

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Author(s):

Title:

Year:

Version:

Please cite the original version:

All material supplied via JYX is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that
material may be duplicated by you for your research use or educational purposes in electronic or
print form. You must obtain permission for any other use. Electronic or print copies may not be
offered, whether for sale or otherwise to anyone who is not an authorised user.

An Observation Framework for Multi-Agent Systems

Kesäniemi, Joonas; Katasonov, Artem; Terziyan, Vagan

Kesäniemi, J.; Katasonov, A.; Terziyan, V., "An Observation Framework for Multi-
agent Systems," Autonomic and Autonomous Systems, 2009. ICAS '09. Fifth
International Conference on , vol., no., pp.336-341, 20-25 April 2009. doi:
10.1109/ICAS.2009.55

2009

An Observation Framework for Multi-Agent Systems

Joonas Kesäniemi, Artem Katasonov and Vagan Terziyan

University of Jyväskylä, Finland

joonas.kesaniemi@jyu.fi, artem.katasonov@jyu.fi, vagan@jyu.fi

Abstract

Existing middleware platforms for multi-agent systems

(MAS) do not provide general support for observation. On

the other hand, observation is considered to be an im-

portant mechanism needed for realizing effective and ef-

ficient coordination of agents. This paper describes a

framework called Agent Observable Environment (AOE) for

observation-based interaction in MAS. The framework pro-

vides 1) possibility to model MAS components with RDF-

based observable soft-bodies, 2) support for both query and

publish/subscribe style ontology-driven observation, and 3)

ability to restrict the visibility of observable information us-

ing observation rules. Additionally, we report on an imple-

mentation of the framework for the JADE middleware plat-

form, where AOE is realized as a custom kernel service.

1 Introduction

A classic definition of an agent is an encapsulated com-

puter system situated in some environment and capable of

flexible, autonomous action in that environment in order to

meet its design objectives [25]. The property of being situ-

ated in an environment was traditionally seen as one of the

basic characteristics of an agent. The agents are described

as entities that have sensors to perceive the state of the envi-

ronment as well as actuators to affect the environment. In a

multi-agent system, from the point of view of an individual,

all the other agents in the system are a part of the environ-

ment. If a distinction is to be made, this environment is

social in contrast to the physical one. The ability to inter-

act with the social environment is as important as the ability

to interact with the physical one. It is also the cornerstone

of coordination of agents which is one of the fundamental

problems in multi-agent systems [18].

Because a social environment consists of agents, i.e. ac-

tive entities, there are several ways in which an agent can

interact with its social environment:

• Communication – exchanging messages with other

agents.

• Direct control – affecting, without communication,

properties or available options of other agents, e.g.,

killing an agent or blocking an agent’s way.

• Indirect observation of actions – observing the changes

in the physical environment that occur due to actions

taken by other agents, e.g., a door became open.

• Direct observation of actions – observing an agent per-

forming an action, e.g., an agent opening a door now.

• Observation of properties – directly observing a bodily

property of an agent, e.g., physical dimensions or what

sensors and actuators it has.

In the classic approach to implementing multi-agent sys-

tems, realized in frameworks such as AgentSpeak with cor-

responding platform Jason [16, 3] and 3APL [6], the envi-

ronment is explicitly represented. The environment is pro-

grammed as an object separate from the agents. Moreover,

the agents do not possess sensors and actuators, rather the

environment provides those. This means that the agents

sense or act by invoking some methods provided by the

environment’s implementation. For example, if the chess

game is to be implemented as a multi-agent system, the

agents would be the chess pieces and the environment

would be the chess board. The board would then provide

methods enabling a piece to move or to check the positions

of other pieces.

With such an implementation, the four first types of in-

teractions in the list above are easy to realize. Since all sens-

ing and acting is done through the environment object, this

object naturally has a nearly complete view on the state of

the multi-agent system. It is of no problem to realize, e.g.,

the direct observation of actions. The environment can be

instructed to notify all the agents that some action is taking

place now, e.g., a chess piece is moving. The observation

of agent’s properties is the only type of interaction that is

not immediately enabled since those properties are intrinsic

to agents, and information on them does not go through the

environment object.

In recent years, the focus has shifted towards better sup-

port for distributed multi-agent systems. IEEE FIPA has

2009 Fifth International Conference on Autonomic and Autonomous Systems

978-0-7695-3584-5/09 $25.00 © 2009 IEEE

DOI 10.1109/ICAS.2009.55

336

standardized the FIPA abstract architecture [8] according to

which the agents are fully independent entities only sup-

ported by a middleware platform. Such middleware has to

provide a set of application- and domain-independent ser-

vices such as life-cycle support, message transport, and dis-

covery mechanisms. In this architecture, the environment is

implicit. The middleware itself is a shared part of the en-

vironment, but its responsibilities are mainly restricted to

enabling communication between agents. As agents can be

distributed over a network, each of them can have its own

environment and thus own sensors and actuators. If some

agents do share an environment, the middleware is not re-

sponsible for providing any assistance with that. Most re-

cent frameworks for implementing multi-agent systems ei-

ther directly implement FIPA specifications, such as JADE

[1], or have own architecture yet following FIPA’s basic

middleware-based approach as in the cases of, e.g., Cougaar

[9] and AgentFactory [5].

Although such middleware-based architecture provides

important advantages with respect to autonomic and dis-

tributed operation, an inherent problem is that not only the

observation of agents’ properties but also the direct obser-

vation of actions is not supported any longer. Consider, for

example, a hostile agent that enters a multi-agent system

with malicious intentions. In the world of humans, the oth-

ers could notice a suspicious ”configuration” of the hostile

person (e.g. he carries a gun) or some suspicious actions

that he takes. In a middleware-based multi-agent system,

none of those is possible unless the agent decides to com-

municate those facts (which a hostile agent most likely will

not do). Therefore, there is a call for a mechanism, as a part

of the middleware platform, with predictable and config-

urable behavior that would be in charge of managing each

agent’s observable state and observable behavior.

Observation can be associated with many different types

of systems as shown in [19]. Our goal is to make observa-

tion a first class entity in MAS. The approach was inspired

by the work of Weyns et al. [23] and their efforts towards

explicit modeling of the environment. Providing observ-

ability is identified as one of the main responsibilities of

the environment [22]. Starting from that premise, we have

come up with an idea of providing agents in MAS with an

observation mechanism similar to our physical world. The

visual observations, for example, are transferred through

shared medium and received using identical instrument (the

human eye). The visual stimulus caused by the physical ar-

tifact is not intentionally created, rather than result of the

nature of the medium. The presence of a human, for exam-

ple, is always observable, but the observation made about

the clothes he or she is wearing, are result of an intentional

actions made earlier by the source of the observations. Our

framework aims to provide a similar medium for observa-

tion for the virtual agents.

In this paper, we present a framework called Agent Ob-

servable Environment (AOE). AOE integrates information

from various source into one shared, observable state of the

world. In addition to the intentional manipulation of the ob-

servable state by the agent itself, the framework also support

specification of environment based observable information

that is superimposed on an agent (environment’s intention).

Agent can intentionally "show" some things, but there can

also be things that it cannot "hide". The observable state

is then accessible to all observers for querying and pub-

lish/subscribe style access. The framework is application-

and domain-independent and can be used as a basis for cre-

ating observation based coordination mechanisms for MAS.

The rest of the paper is structured as follows. Section

2 describes the Agent Observable Environment framework.

Section 3 reports on our AOE implementation for the JADE

middleware platform. Section 4 comments on the related

work, and, finally, Section 5 concludes the paper.

2 Agent Observable Environment

The Agent Observable Environment (AOE) is a frame-

work that models the observation process in multi-agent

systems (MAS) as interaction between the observer and its

local observable environment (OE). The local OE, consist-

ing of a set of soft-bodies, is governed by the observation

rules of the system. The term soft-body was originally de-

fined as an explicit boundary between agent’s internal ma-

chinery and the environment the agent inhabits [15]. For

the purposes of AOE, we extend the realm of entities capa-

ble of having a soft-body to include also MAS services that

provide support for mediated agent interaction, such as dig-

ital pheromone infrastructure [14]. In AOE, the soft-body

works as a container for entity-specific observable informa-

tion. It is modeled as a part of the entity, but managed by an

environmental service. The global observable environment,

which can spawn all the nodes of a distributed agent plat-

form, is then created as the sum of all the soft-bodies in the

system.

Figure 1 illustrates the logical architecture of the AOE

using the layered representation of MAS presented in [20].

The arrows from agents and services to the observable en-

vironment represent the changes made to their observable

states; i.e. their soft-bodies. The dotted arrows in the op-

posite direction represent the observations that can contain

either information about the current (static) state of the ob-

servable environment or its (dynamic) evolution. So, the

main environment abstractions provided by the AOE are

soft-bodies, manifestations of observations and observation

rules.

337

Figure 1. AOE logical architecture

2.1 Soft-body

As mentioned earlier, the soft-body is the repository for

the observable state of an entity. The soft-body data is mod-

eled using Resource Description Framework (RDF). RDF

was chosen as the data model because of its flexibility, im-

plementation independency and support for ontology-based

reasoning. The first two features are important when AOE

is used in complex and dynamic cases in both closed and

open agent environments. The ontology support, on the

other hand, allows AOE to offer support for what we refer

as semantic observation (see Section 2.2).

A soft-body is basically a collection of RDF statements

associated with an entity. Since the soft-body is not man-

aged by the entity itself, it is possible, for example, for an

agent to be in a suspended state and still be observable. A

newly created soft-body is always empty. At run-time, the

content can be modified by both the entity itself and ser-

vices residing on the MAS middleware layer. The modifi-

cations are executed using either agent or environment API

provided by the AOE. The main difference between the two

APIs is the scope of the modifications. Agent API only al-

lows the entity to modify its own soft-body, whereas the

environment API provides access to any soft-body in the

system. This distinction is required for implementation of

coordination mechanisms that are uncoupled from the be-

havior of the entities being coordinated. The parts of the

observable state that are managed through different APIs

are kept separate in order to avoid conflicts between them.

So, while it is possible for an entity to observe its own soft-

body as a whole using agent API, it cannot modify the state

managed through the environment API.

As an example, let us considered an application where

agent’s trustworthiness in a competitive environment is de-

termined by the value of its reliability property modeled as

part of the agent’s soft-body. The higher the value the more

reliable agent is considered to be amongst its peers. Let us

further assume that every available agent action has either

positive or negative effect on the reliability of the agent.

Now, one of requirements of the application is to manage

the reliability of agents, based on actions they perform. If

the reliability property was controlled by an agent itself,

nothing would prevent it from making itself seem more re-

liable than it really is. Implementing reliability as an exter-

nally controlled property solves the problem. It externalizes

the application logic related to the reliability management

to an impartial component that is able to observe actions of

agents and change the value of reliability property accord-

ingly.

It is even possible for an entity to have observable, exter-

nally controlled properties that the entity is not even aware

of. The soft-body can also contain both the state- and be-

havior related information. This means that the observable

description of an action can be separated from the possible

changes to the environment caused by that action. For ex-

ample, the observer can first perceive that agent X is open-

ing door Y, and later that the state of door Y changed from

closed to open.

2.2 Observation Process

This section focuses on the act of observing and how it is

addressed in AOE. The basic pattern for observation is same

for all entities in MAS, but again, there are some differences

in the scope of actions available through agent and environ-

ment APIs. The discussion in this section revolves around

the concepts from the observation ontology [19]. According

to Viroli et al [19], the general observation pattern is repre-

sented using four classes of systems: observers, sources,

coordinators and internal observers. In the context of AOE,

the source of observations is always the observable environ-

ment, but other roles can be played by any MAS entity.

AOE APIs allow entities to coordinate their observations

by configuring the OE for static or dynamic observation.

In MAS literature, this configuration process is referred as

setting the foci [24] or creating a view [17]. The result

of a static observation is a snapshot of the observable en-

vironment represented as observable items [19]. Dynamic

338

observation, on the other hand, allows entities to observe

the evolution of the state and to receive observable events

concerning either addition or deletion of data related their

current interests [19]. In AOE, the observable items and

events are always something that can be represented as one

or more RDF statements. In case of a static observation, the

observation configuration is removed from the AOE as soon

as the observable items matching the query have been made

available to the observer. For dynamic observation, the con-

figuration stays active and keeps matching the events occur-

ring in the OE until the configuration is explicitly removed

by the observer. The internal observer, as defined in [19],

can be modeled as a callback associated with the observa-

tion and thus the triggers are limited to the changes of the

state of the OE.

In addition to static and dynamic observation, the envi-

ronment API provides the capability to "push" observable

items or events to selected entities, without any requirement

for previously expressed interest or even consent from the

receiver of the observation. This functionality is similar to

the environment-controlled soft-body properties discussed

in the previous section, and can become useful when imple-

menting environment-based coordination infrastructures. It

should be noted though, that the entities might not be un-

der any obligation to react to the received observations. So

the autonomy of agents is not compromised by such a push

capability. We acknowledge the risk of a malfunctioning or

a malicious component bringing down the whole system by

spamming others with bogus observations. This kind of risk

can be controlled using meticulous access control policies

regarding API access.

Due to the semantic nature of AOE, MAS designers can

take advantage of ontologies when designing observers and

the OE. AOE infrastructure can use the inferred data when

matching the state or events to the observation configura-

tions. For example, by defining a class inheritance hier-

archy for alarms, an agent is able to monitor all types of

alarms in the system simply by configuring AOE to forward

the events matching the root class of the hierarchy.

AOE allows an entity to dynamically focus its observa-

tional capabilities according to the task at hand. This does

not however mean that the entity could always observe all

the soft-bodies in system. One of the key features of sit-

uated MAS is the locality of interaction, which limits the

interaction space of an entity to its observable neighbor-

hood. In AOE, the locality can be modeled using obser-

vation rules.

2.3 Observation Rules

Rules in AOE are only used to limit the visibility of the

information stored in the observable environment. In other

words, rules control the read rights of properties and types

stored in the soft-body. Observation rules cannot be used

to modify or restrict the information stored as part of the

soft-body.

The evaluation context for the rules is always the con-

tent of the observable environment. For example, a rule can

limit the visibility of the files made observable by agent X

to the agents that can be observed to be part of the same or-

ganization as agent X. We acknowledge the security issues

related to this arrangement. If the access to some confi-

dential information is associated with an agent-controlled

value in the soft-body, it is easy for the observing agent to

change that value to something that grants the access (to

”disguise”). One way to resolve the problem is to rely in

access-granting rules on environment-controlled properties

of agents, rather than on agent-controlled ones.

Every rule has a level and a priority. So called ”laws

of nature”, or environmental rules, can be added using the

environment API. These first-level rules always take the

precedence over any other rules. First level rules can, for ex-

ample, limit the visibility of confidential information based

on properties controlled by the environment (see section

2.1). The second level rules are the ones added through

the agent API. These can be, for example, task related rules

that limit the visibility of some information made explicitly

observable by the agent. Observation rules can be added

dynamically at runtime, but there is currently no sophisti-

cated way, beyond the rule priorities, to handle conflicting

rules at the same level. The observation rules, in addition to

the externally controlled soft-body properties and push ob-

servations (see section 2.2), are the third concrete tool for

implementing the coordination mechanisms using AOE.

3 JADE Implementation

This section presents some details of the JADE [1] based

implementation of the AOE framework described in the pre-

vious section. JADE middleware platform was selected

as the basis for the implementation because of its relative

popularity amongst the FIPA compliant platforms, in both

the academic and industrial communities. Also, the cur-

rent service-oriented internal architecture of JADE, which

is based on the distributed version of the composition fil-

ters pattern [2], provides excellent facilities for extending

the platform through custom kernel services. Since the role

of the AOE is an infrastructural one, the most natural place

to implement it is at the kernel level. This allows us to get a

lower-level access to the data provided by the JADE frame-

work by filtering the existing core services. Figure 2 shows

the technical architecture of AOE in relation to the other

services existing on the platform (Notification and Messag-

ing services). The implementation is designed as a general

plug-in and can therefore be integrated as part of any JADE

application.

339

Figure 2. Technical architecture of AOE for
JADE

The goal of the prototype implementation was to make

both the state and the behavior of the agent observable. We

decided to let the agent modify its observable state (soft-

body) explicitly by using the agent API. For observable

behavior, we wanted to make both a configurable list of

JADE behaviors (practical actions) and the ACL messages

(communication actions) always observable. These features

were implemented using the environment API. The imple-

mentation uses a service filter to catch notification events

created by agents in order to keep track of all active behav-

iors. Whenever a behavior matching the configuration of

practical actions is added to the agent’s scheduler, statement

of the form agentX aoe:does actionY is automatically added

to the agent’s soft-body. We use a similar filter to capture

messages from the messaging service, but instead of filling

up the agent’s soft-body by adding all the messages there,

we use the push capability of the environment API to inform

the possible eavesdroppers via observable events.

It would have been possible to implement similar func-

tionality using just agents with the help of techniques uti-

lized in Sniffer and Introspector agents shipped with JADE.

However, the kernel level implementation removes the need

for duplicating sent messages or wrapping event notification

into ACL messages, because the observable data is directly

available to the service.

We use Sesame [4], an open source RDF repository, for

storing the state of the observable environment. The soft-

body is implemented as two entity-related contexts, one for

the agent and one for the environment API controlled data

(see section 2.1). For example, when agent X adds to its

soft-body the property ex:currentTemp with the value 30,

the statement X ex:currentTemp 30 is stored to the context

X/agent.

4 Related Work

Since AOE is designed to only facilitate the observation

process, it is not bound to, nor does it support any specific

coordination framework or model. The idea is that the mod-

els and frameworks can be built or extended using AOE.

Data-driven or subjective coordination [12], realized as ac-

tions selected by individual agents based on their percep-

tion of the state of the environment, can be implemented

directly using the soft-body and observation rules. Exam-

ples of such coordination models are tag interaction [7] and

property based coordination [26].

An objective coordination mechanism, which is uncou-

pled from the behavior of the agents [12], can be imple-

mented using the environment API. As highlighted in the

examples in the previous sections, environment API can be

used to impose external control over the observations and

observable state of an entity. This allows the creation of co-

ordination frameworks similar to the tuple centers presented

in [13] by Omicini et al.

5 Conclusions

The AOE framework presented in this paper provides a

common medium for observation-based indirect interaction

between MAS entities, such as agents and environmental

services. The observability of an entity is based on its soft-

body that acts as a container for entity-specific observable

information. The soft-body is further divided into two dis-

tinct parts: one for the state managed by the owner of the

soft-body and one for information managed by the environ-

mental services.

The use of AOE provides a partial solution to the verti-

cal and horizontal integration issues in MAS brought for-

ward by Weyns in [21]. AOE allows the agents to coordi-

nate their actions using a combination of middleware level

services like digital pheromones [14], computational fields

[11] or tags [7], all accessible through common observa-

tion medium, using RDF as the common data representa-

tion. AOE can also be used to bridge the gap between the

modeling and the implementation of indirect interaction in

MAS, because it eliminates the need to convert the inter-

action modeled as indirect into direct message passing be-

tween the interacting entities at the implementation phase

[10].

We also reported on our implementation of AOE frame-

work that is based on JADE agent middleware platform and

Sesame RDF repository. We are now in the process of cre-

ating the first stable version of AOE for JADE. Our goal is

to make this version available under an open-source license

and continue its development as part of the JADE commu-

nity effort. We also plan to evaluate the performance of the

software framework and work on services and applications

that take advantage of the AOE.

From the theoretical point of view, an interesting topic

for further research is the possibility for observation-based

learning with proper ontologies and the ability to ob-

340

serve/infer causal connections between agents’ actions and

changes to the environment caused by those actions.

Acknowledgments

This work is performed in UBIWARE project, which is

supported by Tekes (Finnish National Agency for Technol-

ogy and Innovation) and industrial partners Metso, Fingrid,

Inno-W, Nokia, and ABB.

References

[1] F. L. Bellifemine, G. Caire, and D. Greenwood. Developing

Multi-Agent Systems with JADE. Wiley, 2007.

[2] L. Bergmans and M. Aksit. Principles and design rationale

of Composition Filters. In R. Filman, T. Elrad, S. Clarke,

and M. Aksit, editors, Aspect-Oriented Software Develop-

ment, pages 63–95. Addison-Wesley, 2004.

[3] R. Bordini, J. Hübner, and M. Wooldridge. Programming

Multi-Agent Systems in AgentSpeak Using Jason. Wiley,

2007.

[4] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame:

A generic architecture for storing and querying rdf and rdf

schema. In ISWC ’02: Proceedings of the First International

Semantic Web Conference on The Semantic Web, pages 54–

68, London, UK, 2002. Springer-Verlag.

[5] R. Collier, G. O’Hare, T. Lowen, and C. Rooney. Beyond

prototyping in the factory of the agents. In Proc. 3rd Central

and Eastern European Conference on Multi-Agent Systems

(CEEMAS-03), LNCS vol. 2691, pages 383–393. Springer,

2003.

[6] M. Dastani, B. van Riemsdijk, F. Dignum, and J.-J. Meyer. A

programming language for cognitive agents: Goal directed

3APL. In Proc. 1st International Workshop on Program-

ming Multi-Agent Systems, LNCS vol. 3067, pages 111–130.

Springer, 2003.

[7] S. H. E. Platon, N. Sabouret. Environmental support for tag

interactions. In E4MAS, pages 106–123, 2006.

[8] Foundation for Intelligent Physical Agents. FIPA

Abstract Architecture Specification. Online:

http://fipa.org/specs/fipa00001/SC00001L.pdf.

[9] A. Helsinger, M. Thome, and T. Wright. Cougaar: a scal-

able, distributed multi-agent architecture. In Proc. IEEE In-

ternational Conference on Systems, Man and Cybernetics.

Volume 2, pages 1910–1917, 2004.

[10] D. Keil and D. Goldin. Modeling indirect interaction in open

computational systems. In WETICE ’03: Proceedings of the

Twelfth International Workshop on Enabling Technologies,

page 371, Washington, DC, USA, 2003. IEEE Computer So-

ciety.

[11] M. Mamei, F. Zambonelli, and L. Leonardi. Cofields: a

physically inspired approach to motion coordination. Per-

vasive Computing, IEEE, 3(2):52–61, April-June 2004.

[12] A. Omicini and S. Ossowski. Objective versus subjective

coordination in the engineering of agent systems. In Intelli-

gent Information Agents - The AgentLink Perspective, LNAI

vol.2586, pages 179–202, 2003.

[13] A. Omicini and F. Zambonelli. Tucson: a coordination

model for mobile information agents. In In Proceedings of

the 1st Workshop on Innovative Internet Information Sys-

tems, pages 177–187, 1998.

[14] H. V. D. ParunaK, S. Brueckner, and J. Sauter. Digital

pheromone mechanisms for coordination of unmanned ve-

hicles. In AAMAS ’02: Proceedings of the first international

joint conference on Autonomous agents and multiagent sys-

tems, pages 449–450, New York, NY, USA, 2002. ACM.

[15] E. Platon, N. Sabouret, and S. Honiden. Oversensing with a

softbody in the environment – another dimension of obser-

vation. In Proc. Work. Modelling Others from Observation

at International Joint Conference on Artificial Intelligence,

2005.

[16] A. Rao. AgentSpeak(L): BDI agents speak out in a logi-

cal computable language. In Proc. 7th European Workshop

on Modelling Autonomous Agents in a Multi-Agent World,

LNCS vol.1038, pages 42–55. Springer, 1996.

[17] K. Schelfthout, T. Holvoet, and Y. Berbers. Views: Cus-

tomizable abstractions for context-aware applications in

MANETs. In Proc. Work. Software engineering for large-

scale multi-agent systems, pages 1–8, 2005.

[18] V. Tamma, C. Aart, T. Moyaux, S. Paurobally, B. Lithgow-

Smith, and M. Wooldridge. An ontological framework for

dynamic coordination. In Proc. 4th Semantic Web Confer-

ence, LNCS vol. 3729, pages 638–652. Springer, 2005.

[19] M. Viroli. On observation as a coordination paradigm: An

ontology and a formal framework. In Proc. ACM Symposium

on Applied Computing, pages 166–175, 2001.

[20] M. Viroli, T. Holvoet, A. Ricci, K. Schelfthout, and F. Zam-

bonelli. Infrastructures for the environment of multiagent

systems. Autonomous Agents and Multi-Agent Systems,

14(1):49–60, 2007.

[21] D. Weyns, A. Helleboogh, T. Holvoet, and M. Schumacher.

The agent environment in multiagent system: a middle-

ware perspective. International Journal on Multiagent and

Grid Systems, Special Issue on Engineering Environments

for Multiagent Systems, 2008.

[22] D. Weyns and T. Holvoet. On the role of environments in

multiagent systems. Informatica, 29(4):409–422, 2005.

[23] D. Weyns, H. V. D. Parunak, F. Michel, T. Holvoet, and

J. Ferber. Environments for multiagent systems: State-of-

the-art and research challenges. In Proc. 1st Work. Envi-

ronments for Multi-Agent Systems, LNAI 3374, pages 1–47,

2004.

[24] D. Weyns, E. Steegmans, and T. Holvoet. Towards active

perception in situated multi-agent systems. Applied Artifi-

cial Intelligence, 18(9–10):867–883, 2004.

[25] M. Wooldridge. Agent-based software engineering. IEE

Proceedings of Software Engineering, 144(1):26–37, 1997.

[26] M. Zargayouna, J. S. Trassy, and F. Balbo. Property based

coordination. In I. J. Euzenat and J. Domingue, editors, Arti-

ficial Intelligence: Methodology, Systems, Applications, vol-

ume 4183 of Lecture Notes in Artificial Intelligence, pages

3–12. Springer Verlag, 2006.

341

