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Abstract—On this paper a vision-based contact- and mark-
erless method for gait evaluation is proposed, and validated in
different experimental setups against commercial motion capture
systems (Vicon) and inertial gait analysis tools (GaitShoes). While
the development goal is its integration on the ASBGo Smart
Walker platform, only an inexpensive depth camera is required.
It is shown to have reasonable results when computing gait
metrics in real time, in different experimental setups, from
different walker types, vision hardware and walking scenarios.
Performance is evaluated through RMSD values for several gait
metrics. Results illustrate that the proposed approach can be a
valuable non-invasive, contactless and low cost alternative to gait
analysis systems used in clinical rehabilitation environments.

Index Terms—gait, rehabilitation, smart walker, vision

I. INTRODUCTION

In the field of medical assessment and diagnostics, contact-
less or holistic approaches constitute nowadays desirable alter-
natives to conventional systems that allow the subject to move
freely and comfortably without any kind of restriction. While
generally not as precise as their counterparts, occasionally
they present the most appropriate solution to the compromise
between invasiveness and accuracy. One such case is clinical
gait rehabilitation of patients with impaired mobility, where
any hindrance to their movement is greatly discouraged by
the medical staff [1]. As such, reliable gait analysis systems
with minimal invasiveness can have significant relevance in
gait rehabilitation. In particular, providing accurate objective
gait performance metrics allows the medical team to infer on
the patients evolution through several sessions, which in turn
can be used to customize/adjust each therapy session to the
patient.

Walkers are nowadays a popular gait rehabilitation tool, as
they provide a valuable help by increasing the support base,
thus providing more stability to the walking process. However,
particularly in elderly patients, their usage generally translates
to additional cognitive load while navigating the world. In
the specific case of post-stroke ataxic patients, rehabilitative
success is often achieved through regular assisted therapy
sessions using such an assistive walker [2]-[5]. However,
elderly and disabled patients often find walking with a walker
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(or other assistive device) a taxing task and this additional
cognitive load can slow their rehabilitation progress [5].

Smart Walkers have been proposed to circumvent this issue,
as people who undergo this kind of therapy often present
limited mobility or debilitating gait issues, greatly deviating
from what is seen as normal locomotion, and therefore present
novel challenges when designing automated smart systems to
analyze their gait, as success with healthy subjects is not al-
ways transferable to these situations. While these devices have
been introduced as user-friendly, intuitive solutions to increase
the mobility of disabled patients, they still demand additional
effort to guide and a steep learning curve is inherent [2], [5].
Moreover, a common complaint is the lack of comfort and
requiring the usage of markers and/or inertial and force sensors
on lower limbs, prohibiting any daily routine use, on top of
often entailing prohibitive financial investment, thus restricting
their access by the general population.

As such, cost-effective alternative solutions that are able
to autonomously adapt to the patient in a practical, intuitive,
non-invasive and generally hassle-free are therefore urgently
needed. Even if such solutions are not as precise, an acceptable
cost-benefit compromise could help great number of patients
in need.

An attempt at a low-cost system is the ASBGo Smart
Walker [5](Figure 4), which offers a multi-functional and
powerful platform to develop such systems, being equipped
with a multiple sensors and actuators, including depth cameras
for posture and gait evaluation. Extensive multidisciplinary
research has been conducted in recent years [3], [4] with this
device, and it has been used with success as a support device
for people with mobility issues.

In this paper, a markerless, non-invasive, vision-based al-
gorithm is proposed for real-time gait analysis. It is shown
that it is able to provide gait-specific metric measurement
with reasonable success through feet tracking using only depth
information from popular inexpensive depth cameras. It is
extensively validated in 3 distinct scenarios of increasing com-
plexity, comparing it to a precise, robust and well-established
commercial motion capture system and an alternative inertial
data acquisition system. The authors believe this work illus-
trates that it is possible to implement gait analysis systems able
to balance non-invasiveness with accuracy, which is seen as a
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Fig. 1. General top-level flow of the algorithm proposed in this work

for feet detection from depth images. On average, lasts

~1 ms, Image Processing ~2 ms, Gait Parameter Calculation ~3 ms and
<1 ms.

real asset within the context of rehabilitation of pathological
gait in a clinical setting, and expect this work to provide an
base for further development of such solutions.

A brief review of contactless gait analysis systems, along
with a detailed description of the vision algorithm imple-
mented in this work, is presented in section II. The experi-
mental setup and the relevant results obtained are discussed
in subsection III-B. Lastly, general conclusions and a brief
summary of the findings of this work are presented on sec-
tion IV.

II. MARKERLESS GAIT ANALYSIS

A great number of different approaches have been proposed
in the literature for gait analysis. Regarding contactless sen-
sors, they range from ultrasonic [6] sensors to light-based ap-
proaches using infrared light (IR) [7] or Laser Range Finders
(LRF) modules [8]. A common approach and of particular
relevance in the context of this work is the use of depth
cameras [2], [9], [10], devices that use structured light (by
means of aligned IR emitter matrix and matching sensor) to
measure distance.

However, the main limitation with most of these approaches,
one that deters their mainstream adoption in rehabilitation
procedures, is that they often require the use of markers or
wearable accessories, which entails a minimal degree of inva-
siveness that should nevertheless be avoided when considering
patients with limited mobility.

In [2], a depth camera is used to estimate foot position
and orientation without the use of any markers. This approach
presents a clear evolution over other markerless solutions, with
a 25% decrease in position and orientation errors (roughly
30 mm RMSD and 21% RMSD, respectively), while being
significantly faster (from 30 ms per frame, over 15 s in
the literature). The method proposed in this work borrows
the same operating principle, but goes beyond tracking feet
position and orientation and performs an in-depth gait analysis
using several gait indicators useful to the medical staff on a
therapy session.

A. Proposed Method

The main workflow of the vision system proposed in this
work is illustrated in Figure 1. Figure 2 depicts several images
at different stages of the process. Only the depth frame of the
camera is used, with the color image (Figure 2, leff) being

supplied to subject for visual feedback. After a depth frame is
fetched form the camera, it goes through the following stages
(Figure 1):

1) Image Processing:

a) Background Elimination By subtracting a back-
ground reference frame' (Figure 2, center), both the
floor and walker’s structure are removed. Subse-
quently, applying a global threshold of 20 cm from
the background reference and cropping the frame
to a specific Region of Interest (Rol) enclosing the
subject’s feet eliminates both the subject’s legs and
inconsistencies in the surroundings/floor;

b) Feet Segmentation The contours of the feet are
then extracted using the Border Following ap-
proach supplied by OpenCV, followed by a se-
quence of morphologic transformations: erosion,
closing and dilating. This reduces all relevant
pixels to two major blobs corresponding to the
subject’s feet (Figure 2, right), of which the two
closest are assigned to each foot;

2) Metric Calculation Feet position are then used to
quantify/identify stance, swing and double support state
and duration, step and stride transitions, among other
gait metrics used to objectively assess the patient’s
locomotion; A list of gait metrics and their description
is presented in Table I;

3) Gait Analysis Following gait metrics computation, a
high-level assessment of the gait characterization is
performed in order to provide the patient and assis-
tance/medical staff with objective feedback about the
quality of their gait (flagging abnormal situations e.g.
excessive distance between feet or a long double support
phase).

When considering real time performance, it was observed
that the whole image processing routine takes less than 5 ms
(Figure 1 highlights four critical blocks), which allows for use
with frame rates up to 120 fps?. In this particular work, much
lower frame rates were used.

B. Gait Metrics

Table I presents a detailed list of each metric computed,
along with a brief description of each one and how it is
computed. Three main groups of metrics are provided: step-
specific, stride-specific and global. There is some overlap over
these metrics, as e.g. length, duration and velocity can be found
for each.

III. RESULTS
A. Experimental Setup

! Acquired at the start of the session from frames captured during 5 seconds,
while the camera Field of View (FoV) is unobstructed. The minimum depth
reading for each pixel is then assumed as background reference value.

20n a laptop equipped with a Intel Core i7 CPU @ 2.3 GHz, 8Gb RAM
and a AMD Radeon 7970M graphics card.



Fig. 2. Frames depicting different aspects of the markerless method proposed in this work. Left Color frame (from the RGB sensor) shown to the user for
visual feedback; Center: Depth frame after background subtraction; Right: Left and right feet after segmentation;

TABLE I

GAIT METRICS PROVIDED BY THE MARKERLESS GAIT ANALYSIS ALGORITHM

Name Description

Foot Angle Foot orientation at heel-strike ()

Width Lateral distance between feet (cm)
Step Lengh Half of the frontal displacement from toe-off to heel-strike (=~ torso displacement) (cm)

Duration Elapsed time from toe off to heel-strike (s)

Velocity Step Length/Step Duration; Displacement per unit of time (m/s)

Cadence Number of steps per unit of time (step/min)

Lengh Displacement since heel-strike (cm)

Duration Elapsed time since heel-strike (s)
Stride Swing time Elapsed time while the foot/leg is in swing (s and % of Stride Duration)

Stance time Elapsed time while the foot/leg is in stance (s and % of Stride Duration)

Double support time Elapsed time while both feet/legs are in stance (s and % of Stride Duration)

Total Distance Distance traveled during walking session (1)

Total Duration Total time elapsed during walking session (min)

Average velocity Total Distance/Total Duration*60 (m/s)

L/R steps Number of steps taken with the left/right foot (#)

L/R cadence Average number of left/right steps per unit of time (steps/min)

L/R distance Total distance covered by the left/right foot (m and % of Total Distance)

L/R walk duration Cumulative time of all steps take with the left/right foot (min and % of Total Duration)
Global L/R average width Average step width of steps taken with the left/right foot (m)

L/R average length
L/R step duration
L/R stride length
L/R stride duration
L/R swing duration
L/R stance duration

Average step length of steps taken with the left/right foot (m)

Average time elapsed by left/right foot steps (s)

Average length of left/right foot strides (1)

Average time elapsed by left/right foot strides (s)

Average time elapsed while the left/right foot is in swing (s and % of Stride Duration)
Average time elapsed while the left/right foot is in stance (s and % of Stride Duration)

L/R double support duration

Average time elapsed while both feet are in stance (s and % of Stride Duration)

Four different experimental scenarios were considered when
evaluating the performance of the vision system proposed in
this work, providing different walking contexts such as static
and dynamic situations, different velocities, different hardware
(depth cameras), allowing a more diverse validation of our
approach. Different systems provided a ground truth reference,
including a state-of-the-art motion capture system and a set of
wearable force/inertial sensing footwear.

1) Motion capture trials: A commercial state-of-the-art
vision system was used to establish a ground truth for the
proposed vision algorithm.

A Vicon MX 6-camera motion capture system (Vicon
Motion Systems, Oxford, UK), provided by the Centro de
Computagcdo Grdfica (CCG) at the Universidade do Minho
in Guimardes, Portugal, was employed to acquire kinematic
data of several key points on multiple subjects. As part of the

Plug-in-Gait module of the Nexus 2.5 software, 16 lower body
markers were placed on the test subject, with camera streams
being sampled at 120 Hz, and walking trials were conducted
using a conventional wheeled walker, equipped with an Asus
Xtion depth camera’. A total of 10 subjects were asked to
follow a straight path for 3.5 m and then to turn back to their
original position. This was repeated 2 times for 3 different
(user-defined, non-strict) velocities (slow, normal and fast).
Camera streams were sampled at 15 fps.

2) Treadmill trials w/ healthy subjects: Secondly, a fitness
treadmill, available at the Biomedical Robotic Devices (BiRD)

3A conventional walker was chosen for these trials in order to be able to
be able to track the Vicon markers, which would not be possible with the
ASBGo smart walker (obstructing the view). Camera was placed at the same
height and orientation as the installation, at a height of 93 cm and 45 cm
away from the walker wheel.



Fig. 3. An Orbbec Astra camera was installed under the treadmill control
panel, at a height of 90 cm and aligned with the start of the walking mat/zone,
at an angle of 55.8 °with the walking surface. This setup found empirically
to allow both feet to be within the camera’s FoV during the entirety of the
walking cycle.

laboratory in Guimaries, Portugal, was used for walking trials
on a static setting. An Orbbec Astra depth camera, a structured
light RGB and depth sensor similar to the Asus Xtion, was
installed on an apparatus similar to the one described on the
previous section (Figure 3), and sampled at 30 fps. Subjects
were asked to walk at pre-defined velocities Table II. In
addition to depth camera data, a validation reference was
constructed from force and inertial data acquired with a pair
of GaitShoes devices [11]. Inertial information was then used
to supply foot position and compute gait metrics. Each trial
was repeated 3 times for 5 volunteers.

3) Walker trials w/ healthy subjects: The third set of trials
consisted on a dynamic walk with the ASBGo Smart Walker
[3], [4]. The objective was to validate the algorithm on a
dynamic setting, closer to daily-life or therapeutic contexts.
Both velocities and walking times were different from the
static treadmill experiments, though the walking path was kept
straight and avoided turning motions.

The ASBGo Smart Walker is equipped with an Asus Xtion
depth camera (sampled at 30 fps) placed at a height of
90 cm and oriented towards the user’s feet with an angle of
55.8°(Figure 4), providing the same Field-of-View (FoV) as the
previous validation setups. 5 volunteers guided the walker on
a straight 47 m corridor at 4 different velocities (Table II ),
repeating the trials 3 times for each case. Trials had no fixed
duration, instead ending when the walker reached the end of
the corridor.

B. Discussion

For validation purposes, trial repetitions were averaged for
both the markerless approach and the reference ground-truth
systems, and Root Mean Square Deviation (RMSD) values
were computed for each test (velocity) averaging over all trial
subjects. Considering the different sample size, velocity values
and accuracy of the reference systems, error values are not
directly comparable and are only presented to be illustrative

Fig. 4. The ASBGo Smart Walker on a university setting (straight corridor
used for validation trials). Camera installation is the same as Figure 3.

of the reliability, versatility and performance of the markerless
method. The authors of this work do not believe that a
markerless system can hope to match accuracy and precision
results than the reference systems adopted, instead aim to show
that a markerless system can provide reliable measurements
while avoiding some of the pitfalls and shortcoming associated
with the use of the former approach. The errors presented in
this section originate from the feet detection algorithm and
not from metric computation. In fact, the most significant
challenge of this work is reliably estimating feet position
and velocity. Translating these values to relevant and useful
locomotion metrics is assumed to be a straightforward process.

Performance is evaluated based on the difference between
measured values with the markerless feet detection and gait
analysis algorithm and the reference system adopted in each
validation setup, and is presented in Table II. It should be
noted, however, that due to the different nature of each metric,
it is not possible to find a global error measure. In addition, as
described in section II, several metrics are interdependent and
thus error sources would have different contributions to each
metric. More over, adimensional measures such as percentage
(%) values can be misleading as they depend on the scale of
what is being measured. As such, in addition to the global
RMSD percentage, metrics were separated into spatial (Step
Width, Step Length and Stride Length) and temporal (Step Du-
ration, Stride Duration, Swing Time, Stance Time and Double
Support Time), in order to obtain an intuitive quantification of
the error associated with the proposed markerless system.

Regarding the reference systems, it should be noted that the
Vicon motion capture system and the GaitShoes devices have
different accuracy values. While the first is a commercial, well-
established and proven vision system, the second is a device
with known limitations and under current development in a
research context (nevertheless, it has been successfully used
in gait analysis works [12]). In fact, during the trials with both
the treadmill and the ASBGo Smart walker, it was observed
that due to electromagnetic interference from both devices,
there was a significant sample loss which may have skewed
the reference values used for validation purposes.



TABLE II
GLOBAL, SPATIAL AND TEMPORAL RMSD VALUES MEASURED WITH THE MARKERLESS APPROACH IN EACH OF THE VALIDATION SETUPS DESCRIBED

Vicon Treadmill Walker
Velocity Global Spatial Temporal ~ Velocity (m/s) Global Spatial Temporal  Velocity (m/s) % Spatial ~ Temporal
04m/s 3523 % 5.19 cm 0.234 s 0.3 m/s 57.17 %  15.89 cm 1.160 s 0.16 m/s 50.06 %  3.78 cm 0.641 s
0.6 m/s 4468 % 493 cm 0.232's 0.6 m/s 3039 %  14.63 cm 0.162 s 0.32 m/s 3140 % 6.83 cm 0.055 s
1.0m/s 5805 % 6.28 cm 0.187 s 0.9 m/s 3073 %  15.22 cm 0.062 s 0.48 m/s 30.63 %  6.95 cm 0.062 s
1.0 m/s 30.62 % 13.52 cm 0.075 s 0.52 m/s 4787 % 891 cm 0.082 s

Even so, the values achieved illustrate that the markerless
approach, while achieving smaller errors in specific met-
rics/contexts, is generally not as precise and accurate as the
reference systems. Still, temporal metrics have a relatively low
deviation from the reference values, lower than 0.3 s in the
majority of the situations. Spatial metrics exhibited reasonable
accuracy in the trials with Vicon and the ASBGo Smart Walker
(5-7 cm and 3-9 cm, respectively), whereas the Treadmill trials
provided slightly higher errors (13-15 cm).

Considering different walking velocities, there was no con-
sistent trend of increasing or decreasing values with locomo-
tion velocity. At higher walking velocities error magnitude was
expected to increase, but that was only observed in the spatial
error of the trials with the Smart Walker. In fact, temporal
error decreased at greater velocities in all validation trials, as
did the spatial error in the trials in the treadmill. Globally,
the error percentage value, although unreliable, does suggest
higher errors at the lowest velocities.

A great range of RMSD values were observed for each
metric, from e.g. low-to-null errors regarding step detection
(Nstep) or temporal values such as T, and Tiy54¢, and large
outlier values in spatial measurements Lgiep and Dyotq;. This
can partially be explained by insufficient device calibration,
sporadic feet occlusion or even a inaccurate reference (par-
ticularly in the case of the GaitShoes where electromagnetic
interference was observed to be significant). Due to the high
number of values associated with each metric, only the Step
Length, Double Support Time and Average Velocity metrics are
considered illustrative of the overall results, and are therefore
are further discussed. Figure 5 depicts the variation of the these
metrics with the trial velocity for each experimental setup,
along with the standard deviation values across subjects. It can
be seen that measurements are close to the reference values
in most situations, with the exception of visible increased
error at the lowest walking velocity in the treadmill trials,
in accordance to the values presented in Table II.

As such, the results with Vicon should be considered to
represent more robust and reliable than its GaitShoes counter
parts, and therefore general conclusions about the performance
and accuracy are made based on them.

Summarily, it is the authors’ opinion that the error mag-
nitude, while relevant, can be seen as a secondary issue
when considering the use of the markerless approach in the
rehabilitation of pathological gait, where tracking the evolution
the patients takes precedence over accurate and precise mea-

surements through foot tracking. As such, the relevant aspect
of this work is that it is completely markerless, with only an
inexpensive depth camera as hardware requirement.

IV. CONCLUSION

In this work, a markerless vision-based algorithm for feet
detection and gait metric computation was proposed, and
validated against different reference systems through walking
trials in a myriad of locomotion scenarios. RMSD values
were used to evaluate the performance of said system when
computing objective gait analysis metrics in real time, and
suggest that the proposed approach can provide reliable mea-
surements without the need to place any additional markers on
the subject, which is seen as a valuable feature in rehabilitation
sessions of patients with limited mobility. Regarding the
experimental setup, the reference system used in the treadmill
and walker trials was found to have limited reliability, and as
such precautions for its use should be taken in future testsy.
Still, metrics measured exhibit little deviation from the ones
computed with a Vicon motion capture system, which further
asserts the valuable contribution of this work. As for future
work, tweaking camera installation such as camera position,
orientation, extrinsic transformation, frame rate, stereo system,
etc. could prove to provide better overall results. Alternatively,
more complex tracking algorithms for feet segmentation could
improve results in situations such as leg/feet occlusion. In
addition, machine learning solutions such as Neural Networks
could be employed to streamline feet detection, as they have
been shown extensively to be particularly successful in vision-
based applications. Finally, in order to better evaluate if the
increased error associated with this work is still acceptable for
use in rehabilitation treatments, clinical validation trials should
be conducted with patients exhibiting pathological gait.
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Fig. 5. Average values for 3 different gait metrics in each of the 3 validation setups described in subsection III-A. Values are averaged over all steps of all
subjects. Top: Vicon; Middle: Treadmill; Bottom: ASBGo Smart Walker.
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