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ABSTRACT 

A structure is presented for passive esti— 
nation of range, bearing as well as velocity of 
a source from a linear array. It uses a quasi— 
optimal post—processor of the time delays, 
which are obtained from a generalized corre— 
lator with finite observation time. The post- 
processor ultimately naps the sequential time 

delay observations onto invariant source tra- 

jectory parameters over which smoothing is per- 
formed to reduce, jointly, the variance and the 
bias in the estimate of the source kinematics. 
The present approach remains viable for moving 
sources at long ranges, off—broadside source 
directions and high time delay variances. -Lal'- 

ysis and simulation results are presented 
to justify its usefulness under the stated 

stringent conditions. Review of and com- 

parison to existing approaches are made to 

highlight the viability of present approach 
in the estimation of source trajectory. 

I. INTRODUCTION 

Under study is the basic problem of passive 
localization and motion analysis of a source ob- 
served from a linear array. Passive localization 

is concerned with estimation of the range and di- 
rection to a source from differences in arrival 
times or tine delays Ti and 12 measured respec- 
tively between sensors I—Il and sensors Il—Ill 

(Figure 1). When the measurements are perfect, 
the law of cosines may be applied to triangles 
SI II and SIT III to solve for range R and direc- 
tion B in terms of time delays r1 and t2: 

2 2 2 2 
R P — .5C(Ti + 12) 

c(r1 — 12) 

_1 2 2 2 

B sin t_ Cr1 + 12) + c (Ti 
— 12)1 

2D 4DR 

(1) 

The sound speed c ía presumed 5000 ft/set; the . 
tossensors separation D Is set at 100 ft. Source 
motion parameters may be estimated from sequential 
observations of T1 and 12 that are provided in the 
cross—correlation process by cross—correlating 
the sensor outputs. The observation time is 
chosen short enough to permit the assumption of 
local stationarity. 
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This paper estimates the location and motion 
of a source from noisy time delay observations. 
In section (II), bias and variance on the esti- 
mates due to noise are discussed, then an approach 
is described to minimize their effects. In sec- 
tion III, a structure for the estimation process 
is given. In Section IV, applications of the 
structure are made to cases of interest, ad re- 
sults are shown. 

II. NOISY TIME DELAYS AND 
ESTIMATION OF SOURCE MOTION 

The time delay measurements are usually im- 
perfect and this causes fluctuations in the range 
and direction values, with subsequent errors in 
the velocity estimates. When a Taylor expansion 
on the range is carried out and only the linear 
term is relevant, the mean of the source range 
and direction are considered unbiased and their 
variance is a linear function of the time del;iy 
variance. For an effective array length, mini- 
mization of the variance in source location leads 
to minimization of the time delay variances. To 
effect this minimization, Hannan and Thomson (1), 
Hahn and Stretter (2), Knapp and Carter (3), 
Hassab and Boucher (4,5), have used varied proc- 
essors to estimate the time delays by including 
an optimum window or filter in the basic corre— 
lator. MacDonald and Schultheiss (6) developed 
a modified split beam tracker for time delay esti- 
mation. These techniques presume stationary 
source and array positions as well as signal and 
noise statistics. 

This linear analysis of equation (1) is phys- 
ically relevant at ranges close to the expansion 
point in the Taylor series and/or at small var— 
iances of the time delays. As the source range 
increases, as the source moves away from the ar- 
ray broadside, or as the tine delay variance de- 
teriorates with signal and noise conditions, the 
bias in the range is no longer negligible and the 
relation between the variances of the range to the 
time delays becomes quite non linear. Hassab and 
Boucher (7) have concluded that the problems of 
range bias and variance with the limited observation 
intervals in the cross—correlator, become inter- 
twined and have to be minimized simultaneously 
through sequential smoothing of the time delays 
over sucessive observation intervals. Otherwise, 
the bias can be substantial in varied practical 
source locations relative to the receiving array. 
Recently, this bias has been calculated in var— 
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ious forms by }lassab and Boucher (7), Billiard 
and Pinkos (8), and Ludeman (9), Guimond and 
Nardone, in an unpublished manuscript, illus— 
trated the detrimental effect of the bias by 
keeping the nonlinear terms in the Taylor expan- 
sion; this yields for a zero mean Gaussian noise, 
a lower bound on both the range bias R> and 
corresponding variance o 

h 

R 
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where a is the time delay noise variance. T 

A minimization of the error in the preced- 
ing range estimates has been carried out by in- 
creasing array length 13 or by minimizing the 
time delay variances. Practical considerations 
such as array dynamics, available space, signal 
coherence eventually impose limitations on the 
permissible array size. With this in mind, 
there is an interest in pursuing the other al'- 
ternative of extending the usefulness and ef- 
fectiveness of an existing array by increasing 
the signal processing gain. This paper explores 
the latter alternative, includes source kin— 
matics and array dynamics in the minimization 
process and demonstrates the accrued advantage 
in using this approach. 

The simultaneous reduction of range bias and 
variance for a moving source constitute the 
subject of this paper. For variance reduction 
of a stationary source, Bangs and Schultheiss 
(10), Carter (11), and Hahn (12) have developed 
various maximum likelihood localization esti- 
mators with opt imality conditioned on having a 

negligible bias and sufficiently long obervation 
time. Hahn uses a generalized correlator to 
estimate the various time delays, then applies 
a Gauss—Markov algorithm across the set of de- 
lays obtained from the several sensors to better 
the source location estimates. For improvement 
in delay measurements, Kirlin (13) assumes a 
model for the time delay variations and uses se— 
quential estimation to allow for processing of 
new time delay measurements, In their source lo— 
cation estimator, Bangs and Schultheiss institute 
a search for a maximum by adjusting the various 
time delays under the condition that all delays 
point to a single hypothesized location. Carter 
adjusts the hypothesized sonrce range and bearing 
then selects the corresponding delays until a 
maximum is obtained in the generalized correlator. 

The preceding approaches are optimal when 
stationarity of the physical phenomena can be 
presumed over a long observation time. In prac— 
tice, the signal and noise characteristics can 
slowly vary, and the time delays from a moving 
source may be considered quasi—stationary only 
over a finite observation interval. Those con- 
straints limit the observation time of the above 
estimators, hence deteriorating their performance 
from the optimal condition. Knapp and Carter 

(14), Schuitheiss and Weinstein (15) have dealt 
with the motion induced nonstationarity on T 
through consideration of Doppler estimation prob- 
lem. The ensued increase in the observation in- 
terval should remain short enough so that the 
time delays vary according to the chosen low order 
polynomial form as discussed in (15). 

Now a different approach is presented to ef- 
fectively reduce the variance along with the bias 
in the estimation of source notion over an ex- 
tended number of the correlator observation in- 
tervals. Its implementation is carried out 
through a quasi—optimal post—processing of the 
tine delays that are obtained from a generalized 
correlator with short observation interval in 
order to ensure stationarity of all elements in 
the problem. The post—processor is designed to 

ultimately map the tine delay observations onto 
invariant and unbiased source motion parameters 
over which smoothing is performed to reduce both 
the variance and the bias in estimating source 
location. This mapping imparts stationarity to 
the problem, thus allowing an effective increase 
in the averaging time of the localization system 
beyond that allowed in a generalized correlator. 

For illustration, let us discuss the classic 
problem dealing with estimation of the location 
[R (t),R (t)] and notion [V ,V I of a constant 

y xy 
velocity sonrce. To ensure stationarity, each 
observation interval of the sensor outputs is of 
finite duration; then a generalized correlator is 
used to measure the time delays. Over successive 
observation intervals, a time delay function has 

K k 
the form T(t) I d1 t 

k=0 
If estimation of the K—parameters in r(t) is at- 
tempted, complications arise due to the presence 
of noise and the unknown order K of the poly- 
nomial. The order K is not known a—priori since 
it is a function of the relative motion and the 
number of observation intervals. Over a limited 
number of observation intervals,however, T(t) is 
likely to vary in a linear fashion and parameter 
estimation may be carried out with a short memory 
filter (16). This filter has other benefits 
since it can aid in the estimation of time delays 
through the design of a gating mechanism (5,7). 
for the peak search in the correlator output. 
Additionally, the resulting decrease in tine de— 
lay variance allows an extended region of oper- 
ation away from a given array before the need 
arises to precede the triangulation scheme by 
spatial gating. Such gating can be helpful in 
the estimation process when indepdent information 
is available to define the most probable region 
of source location. For further smoothing beyond 
the few observation intervals in the short filter 
memory, the assumption of a certain type of source 
motion i.e. constant velocity can be very helpful. 
Then source notion is fixed by a pair of equa- 
tions 

(3) 
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and there are only four unknowns to estimate over 
all the successive observation intervals. Then 
the noisy time delays are constraiied within a 

processor to point to an estimate R(0),R(O), 

V ,V with a minimum mean square error. A de'— xy 
scription of a processor is given in section 
(III). The highly expanded memory system will 
yield an enhanced estimation of the unknown para— 
meters as is demonstrated in section (IV). 

III. ESTIMATOR STRUCTURE 

Reduction of the bias and variance in source 
location and motion estimates can be accomplished 
by effective use of statistical estimation tech- 
niques over sequential observation intervals. 
The estimator is an expanding memory filter that 
uses successive time delay observations together 
with an appropriate physical model of source 
motion to obtain smooth source trajectory esti- 
mates. 

Modeling of the physical dynamics of source 
motion can be accomplished using a variety of 
coordinate systems and models concerning source 
notion. Examples of often used coordinate sys- 
tems include polar, modified polar and carte- 
sian. Polar coordinates yield a state vector 
with elements consisting of source range, bear- 
ing and their respective derivatives, while the 
modified polar system develops a state vector 
using the reciprocal of range, bearing and the 
derivatives of range and bearing, all normal- 
ized by the range. Cartesian coordinates yield 
state vector elements consieting of the X—Y 

components of source range and velocity in de- 
veloping a source motion model. A usual basic 
assumption concerning source motion is to con- 
sider it to be of constant velocity over the slic— 
cessive observation intervals. If this assump- 
tion is restrictive then more sophisticated source 
dynamic models can be used that actually charac'- 
terize source maneuvers. Accordingly source mo- 
tion is described as piecewise constant; that is 

consisting of non—maneuvering portions joined by 
maneuvering portions. The maneuvering portions 
can then be modeled as random velocity pertur- 
bations resulting in the use of adaptive filter- 

ing techniques (17) or can be modeled as an un- 
known but deterministic input resulting in the 
use of estimation/identification techniques (18). 
It night be pointed out that the constantveloc— 
ity assumption is the basis for either technique 
and thus will be the approach taken in the paper. 
Finally, the cartesian coordinate system will be 
used in developing the constant velocity source 
motion. Assuming a unity sampling rate, the dis- 
crete time motion can be written as 

x(k+l) = A(k)X(k) + U(k) + D(k)W(k) 

where the 4xl state vector and 4x4 plant matrix 
are defined as 

V(k) 1000 

X(k) = Vy(k) , A(k) 
0 1 0 0 

R(k) 1010 

Ry(k) 
0101 

Here, V(k), Vy(k) 
and R(k) and Ry(k) are respec- 

tively the x and y components of source velocity 
and range relative to the array while U(k) is a 
4xl vector containing observer accelerations and 
the term D(k)W(k) is included to account for zero 
mean random perturbations in source and array mo- 
tion. 

Completion of the problem formulation requires 
that a relationship between the observables and 
desired state vector to be estimated be developed. 
For the linear array there exists three choices for 
observables. They consist of either using the 
measured time delays directly or.of mapping the 
measured time delays to range and bearing via equa- 
tion (1) or of finally converting the measured time 
delay to bearing and the reciprocal of range. 

The particular choice of observables depend 
on the coordinate system being used as well as 
the effect of measurement noise on the observables. 
For example, the combination of bearing and the 
reciprocal of range is amenable to the modified 
polar coordinate model since these quantities are 
linearly related to the system states (however, 
the discrete time system model becomes nonlinear). 
Further, the choice of bearing and range in con- 
junction with the cartesian coordinate model can 
result in biased state estimates since in effect 
equation (2) concludes the range measurement is 
biased. This result will be demonstrated in a 
forthcoming section. Finally, the approach used 
in this paper is to relate the time delay observ— 
ables T1,T2 to the cartesian coordinate system 
model. The result is 

r 22 
I-R÷[R +D -2RD sin 22 
[R—[R +D +2RD sin 

[Tl(k)1_ 
1 

B]21 +N(k) (6) 

LT2(k)j B]2jk 
Here N(k) is a 2xj. vector whose components define 
zero mean gaussian noise on the individual time 
delay observations. The range R and bearing 
B defined in terms of the system states are 

R(k) = [R2(k) + Ry2(k)] 
B(k) = 90° — tanx (k)1 + C(k) 

[ Ry(k)j 
where C(k) is observer heading. 

Examination of equations (4) and(6) reveal that 
we are faced with a nonlinear estimation problem, 
i.e., the plant model is linear in the states 
while the measurement relationship is nonlinear 
in the states. Application of statistical esti- 
mation techniques to nonlinear systems have re- 
sulted in the use of extended Kalman filters, non- 
linear weighted least squares, maximum likelihood 
or stochastic approximation algorithms. The ap— 
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proach used in this paper is that of an extended 
Kalman filter which essentially performs a linear— 
ization of equation (6) and then nses linear 
Kalnan filtering techniques (19). 

IV. SIMULATION RESULTS 

Three processing techniqnes are considered 
for simulation. The first scheme directly trans- 
forms the best time delays available from gener 
alized cross—correlators to range and bearing; 
i.e., a direct localization solution. The second 
method utilizes the direct localization solution 
as the measurements for an extended Kalman filter 

(EKF) and obtains motion parameters in addition 
to smoothed localization estimates. The final 
processor, the one proposed here, uses time de— 

lays directly in the EKF to obtain the local- 
ization and motion solutions. The results are 

presented in figures 2—21 which show the accrued 

improvement when using the proposed processor. 

The particular source—observer geometry se- 
lected for simulation has an initial contact at 
a range of 20 kiloyards and a true bearing of 
.1800. The source moves on a course of 900 at 
speed of 20 knots while the observer maintains 
a constant course of 1200 with a speed of 10 
knots. All angles are referenced to north. The 
data is available at equal intervals and is in 
the form of tine delays corrupted by additive, 
zero—mean, white—gaussian noise with a standard de— 

viationof 5seconds. The geometry is such that 
the source is initially 30° off broadside to the 

array and noves to a location at 60° by the con- 
clusion of the run. The range rate is closing 
and modest, resulting in a 10% decrease in range. 
Observer maneuvers have been deliberately avoided 
to exclude localization by the bearings—only 
ranging mechanism (20). Although other geometries 
(including observer maneuvers) have been simu- 
lated, these particular results are selected be- 
cause they are illustrative without being atyp- 
ical. For the given source—observer encounter, 
Monte Carlo simulation is carried out varying 
only the noise sequence added to the time delays. 

The errors in the direct localization re- 
sults for the first technique are obtained by av- 

eraging the solutions from a iOtf member ensemble. 
The ensemble mean and variance of the range and 

bearing errors are shown in Fig. 2,12,3,13 re- 
spectively. The geometric range solution exhi- 
bits a positive bias that is in good agreement 
with the theoretically predicted value in equation 
2. The effect of the nonlinear transformation of 
time delay into range has been to map the zero 
mean time delay error into a biased (non—zero 
mean) range error. Additionally, since the range 
error in figure 2 is averaged it does not ade- 

quately convey the spread of the error in time 
experienced on a single run, which can be sub- 
stantial and is reflected in the rms error plot. 
In contrast, the bearing error (figure 3) is small 
due to the inherently more accurate bearings ob- 
tainable from a long baseline array. 

Mean errors in the Kalman filter localization 
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and motion solutions obtained by processing first 
bearing and range measurements then time delays 
are displayed respectively in figures 4—7 and 
figures 8—11. Measures on the error estimates 
are obtained from a]jJ2—member ensemble. The in- 
itialization of both filters is identical. Since 
the true range is unknown, initialization of the 

ranging states and optimal weighting of the range 
measurement via the variance of equation 2 is not 
possible. Hence, a nominal range value, equal to 
the range gate, was selected, in this case 30 
kiloyards. It should be noted that processing of 
range and bearing is sensitive to both initial- 
ization and appropriate weighting of the range 
measurements which does lead to divergence of the 
estimates. 

The, 
above measures only reflect the 

runs that converge. This is in contrast to proc- 
essing the time delays directly where the vari- 
ances are known. Inspection of figure 4 shows 
that the range error is biased in much the same 
way as it was for the direct localization solution. 
This is the case since the filter is processing 
biased range measurements according to equation 2. 

Again the bearing error is small, figure 5. The 
filter also provides estimates of course and speed, 
which are also biased, as can be seen in their 
respective error plots, figures 6 and 7. The 
variance in the state estimates is reduced by the 
filter and this results in smoother solution 
estimates than those obtained by a direct local- 
ization solution. 

The results of the proposed post processor, 
using time delay data as measurements for the EKF, 
are shown in Fig. 8—11 and 18—21. The smoothing for the 
time delay data is seen to result in a minimized 
range error bias as well as a reduction in the 
variance, (Fig.8,l8) . Analogous results are ob- 
served for errors in bearing (.Fig.9,l9). course 
(Fig.lO,20) and speed (Fig.ll,2l). This improve- 
ment results because the EKF essentially smoothes 
the time delays by estimating the source state 
that minimizes the residual difference between 
the measured and estimated time delay measurements., 
The filtering process results in an effective re- 
duction of time delay variance and thereby re- 
duces the range error bias and variance. Finally, 
although not shown, the E} predictions of the 
error estimates are consistent with the actual 
errors from the simulation. 

V. DISCUSSIONS AND CONCLUSIONS 

A processing structure is derived to esti- 
mate the trajectory of a source based on indirect 
aspects (time delays) of the source motion. The 

proposed structure maps a non—stationary problem 
into a stationary one where appropriate smoothing 
in time is carried out. The addition of the pro- 
posed structure improves substantially on the 
techniques that process inappropriately mapped 
time delays or those that transform directly the 
best time delays available into source motion es- 
timates. The latter approach can only be optimum 
when stationarity of all the elements in the prob- 
lem including a static source aiid array can be 
presumed. For this reduced case the present ap- 
proach converges also to the optimum estimates. 



Though we have reported on the results o a 
cartesian system processing time delay obser— 
vations r1 and t2, other representations have 
proven satisfactory. For instance, the modified 

polar system has been used with equivalent suc— 
cess as well as processing other time delays 
combinations such as (T+'r2) and (r'-T2) and 
hR and B. It is recognized that the modified 
polar formulation facilitates the initialization 

process of the filter. For now, the principal 
point is that smoothing be carried out over un— 
biased parameters. 

The present study has dealt primarily with 
zero uncertainties In the time delay observations 
and the moving source or array. The form of the 
proposed structure however is amenable to fur— 
ther extensions and relaxation of these assump- 
tions. Modeling non—zero mean uncertainties in 

array and source motion can be approached 
through inclusion of adaptive filtering and/or 
parameter identification techniques. 

Finally, the total system gain in a local- 
ization and motion analysis system is derived 
from spatial or array gain (size, sensors 

placement, etc.) and temporal or processing 
gain (signal, data). System designers seek to 

optimize the use of the spatial and temporal 
dimensions. Practical considerations such as 

array stabilization, cost. . .eventually limit 
the achievable spatial gain. The usefulness of 
such systems can be enhanced through inclusion 
of appropriate temporal processing techniques. 
The present paper proposes such a technique. 
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Fig. 12 Direct Localization — 
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