2 Pose Estimation in Non-static Environments

Given an initial environment model, our approach estimates the robot pose from depth
and semantic information obtained from an RGB-D sensor. To this end, we use a
representation based on our hybrid map in which a whole truncated signed distance
field (TSDF) augmented with semantic information is implemented. Pose estimation
exploits directly the TSDF and its semantics. In this work semantics have been
manually added to the TSDF, however, given today’s semantic segmentation systems,
we could directly turn an RGB or RGB-D image into a semantically segmented image
in real time, for example, using Bonnetal [116].

The environment representation for this work is a global TSDF of the environment
augmented with semantic information. In order to build the global TSDF, we are using
the work of Zeng et al. [178]. As an extension to their work, we modify the approach
through the inclusion of a semantic value for each voxel. The semantic value indicates
the class of object that the voxel belongs to and it can only be assigned for surface
voxels.

The global TSDF will correspond to the merge of all the 3D submaps of our
hybrid map. In addition, the efficiency of the method would be highly increased if we
considered the structure of the hybrid map in the pose estimation (as the metric search
would be bounded to the room size instead of searching in the whole environment).
For this work, we decided to keep pose estimation in a global level for simplicity in the
algorithm. However, in a future line, we could implement a method to estimate pose
probability in several submaps and, after convergence, stick with the submap of the
highest probability.

Regarding localization, we use a particle filter [48] to estimate the pose of a ground
robot as they naturally deal with multiple hypotheses. Particle filters calculate a belief
over the robot pose using a set of weighted particles and each particle represents a
candidate robot pose. First, the particle filter predicts the pose of the robot based on
the odometry obtained from its wheel encoders. Then, a weight is assigned to each
particle that represents how well the surroundings of the particle match with the robot
observation. Finally, a new set of particles is created from the resampling of the old
ones, where the chances of survival of a particle is proportional to its weight.

We use a standard odometry motion model to predict the new pose of the particles.
The odometry motion model uses odometry measurements obtained by the wheel
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encoders of the robot to calculate the pose increment between xt−1 and xt. Given that
increment, we calculate the new distribution of the particles, p(x[k]

t | ut, x
[k]
t−1) according

to the model by Thrun et al. [153] where ut refers to the motion information.
We propose an observation model that takes into account depth and semantic

information of the environment to compute the particles weights. Each observation
obtained from the RGB-D sensor consists of a depth image and a color image. We are
transforming color images into semantic images by manually labeling each observation.
Through the observation model we can correct the weight of each particle so it refers
to how accurately that particle matches to the observation. In Figure 7.9, the global
flowchart of the correction step is included. Our correction step evaluates every pixel
of the observation for every particle. Firstly, the 3D pose x and corresponding voxel of
the pixel is calculated by backprojecting the pixel q =

[︂
a b

]︂⊤
that has a depth D(q):

x =

⎡⎢⎢⎢⎣
a−cx

fx
D(q)

b−cy

fy
D(q)

D(q)

⎤⎥⎥⎥⎦ , (7.12)

where a and b are the pixel 2D coordinates in the image and cx, cy, fx and fy are the
intrinsic parameters of the camera, assuming a pinhole camera model.

Then, the corresponding voxel and the pixel itself are compared in order to calculate
the pixel probability. Pixel probability depends on semantic and metric differences as
will be explained later. When all the pixels have been evaluated, the particle weight is
computed. This process iterates for all the particles in the particle filter so we can then
resample the particles and identify the most promising areas for the pose estimation.

From a more formal perspective, through the observation model, we update the
particle weight w each time a new observation zt is received taking into account the
pose of each particle x

[k]
t and the map of the environment m. We calculate the weight

of the particle as the product of the probability obtained for each individual pixel i of
the observation zt, where N represents the total number of pixels in the observation:

w[k] = η p(zt | x
[k]
t , m) = η

N−1∏︂
i=0

p(zi
t | x

[k]
t , m) , (7.13)

the weights of the particles are then normalized so they all add up to 1. The constant
η represents the normalization factor.

In a similar spirit as beam models for range finders [65] where the observation model
for a single beam is a mixture of four densities (see [153], page 157, eq. (6.12)), we calcu-
late the probability for every pixel as the mixture of two probabilities: psdf (zi

t | x
[k]
t , m)
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Figure 7.9 Flowchart of the proposed metric localization method. The
system evaluates each pixel of the observation for every generated particle.
Given the particle pose, the 3D position of the pixel is computed and
the resulting corresponding voxel is compared to the pixel itself. That
pixel probability is calculated based on the semantic and metric differences
between the corresponding voxel and the pixel. This process iterates and
calculates the particle weight for every pixel and every particle.

accounting for metric information and psem(zi
t | x

[k]
t , m) for semantic information. The

two different probabilities are mixed by a weighted average defined by the weighting
factors zsdf and zsem with zsdf + zsem = 1. We calculate the observation model at a
pixel level as:

p(zi
t | x

[k]
t , m) =

⎛⎝zsdf

zsem

⎞⎠⊤⎛⎝psdf (zi
t | x

[k]
t , m)

psem(zi
t | x

[k]
t , m)

⎞⎠ , (7.14)
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with i referring to each pixel of the sensor data.
As mentioned before, we directly exploit the TSDF to calculate the metric prob-

ability psdf (zi
t | x

[k]
t , m), since it directly represents the distance of the point to the

nearest surface. Given the 3D point obtained for each pixel i, we can calculate its
corresponding voxel in the model representation. The sdf value of the corresponding
voxel is retrieved, denoted as sdfi. The distribution psdf (zi

t | x
[k]
t , m) has a maximum at

sdfi = 0, what means that the point is already a surface. The variable σsdf represents
the standard deviation for metric probability. We compute the likelihood for the metric
information as:

psdf (zi
t | x

[k]
t , m) = exp

(︄
− sdf 2

i

2σ2
sdf

)︄
. (7.15)

For the likelihood given the semantic information, we introduce the term semantic
distance Si. Given a pixel with a certain semantic class, the semantic distance refers
to the Euclidean distance between the position of the 3D projection of that pixel and
the position of the closest voxel in the model representation that belongs to the same
semantic class. Similarly as before, psem(zi

t | x
[k]
t , m) takes the maximum value for

Si = 0, which means that the corresponding voxel for that point already belongs to
the desired semantic class. The standard deviation for semantic probability is denoted
by σsem. We calculate the likelihood of the semantic cue as:

psem(zi
t|x

[k]
t , m) = exp

(︄
− S2

i

2σ2
sem

)︄
. (7.16)

After correcting particle weights, we resample the particles and otherwise run a
standard Monte-Carlo localization approach [48].

7.2.3 Experimental Evaluation

Experimental Setup

We have performed the experiments in a real world environment using a Turtlebot 2
robot and an Asus Xtion Pro RGB-D sensor. Figure 7.10 shows the resulting TSDF
augmented with semantic information that will be used as model representation for
the experiments.

Regarding the weights of the observation model, we give equal importance to metric
and semantic information, zsdf = zsem = 0.5. Another promising approach could be
varying the weight according to the change in geometric appearance for different types
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Figure 7.10 TSDF with semantic information of the real world used for
the experiments: (a) shows an illustrative view of the TSDF with RGB
information, (b) and (c) two views of the TSDF with semantic information.
Color-coded semantics corresponds to the included table.

of objects or based on the semantic class of the object. In that case, weights could be
calculated as zsdf = 1 − µ and zsem = µ where µ represents the change in geometric
appearance of the object class, as calculated in Chapter 6.

Our evaluation includes comparisons to MCL taking only metric and only semantic
information into account. For metric-only estimation, we assign zsdf = 1 and zsem = 0.
On the contrary, for semantic-only estimation, we use zsdf = 0 and zsem = 1.

Performance in Static Environments

The first experiment evaluates the performance of our approach in static environments
to support that the combination of metric and semantic information improves robot
localization even in static environments. For this experiment, we run the localization
algorithm for different paths without including any change in the environment compared
to the initial TSDF.
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Figure 7.11 Result for the estimation given a single observation in the static
environment: (a) shows the depth and semantic images for the observation
and the TSDF of the environment with a red square highlighting the
observed area; (b), (c) and (d) show the estimation for metric information,
semantic information and the combination of both, respectively. The ground
truth is represented with a red column.

First of all, we show how the estimation of the pose for a single observation
varies when considering only metric information, only semantic information, and the
combination of both. Given the observation shown in Figure 7.11 (a), the metric-based
estimation is shown in Figure 7.11 (b), the semantic-based estimation in Figure 7.11 (c)
and the estimation combining both sources of information in Figure 7.11 (d). For this
experiment, we evaluated the observation model on a dense 3D grid at every 10 cm
and π/8 rad. For each of the grid positions, we are representing in Figure 7.11 the
maximum weight of the orientations evaluated. The ground truth position is shown in
red. The metric-based model is multimodal as many places in the environment could
match the proposed observation. The semantic-based model identifies two modes that
correspond to the two book shelves with books that are in the environment. Finally,
the combined estimation benefits from both models and the belief is peaked around
the ground truth for the observation.
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Figure 7.12 Quantitative evaluation of localization in static environment.
In the left, position error (m) w.r.t. distance traveled in the static environ-
ment for the three studied cases: metric (sdf), semantic (sem) and combined
(sdf+sem). In the right, position error (m) w.r.t. number of particles in the
particle filter for the same three studied cases.

Results for a path in the initial environment show quantitatively how the position
error differs between the three cases: metric (sdf), semantic (sem) and combined
(sdf+sem). We have initialized the particle filter with 3000 particles and run the
experiment 5 times in order to obtain average results. Figure 7.12 (left) shows how the
mean error evolves while the robot executes the path. Once the filter has converged,
our approach (sdf+sem) obtains an average error of 13.1 cm with a variance of 1.2 cm.
The average results after convergence are summarized in Tab. 7.3. The estimation
using only metric information fails to estimate the pose in one execution and thus it
obtained high error values. If the erroneous execution is overlooked the mean error
would be 0.24 m, still being twice as large as for our approach. Figure 7.12 (right)
shows the evolution of position error as we vary the number of particles involved in the
estimation. Our approach requires less than 1000 particles to obtain an average result
of 0.2 m, whereas metric-based and semantic-based estimation require approximately
4000 and 3000 particles, respectively.

Table 7.3 Mean error and variance in static environment.

Method Mean error [m] Variance [cm]

sdf 0.4371 59.31
sem 0.1894 2.50
sdf+sem 0.1309 1.23
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Performance in Non-static Environments

The next set of experiments has been conducted to support that our approach suc-
cessfully deals with changes in the environment thanks to the combination of metric
and semantic information. For this experiment, we run the localization algorithm
for different paths of approximately 10 m of length in different configurations of the
environment. Different configurations involve objects that changed in their appearance
or objects that were moved (removing mapped objects and adding new objects). Some
examples of these changes are shown in Figure 7.13.

First of all, we want to evaluate the convergence capability with movable objects of
each of the evaluated cases: metric (sdf), semantic (sem) and our approach (sdf+sem).
For this experiment, we have initialized the particle filter with 3000 particles for the
three cases and we have executed 3 times each of the 4 different paths that are involved
in this experiment. Figure 7.14 (left) illustrates how the position error evolves while
the robot moves. We can distinguish an initialization phase until the distance traveled

Figure 7.13 Examples of changes in the environment. The first row
corresponds to scenes in the static environment. Second and third row
corresponds to different configurations of the environment including changes.
Objects that are no longer in the scene are marked in red and objects that
are new or have changed in their appearance are marked in green.
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Figure 7.14 Quantitative evaluation of localization in non-static environ-
ment. In the left, position error (m) w.r.t. distance traveled in non-static
environment for the three studied cases: metric (sdf), semantic (sem) and
combined (sdf+sem). In the right, the pose estimation for a path in the
environment with changes is shown. Ground truth and the estimation for
the three studied cases is included.

is approximately 1.75 m. During pose tracking, we can observe in the three methods
some increases in mean position error due to the non-static objects and changes. Our
approach (shown in blue) obtains a lower mean error during the execution of the paths
and it is more robust to changes as it always keeps a mean error close to 0.2 m. It is
worth mentioning the sharp change in error that takes place at a distance traveled
of approximately 6 m. At that point, the robot was about to enter in the last room.
First, it was observing an uncertain scene due to some changes, then entering the
room the robot faced the door (which offered geometrically consistent information)
and the uncertainty reduced. Once inside the last room, the new changes that the
robot was perceiving increase the uncertainty again. Figure 7.14 (right) shows the
estimation for one of the recorded paths. Our approach (blue) is the first to converge
to the ground truth and it successfully tracks robot pose along the path. Table 7.4
shows average position errors for the three cases after convergence. If we compare
these results with the ones obtained in the static environment, the mean position error
for our approach increases 1.46 times, for semantic-only it increases 1.92 times and for
metric-only it increases 2.16 times. In addition, mean position error for our approach
in the non-static environment is lower than metric-only error in the static environment.
This suggests that appearance changes in the environment have a low impact on our
method exploiting geometric and semantic information jointly.
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Table 7.4 Mean error and variance in environment with changes.

Method Mean error [m] Variance [cm]

sdf 0.5269 16.93
sem 0.365 7.31
sdf+sem 0.1912 2.47

In summary, our evaluation suggests that our method provides competitive lo-
calization with increased accuracy in non-static indoor environments. At the same
time, our method upholds the statement that the combination of metric and semantic
information is a key for real-world operation in static and non-static environments. As
mentioned at the beginning of this section, the efficiency of the proposed localization
method could be improved thanks to the hybrid map and it is something that we will
approach in the future.

7.3 Path Planning in the Hybrid Map
Hybrid mapping enables more efficient and versatile path planning strategies as the
information of different components of the hybrid map can be merged in the planning
stage or we can select the most suitable information for different planning strategies.
As an example, path planning in a hybrid map could serve to plan a path for an
object search task where the robot is told to move to the door of a certain room in
order to look for an specific object. In an under-review work, we propose a solution
to this problem based on the structure of the hybrid map proposed in this thesis. As
the reader might remember, our hybrid map relates places with supernodes in the
topological map and the edges of the topological map refer to the transitions between
places or supernodes. Since we are referring to an indoor environment, places simplify
to rooms and transitions between places to doors. In addition, the traversability graph
also includes the transition nodes. So, given the room to reach we can plan a path
using the traversability graph to obtain the optimal path to the door of that room. In
this simple path planning example, we use the traversability graph to perform path
planning but we require the topological map to define the precise goal to reach the
entrance of the goal room.

In the following, we are going to briefly summarize the related work regarding path
planning in hybrid maps and hybrid path planning. Later, we will see a more complex
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approach for hybrid path planning in the hybrid map and the experimental evaluation
of the proposed approach.

7.3.1 Related Work

Traditionally, hybrid path planning refers to approaches that tackle both global and
local path planning simultaneously. As we mentioned previously, global path planning
consists of finding the path that connects the starting position and the goal position
using an environment representation or map. In addition, local path planning deals
with perceiving the surroundings of the robot to make decisions of where to move next.
Considering only a global approach, path planning will not be robust against changes
in the environment [51, 182]. On the contrary, using only a local approach, path
planning is prone to lead the robot to local minima and not reaching the goal [51, 182].
Therefore, the combination of both approaches has been a traditional solution for
planning trajectories in environments with changes and neglecting the effect of local
minima. This traditional approach for hybrid path planning is mainly based on
computing a global path that the robot will follow while the local planner can vary the
path to increase the safety of the robot.

Some authors [51, 164, 177] benefit of global and local path planners by combining
A* method and potential fields method. A* algorithm generates the set of subgoals to
reach the goal and potential fields follows the pre-planned path smoothing the trajectory
and avoiding unknown obstacles. Similarly, in [40, 182], authors use A* algorithm for
global path planning and dynamic window approach for local path planning in order
to track the global path and avoid dynamic obstacles. In [47], path planning with
limited sensors capabilities is proposed. When the robot has sufficient information to
plan a global path, A* method computes the path and tangential escape algorithm
is used as local planner to overcome unknown obstacles. However, if there is a lack
of information, tangential escape algorithm will be run on its own avoiding obstacles
until there is enough information to plan a global path.

Thrun [151] proposed a hybrid metric-topological map in which path planning was
performed on the metric level or the topological level independently. For topological
path planning, Thrun proposed a graph search algorithm called value iteration. The
path was later optimized using triplet planning in order to generate feasible paths. In
this case, triplet planning is not a local planner since it does not use online information
of the environment but it has the same aim as it of a local planner.

Other authors have referred to hybrid path planning as the combination of different
path planning strategies based on the information of the environment or the task
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to perform. Differently from the previously mentioned approaches, in this case, the
combination does not consist of a global approach and a local one. Two global or two
local approaches can be combined to improve the performance of the robot. Foskey et
al. [64] propose a method based on generalized Voronoi algorithm in which a path is
search in the graph. Afterwards, every path segment is checked and in case of being
invalid (contains obstacles or gets too close to them) that segment is replaced with a
randomized planning towards the beginning of the next segment. In SmartPATH [36],
ant colony optimization and genetic algorithms are combined for solving the global path
planning problem. Firstly, optimal paths are calculated using ant colony optimization.
These paths are used as initial population for the genetic algorithm obtaining an
improvement in search space and time. Mac et al. [110] also propose an optimized
global path planning. In their case, Dijkstra algorithm is used to find a first collision-
free path and particle swarm optimization is applied to the pre-planned path in order
to generate a global optimal path with the focus on minimizing path length and
maximizing path smoothness. In [104], multi-resolution lattices are generated to model
the environment. High-resolution lattices are used in the vicinity of the robot and
the goal, whereas low-resolution lattices are used elsewhere. A modified version of A*
algorithm is used to plan paths in both lattice resolutions.

Finally, other works have also taken advantage of hybrid maps to perform more
efficient path planning. These approaches use different representations of the hybrid
map to contribute to the path planning strategy. Konolige et al. [90] presented an
approach to plan trajectories in a hybrid metric-topological map. The map consists of
a global topological map and local occupancy grids. In their work, the overall plan is
formed on the topological graph but the robot is commanded metrically within the
local grid. Dijkstra algorithm is used to compute the global path using the topological
graph and ROS navigation stack using A* algorithm computes the local path within a
given local grid. In [165], Wang et al. propose a three-level map containing a scene
level, a feature level and a metric level. A coarse-to-fine strategy is applied to compute
the path. A first global path is computed using Dijkstra algorithm in the scene level.
The features covered by the path can guide the movement of the robot using the
feature level. As several features are observable from different positions, this path is
optimized using again Dijkstra algorithm in the feature level. Finally, the metric path
is computed following the pre-planned path and optimizing the turning points for the
robot.

The approach that we are proposing in this chapter could be classified in the
last group, where hybrid maps are exploited to improve path planning performance.
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Differently from the methods mentioned above, our approach alternates between two
well-known path planning methods augmented with a local path planning algorithm.
Previous works, [90] [165], used the different components of the hybrid map to define a
coarse-to-fine path planning strategy. In our case, we take advantage of the components
of the hybrid map to define different path planning strategies. In the same spirit as [104],
we sought for a coarser path planning strategy when the robot is far from the goal and
finer when it is approaching the goal.

7.3.2 Hybrid Path Planning

Hybrid maps and hybrid path planning strategies allow to optimize robot trajectories
in terms of their performance and computation. We propose a hybrid path planning
method that uses low-resolution topological information for traveling long distances and
high-resolution metric information for precisely approaching the goal. As low-resolution
topological information we are using the traversability graph and as high-resolution
metric information the 3D submaps. In addition, we are using the information of doors
contained in the topological map to know when to change from one component to the
other. The traversability graph is used until the door of the room where the goal is
and the 3D submap of the room is used from the door of the room to the goal.

We refer to this method as hybrid path planning because we also combine path
planning strategies. A search-based strategy is used with the traversability graph and
a sample-based strategy with the 3D submap. In the first stage, when the robot has to
travel a long distance to reach the door of the goal room, we prioritize the efficiency and
speed of a search-based method against the precision of the sample-based method. On
the contrary, to approach the goal we prioritize the precision of a sample-based method.
Dijkstra search algorithm [142] is used on the traversability graph as search-based
algorithm. Within the goal room, rapidly-exploring random tree (RRT) algorithm [98]
is used on the 3D submap as sample-based algorithm. Figure 7.15 shows a graphical
description of the hybrid path planning method. the aforementioned behaviour is
represented in the graph where Dijkstra search algorithm computes the path from the
starting position (blue circle) to the door of the goal room (blue cross) and RRT is
used to reach the goal (red cross). In addition, Figure 7.15 includes a final module for
the local planer that we have used to smooth robots trajectory.

Given the starting node and the node that corresponds to the door of the goal
room, Dijkstra search algorithm obtains the path that connects both nodes with the
lowest cost. Dijkstra search algorithm is an uninformed and complete path planning
algorithm that will always find a solution to the search problem if there is any and
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Figure 7.15 Graphical description of the hybrid path planning method.
Global path planning consists of a Dijkstra search algorithm using the
traversability graph an a Rapidly-exploring random tree (RRT) using the
3D submap. Dijkstra algorithm computes the path from the stating position
(blue circle) to the entrance of the goal room (blue cross). From there,
RRT calculates the path to reach the goal (red cross). Local path planning
consists of Elastic bands algorithm for both of the computed paths.

from the multiple solutions will select the one with the lowest cost. The cost of the
path can be associated only with the distance (in that case it will select the shortest
path), however it allows to associate the cost to other factors. In our case, we use this
cost to avoid paths that have become non traversable.

Dijkstra algorithm modifies the breadth-first strategy [183] by always expanding the
lowest-cost node first rather than the lowest-depth node and will explore all nodes until
the optimal solution is found. Dijkstra algorithm is an easy to implement search-based
method that is efficient for small or medium search spaces. Other more optimal search-
based algorithms could be implemented for large or highly-connected environments
such as A* [74] or D* [148].

Once the robot is at the entrance of the goal room, the 2D occupancy grid obtained
from the 3D submap of the room is used to compute the remaining path to reach the
goal through RRT. RRT incrementally constructs a tree from the initial position by
connecting random samples spread in the search space. Each sample will be connected
to its nearest neighbor if that connection does not imply that an occupied area is
traversed. Once the goal node is connected to the tree, the search finishes and the
robot can start moving in order to reach the goal. RRT is a probabilistically complete
and efficient path planning method. However, it might be slow for large environments
and other approaches such as RRT* [88] could be implemented.
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Elastic bands [130] is used with both path planning algorithms in order to soften
and optimize the trajectory. Elastic bands consist in building a safe area around the
path where the robot is allowed to move. Heuristics are defined to maintain a soft
trajectory but keeping the robot as close as possible to the center line of the band.
Safe trajectories are guarantied since the band is constrained to the free area around
the path. The movement of the robot inside the elastic band is controlled separately
regarding its linear and angular speeds. Angular velocity is commanded through a
proportional controller based on the angular difference between the current angle of
the robot and the current direction of the band. In addition, it takes into account the
distance from the robot to the closest point of the line that passes through the center
of the band in order to keep the robot as closer as possible to it. Linear velocity is
bounded between a minimum and maximum value. Linear velocity can only be lower
to the minimum value when the robot is approaching the goal and stopping. Otherwise,
the linear velocity will range between its maximum and minimum depending on the
current band width and the angular velocity. When crossing narrow areas (small band
width) the robot will move slower. In addition, the linear velocity will be decreased
according to the angular velocity in order to avoid sharp turns and problems in the
stability of the robot.

This hybrid path planning approach is designed to work in static environments as
we only perform global path planning methods that rely on the information contained
on the traversability graph and the 3D submap. If the traversability graph and the
3D submaps are updated according to the changes of the environment, then the path
planning could deal with changes and non-static environments. We have also been
working on adapting the local path planning strategy to unmapped changes of the
environment 1. In this way we can modify the elastic band if an unmapped obstacle is
detected inside the safe area in order to avoid the collision with that obstacle.

7.3.3 Experimental Evaluation

We are providing a comparison of our method with path planning using a global 3D
map in order to demonstrate the advantages of having a hybrid path planning method
running on top of a hybrid map. Same starting and goal poses are requested for both
representation, using RRT in the global 3D map and the RRT-Dijkstra hybrid path
planning method in the hybrid map. In the case of the global map, samples to perform
RRT path planning are spread in the 3D map of the environment without taking into

1Final Degree Project (TFG) of Ivan Vivares Jimenez, "Planificador local para robot móvil".
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Figure 7.16 Path planning between starting and goal positions(a); the
path for global 3D map and hybrid map are shown in (b) and (c). Red is
used for samples, green for RRT path safe area and blue for Dijkstra path
safe area.

account submaps. In the case of the hybrid map, we first use Dijkstra and samples
are generated only in the 3D submap corresponding to the goal room. Figure 7.16 (a)
shows the starting and goal positions for an example path. Figure 7.16 (b) shows the
result obtained for RRT in the global 3D map. Random samples (red) are generated
over the free area of the whole environment. When a path is found, its safe area is
built (green) by obtaining the free area around the selected samples. Figure 7.16 (c)
shows the result for the hybrid path planning method. Planning starts with Dijkstra
algorithm in the traversability graph towards the door of the goal room. A safe area for
this topological path is included (blue). Afterwards, RRT is performed in the submap
of the goal room. Random samples (red) are generated and a safe area for the metric
path (green) is calculated for the samples that connect the door of the goal room to
the goal position.

Both path planning methods have been compared according to the planning time
(a solution is found), the number of random samples required for the solution, the time
to reach the goal and the relative traveled distance (distance traveled compared to
Euclidean distance). Average values of paths from the initial position to 7 random
positions (one per room) are included in Table 7.5. Planning times for the hybrid path
planning are two orders of magnitude smaller than RRT using the global map. The
time to reach the goal and the distance traveled have also decreased for the proposed
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Table 7.5 Comparison of path planning results for the hybrid map and
global 3D map.

Path-planning tplan[ms] nsamples tgoal[s] drelative

Hybrid
Dijkstra 3.08

178.76 242.27 1.58RRT 510.7
Total 513.78

RRT (Global map) 67.3 × 103 1121.95 480.5 1.93

method. These results uphold that hybrid maps considerably reduce the requirements
for path-planning and improve the performance regarding execution time and traveled
distance.

The use of hybrid maps and hybrid path planning strategies substantially improves
path planning performance in terms of planning and execution time, computational
requirements and relative traveled distance. Therefore, we can conclude that hybrid
maps allow to perform more efficient path planning strategies.



8
Conclusions and Future Work

This chapter concludes this thesis by summarizing the work and its key contributions.
Furthermore, we discuss the results obtained for each chapter and aspects that could
be extended or exchanged.

8.1 Conclusions
Together, the approaches proposed in this thesis address a separate yet complementary
aspect of robot navigation, starting by mapping and map adaptation and followed
by localization and path planning. In GPS-denied environments, such as indoor
environments, these tasks are a key requirement to enable autonomous robot operation.

In this thesis, we have presented a hybrid mapping method for static and non-
static indoor environments that captures their complexity and diversity. The hybrid
map consisted of four different components that represented diverse aspects of the
environment in a hierarchical fashion. The first component, the topological map,
contained information regarding the structure of the environment identifying rooms
and transitions between rooms by doors. The next component, the traversability graph,
incorporated the navigable paths in the environment spotting the areas of the paths
that corresponded to doors and spaces within rooms. The object-based pose graph
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included a detailed pose description of the paths and its relation to the objects in the
environment. The last component corresponds to a set of 3D metric submaps, one
for each room in the environment, that offer a voxel-wise representation of the 3D
appearance of each room.

We have completed the study of the conception of the hybrid map by autonomously
building the maps, maintaining the representation in the long-term and performing
path planning and localization within the given maps. The hybrid map has been
autonomously built through a frontier-based exploration algorithm whose cost-utility
function was designed to maximize the explored area as fast as possible while minimizing
the distance traveled by the robot. Long-term map maintenance was achieved in the
object-based pose graph by identifying the objects that were moved or remained in
their position during several mapping sessions. In addition, the behaviors in terms of
movability for individual objects and object classes were inferred. Nevertheless, we
have not solved the issue of long-term maintenance of the whole hybrid map and we
intend to address this in the future. Regarding path planning, a strategy that took
advantage of the hybrid map was also proposed. The hybrid map allows to combine
different path planning strategies for sections of the path enhancing its performance.
Finally, we investigated different approaches for localization as the hybrid map offers
the possibility to perform topological localization and metric localization in different
components of the map. Both localization approaches take advantage of the information
contained in the hybrid map. In the case of topological localization, the most probable
pose given robot observations is calculated based on the object-based pose graph, the
topological map and scene and object information. In the case of metric localization,
pose estimation is performed in static and non-static environments using the available
metric and semantic information contained in the 3D submaps.

This thesis has contributed especially to the fields of hybrid mapping, map main-
tenance in non-static environments and path planning and localization within the
hybrid map. Regarding hybrid mapping, our main contribution is a novel hybrid
map structure that includes structural, relational, 3D an object information that
simplifies the construction and abstraction of the map and grants improvements in the
navigation capabilities of the robot. In addition, the construction of the map through
a new implementation of frontier exploration is more efficient than original frontier
exploration and other derived works. Regarding navigation capabilities of the robot,
our contributions consist in the idea that path planning and localization benefit from
the conception of the hybrid map. A novel path planning strategy is presented that
goes beyond standard path planning techniques in terms of planning and execution
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time and traveled distance. The novelty in topological localization lies in the usage of
node, supernode and scene information to increase the probability of estimating the
correct node where the robot is. Similarly, the novelty of metric localization is in the
inclusion of metric and semantic information to infer the most probable robot pose
using a particle filter. In addition, this combination of information makes the system
more robust to changes in the appearance of the environment. Regarding long-term
operation, we have also proposed a novel map maintenance algorithm that updates the
map with regard to the changes in the environment in a probabilistic fashion, obtaining
better results than classical binary approaches.

As a general conclusion, we can say that hybrid mapping can produce more efficient
maps in terms of memory consumption and the usability of the map is increased.
Hybrid maps grant more efficient path planning by using the diversity of information
contained in the map and they enable a diversity of localization approaches that benefit
from the hybrid information by increasing the precision of robot estimations. In the
following, we include specific conclusions for each of the proposed methods.

In Chapters 3 and 4, a novel hybrid mapping method that represents the information
as global topological maps and 3D dense submaps is developed. We propose a semantic
partitioning of the environment based on the detection of doors that builds a 3D
submap for each room without the need of post-processing the information. The
resulting hybrid map combines the efficiency of topological maps with the precision
of dense representation for mapping, localization and path planning. With regard
to mapping, the system outperforms 3D global mapping and other state-of- the-art
submapping methods based on fixed-size submaps in terms of memory consumption.
We also proposed a probabilistic loop closure method that uses topological, metric and
semantic information to validate the loops and solve the correspondences in the map.

In Chapter 5, we have developed an exploration algorithm based on frontier-
based exploration and behavior-based strategies that builds the hybrid map of the
environment. We proposed using semantic, geometric and topological information of
the environment to determine the next best position to visit in indoor environments
through a cost–utility function. The novelty of the proposed exploration method is
the semantic frontier classification and the cost–utility function for frontier selection.
Semantic frontier classification divides the environment into transit areas and free areas.
In this work, doors were used as transit areas but other approaches could be considered.
For example, in outdoor road environments, transit areas can be road intersections.
In this way, if the robot (or autonomous car) is moving on a road, it will map all the
nodes along the road path as free area until an intersection is reached where a transit
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area will be defined. This will isolate the road sections as different connected places.
The proposed exploration algorithm could be adapted to other scenarios just including
the corresponding transit area detector and some specific constrains (as exploring
within the road track limits). Furthermore, through the experimental evaluation, we
showed that the proposed method performs better than other state-of-the-art methods
in terms of execution time and traveled distance.

In Chapter 6, we have proposed a method for map adaptation through object-based
pose graphs for low dynamic indoor environments. This new method calculates and
maintains object probability depending on whether an object is seen again or not
and capturing whether it is static or movable. As shown in the experimental results,
including object probability improves the resulting map. In addition, it provides
the robot with a realistic estimation of the movability of objects according to its
class gathered from its own experience. The proposed estimation for object class
movability outperforms object classification using a binary method. Overall, this
work strengthens two ideas: real-world environments have to be treated as dynamic
environments consisting of objects that may be more or less movable; and, important
information can be obtained from capturing their movability.

Regarding topological localization, in Chapter 7.1, we have presented a hidden
Markov model method that localizes a robot within the object-based pose graph
and the topological map using scene information. In this work, propagation of scene
information is used to improve the final localization. Our main contributions are the
abstraction in the hybrid map to localize a robot at different levels and the inclusion of
semantic scene and object information in order to improve its localization. As shown
in the experiments, the proposed system solves ambiguities among localization results
even if errors are intentionally introduced within the observations leading to a more
robust estimation.

In Chapter 7.2, we have presented our method for metric localization, which is a
novel approach to visual localization in non-static indoor environments. The proposed
approach combines metric and semantic information to perform probabilistic pose
estimation of a mobile robot. Our method uses information of static and movable
objects in the environment as movable elements can contain valuable information for
localization. This allows us to successfully estimate robot pose even when the internal
representation that the robot has of the environment does not match the current
state of the world. We implemented and evaluated our approach on a real indoor
environment and provided comparisons to only-metric and only-semantic methods.
The results suggest that the combination of metric and semantic information in pose
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estimation makes the approach more robust as less particles are needed to obtain
similar position errors. In addition, it reduces the effect of bad associations due to
changes in the environment.

The last method proposed in this thesis is path planning in the hybrid map, in
Chapter 7.3. The hybrid path planning method using the hybrid map performs better
than RRT on a global 3D map in terms of planning and execution time, computational
requirements and relative traveled distance. This is thanks to the combination of
different path planning strategies in different sections of the path based on the priority
in speed, robustness or precision.

In summary, the work presented in this thesis contributes to the state of the art
in robot navigation by pointing out the efficiency that hybrid maps offer during map
building and other applications such as localization and path planning. In addition, we
highlight the necessity of dealing with the dynamics of indoor environments and the
benefits of combining topological, semantic and metric information to the autonomy of
a mobile robot.

8.2 Future Work
There are several parts of this thesis that could be extended or exchanged. In this last
section, we will summarize the paths open for research.

The first possible future line of work is to perform Simultaneous Localization
and Mapping (SLAM) to build the hybrid map. As it is well-known, accurate pose
estimation is a requirement for building consistent maps and a consistent map is
necessary to accurately estimate a robot pose. Therefore, SLAM is the best approach
to build robust maps of indoor environments. In our method, we assume the robot pose
is known as we just focus on building the map. In some of the works that constitute
this thesis a scan matching algorithm was used to correct the pose given by odometry.
However, this method has not been used in the totality of the thesis and, therefore, it
was not included. As we simultaneously build the multiple components of the hybrid
map, we could combine techniques for topological and metric SLAM and use scan and
visual information to improve both, pose estimation and mapping accuracies.

Following with the future work regarding localization, in this thesis, we performed
separately topological localization in the topological map and the object-based pose
graph and metric localization in a global 3D map. The next step would be to perform
concurrent localization in the hybrid map when navigating through it. In this sense,
the robot will know where it is in the topological map and the object-based graph (as
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it does now), in which node of the traversability graph and its exact metric position
within the room. This future line of work comprises several tasks. First, as we already
mentioned in Chapter 7.1, topological localization is not performed in the object-based
pose graph as it has been presented in this thesis but in a previous version of it.
Therefore, the first step would be to implement topological localization using the
current definition of the object-based pose graph. In addition, current algorithm for
metric localization uses a whole 3D map of the environment. This algorithm should be
adapted to the submaps of the hybrid map. There are several approaches to adapt
the metric estimation to submaps, one could be to use the estimation of the most
probable supernode to look for the exact metric position, or, if we want to keep them as
independent estimations, the algorithm could load all the submaps until the algorithm
converges and then track the robot within the specific submaps.

Metric localization algorithm could be also extended in a variety of ways. In this
thesis, the estimation of robot pose was performed through a matching of the metric
and semantic information contained in images. For that purpose, image pixels were
manually colored according to the semantic class of the objects. Currently, there are
algorithms that automatically segment images into semantic regions in terms of objects
[116]. It would be a good idea to combine the current metric localization method with
any of those semantic segmentation methods to avoid manually labeling images. In
addition, metric localization is performed with very dense information as the metric
and semantic value for each pixel in the image is compared to each corresponding voxel
given the particle position for each of the particles spread in the map. This results in
a long estimation process that is far from real-time operation. We would like to study
the efficiency of the method and improve it through a downsampling of the information,
improving GPU computation or reducing the matching area in the map. Finally, we
would like to include the semantic and metric information used in the estimation in
the map representation. For example, if the robot is moving in a living room and a
chair has been moved to an area that was empty before, we want to add this change
in the voxels of the 3D map. As a result, those voxels will contain the semantic label
-1 (empty) and 1 (chair). Whenever this voxel is compared again, it will provide two
matching possibilities. This is a complex map adaptation method that requires to be
treated carefully and with a solid mathematical foundation as we only want to add
this information when the localization is precise enough, the semantic class for that
voxel is probable enough and the certainty that the selected voxel is the matching one
is high enough.
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Long-term operation is other future line of the presented work. As we have shown
in Chapter 6, map adaptation is a requirement for robust autonomous operation in
real-world environments. In this thesis, we have just performed map adaptation in
one component of the hybrid map, the object-based pose graph. An interesting future
work will be to extend the adaptation to the other components of the map, or at least,
as we discussed in Chapter 6, to the traversability graph and the 3D submaps.

Long-term autonomy will also require a more robust approach that can handle
dynamic elements also while mapping (high dynamics). In this thesis, we assumed the
environment was static while mapping and changes only occurred between mapping
sessions. In this sense, if dynamic objects appear while mapping, they will be added to
the map and result in inconsistencies in the representation. There are several works
that have approached mapping with dynamic objects, such as [17, 124]. Our mapping
system will highly benefit from the integration with one of the aforementioned systems.

Up to now, the semantic information contained in the map refers to scenes, objects
and doors. In the future, we find appealing to include more semantic information
in the map. Similarly to [85], the affordances and possible actions to perform in
the environment could be included. In addition, to enhance manipulation tasks, the
representation could contain approaching poses for actions to interact with objects.

Finally, only indoor environments populated by humans have been considered in
this thesis. An interesting future line of work would be to translate all this knowledge
to other environments and tasks, such as road networks and autonomous driving. The
exploration method would need some adjustments but the conception of transit area
and free area would work similarly enabling the construction of the traversability graph
within the road and the topological map and the 3D submaps for each road section.
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