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ABSTRACT 

Eleven different filter configurations were 
studied in order to determine their nominal rela- 
tive performance and stability when passively 
tracking an air target with ESM direction find- 
ing equipment. The characteristics of the vari- 
ous filters are: The composition of the state 
elements (Cartesian, polar with polar rates, 
polar with course and speed, or polar with Car- 
tesian rates); the number of state elements (four 
or three); the type of estimation used (all but 
two being Kalman filters); and the type of target 
model assumed (all but one being constant veloc- 

ity Cartesian). The filters were tested in a 
simulation against non-maneuvering targets assum- 

ing zero-mean uncorrelated measurement errors of 
known typical variance. Four filters were found 
to perform well and one other is possibly accept- 
able. A final choice would need to consider 

performance against a maneuvering target and per- 
formance with measurements from the actual sensor 
under consideration. 

INTRODUCTION 

Most algorithms designed to track targets 
using bearings-only measurements were developed 
by the sonar community for tracking surface and 
sub-surface targets. The highly nonlinear nature 
of this problem, however, indicates that differ- 
ent algorithms might be more suitable to the ESM 
passive tracking of an air target where the tar- 
get dynamics and bearing measurement errors and 
rates differ significantly. This study was de- 

signed to help answer the question of optimal 
filter configuration for this application. 

There are several questions and considera- 
tions that one should take into account to design 
such a filter. It becomes immediately obvious 
that the selection of a filter type for passive 
tracking is, in many ways, a repetition, under 
different circumstances, of an old problem which 
occurs in radar tracking filter development. 
That is, where should one put the nonlinearity 

t This work was performed while the author was an 

exchange scientist at the Admiralty Surface 

Weapons Establishment, Portsmouth, England. 
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in order to minimize its adverse effects? This 
problem occurs in tracking situations since most 
targets are best, in the sense of most linearly, 
described in Cartesian coordinates whereas obser- 
vations are made in polar coordinates. The anal- 

ogy ends here, however, since range measurements 
are not available and therefore the position of 
the target is not completely observable. The 
effect of this is to dramatically lengthen the 

probability density contour of target position 
in the range direction. Coupled with the gen- 
erally greater (relative to radar) bearing 
measurement error standard deviation, the problem 
of the nonlinearity is, therfore, more adverse 

since, for the ESM problem, it is more difficult 
to compute in the neighborhood where the necessary 
linearizationsare valid. Perhaps more important- 
ly, the stability of the nonlinear filter in such 
a situation becomes questionable. The stability 
problem, common to many types of nonlinear algo- 
rithms, results from the particular type of feed- 
back structure built into every filter; wherein, 
once the filter state has an "incorrect" value, 
due to observation or other type of error, this 
value is fed back into the filter structure, which 
is necessarily dependent on the state estimate, so 
that the next observation is processed incorrectly. 
Once this problem occurs, it happens on occasion 
that the algorithm never recovers but proceeds 
further from the correct value even when given 
good observations, thus effecting the nonlinear 
filter instability. As will be shown later in 
this report, it is apparently not too difficult to 
construct unstable algorithms designed to process 
such ESM measurements. 

Another consideration for the Kalman optimal 
estimators in this study is the error covariance 
matrix. This paper assumes that the reader has 
a general familiarity with the concepts of a Kal- 
man filter. It is necessary that the calculated 
error covariance of a Kalman filter be realistic 
in the sense that it is consistent with the true 
estimation errors. If this is not the case, then 
one should probably not bother to use such a fil- 
ter since the generally excellent performance of 
this optimal estimator is derived from the error 
covariance and the largest portion of its computa- 
tion is usually due to calculating this .covari- 
ance. Failure to achieve a reasonable consistency 
between the true error and the calculated covari- 
ance can result in many different types of prob- 
lems such as divergence, instability, or merely 
generally poor performance. In order to ensute 
that the Kalman filters used here do not suffer 
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from such problems, the ratio of the actual 
errors to calculated filter error covariance was 
monitored by the simulation. 

The objective, simply stated, is the devel- 

opment of a stable and efficient algorithm with 
close to the best possible performance. Fourteen 
different passive tracking configurations were 

initially considered in this study. Three of 
these algorithms were discarded on the basis of 
either stability problems or during preliminary 
testing leaving eleven for which results are re- 
ported. They are organized on the basis of the 

composition of their state vectors into four 

types: Cartesian, polar, course and speed, and 

hybrid (or mixed Cartesian/polar) state. The 
simulation is described and results for each fil- 
ter presented. This paper is a condensation of a 
much larger report and, due to space limitations, 
necessarily can not go into the detail that might 
be desired by some readers. The interested 
reader is therefore referred to Clark (15) for 
such details as computer program listings, etc. 

Initialization of all filters is based on 

exactly the same basic information (when pos- 
sible) so that all filters remain comparable. 
This infomration originates in the coordinate 
frame of bearing, course, speed, and range. The 
initial bearing estimate is simply the first 

measurement, i.e. 

0(1) Om(1) (1) 

which has an error standard deviation equal to 
the measurement standard deviation a, i.e. 

a0(1) 
= a 

The target is initially assumed to be radially 
inbound so that the initial course estimate is 

c(1) = 0(1) ± (3) 

The standard deviation of initial course errors 
is calculated assuming a uniform distribution 
from 0 to 21t radians around the estimate giving 

cr(1) = (4) 

The estimated speed is calculated from an assumed 
Cartesian zero-mean bivariate symmetric normal 
distribution converted to polar coordinates 

yielding an equivalent Rayleigh distribution with 
mean 

s(1) = aj 
and standard deviation 

0(1) a[2 - n/2 (6) 

where a is the assumed velocity standard devia- 
tion inartesian coordinates. The value chosen 

for a was 0.33 kilometers/second which is 

approxately Mach 1. The initial range was 

assumed to be 

r(1) = 175 kilometers (7) 

whereas the true initial range happens to be 
141 kilometers for all trajectories. The standard 
deviation of the initial range error is assumed 
to be 

0(1) = 81.65 kilometers (8) 

as in references 1 through 4. Having established 
the standard intial conditions in this reference 

frame, it is relatively simple to write them in 

any other coordinate system. This exercise will 
not be included in this paper due to space consid- 
erations. 

In this section, five variants of passive 
tracker based upon a Cartesian state vector are 
described. The state vector for each of these 
filters is given as 

K = [x x y y] (9) 

Since from the basic assumption, target motion is 
linear in a Cartesian frame, the state extrapola- 
tion equation is simply 

= 1X (10) 

and the extrapolated error covariance is 

= + (11) 

(2) where the prime denotes the new time and the hat 
denotes the estimate. The process noise matrix Q 
is used to account for unmodelled effects and is 
zero unless otherwise noted. The transition ma- 
trix for this case is simply 

1 i 0 0 

0 1 0 0 
= 

0 0 1 t 

0 0 0 1 

where is the extrapolation interval or time be- 
tween measurments. The differences in each of the 
Cartesian filter variants lie only in the manner 
the measurement updates are effected. We will now 
consider each of these in detail. 

Extended Kalman Filter 

The EKF is the textbook approach to dealing 
with nonlinearities in the update stage. The 

author built no simulation for this particular 
filter and no results are presented here. The 

INITIALIZATION 

CARTESIAN FILTERS 

(12) 
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EKF is discussed here mainly for completeness and 
also to expose the reader to several references 
which treat the EKE in the passive tracker situa- 
tion. To start with, the EKE has been applied-- 
apparently with success—-to the passive sonar 

problem. For example, Hunter and McDonald (7) 
used the EKE with no reference to any serious 
stability problems encountered, but mention large 
sensitivities to data interval, correlated mea- 
surements and maneuvers. In a very extensive 
Ph.D. thesis, Mitschang (8) used the EKE to pro- 
cess doppler shifted frequency as well as sonar 

bearings with no mention of problems. The author 
therefore concludes that, for the conditions and 

parameters associated with passive sonar track- 

ing, the EKE can often be utilized successfully. 
The question must then be asked: 'Will the same 
hold true for the case of ESM tracking of an 
aircraft?" 

Recent simulation experience indicates that 
there are stability and performance problems 
associated with the EKE when used in the ESM pas- 
sive tracking situation. Quoting from (1): "The 
processing of bearing-only data by the non—linear 
filter was unsatisfactory with [the assumed meas- 
urement error level] believed due to lineariza- 
tion problems with this error value." Even the 
iterated EKE demonstrated slow convergence if it 
converged at all. "The filter proved to be close 
to instability since divergence was found under 
some conditions." In more recent years, even the 
sonar people have attacked the conventional EKE 
for use with their passive tracking problem. 
Aidale (9) demonstrated via simulation that the 
EKE is "potentially unstable" and devised a 
"linear solution"—-a modified EKE--which he feels 

provides a "viable automatic technique for bear- 
ings-only target motion analysis." This approach 
was not examined by the author but might be 
worthy of consideration in the future. Tenny et 
al (10) discuss a large number of ad hoc modi- 
fications required to prevent divergence of the 
EKE when dealing with bearing observations of 

poor quality. Alspach's paper (11) points out 
the difference in performance between a simple 
EKE and an optimal bayesian filter in pictorial 
form and explains why EKE's do not perform satis- 
factorily. His bayesian algorithm is not (and 
was not intended to be) a computationally tenable 

approach to the problem. Finally, Chou (12) ex- 

plains the fundamental drawbacks of the EKE for 
bearings-only work and quantitatively analyzes 
the serious problem of "range collapse", the 
common form of instability for this problem and 
one the author has encountered in this work. 
Chou formulated two new approaches that avoid the 
source of the problem. The first approach he 
calls the Alternating-Coordinate-System Filter 
which is identical to the Hybrid Polar/Cartesian 
Kalman Filter developed independently in (2). 
This filter will be discussed and then further 
developed later in this report. Chou's second 
approach is a stripped-down version of the Gauss- 
ian sum method devised by Aispach and, as men- 
tioned, will not be considered further in this 
report. Therefore, the classifical EKE having 
been dispensed with, we will now move along to 
other Cartesian forms. 
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Pseudo-Linear Filter 

The Pseudo Linear Filter, developed in (4) 

by Blaydes and Holmes, manufactures a linear meas- 
urement by using the measured bearing and an 
estimated range to create the pseudo-linear Carte- 
sian observation. That is 

1 sin 0 
z = L 

I r cos L m 

and 

H = [1 0 1 0] 

where Z = HX + V 

(13) 

(14) 

(15) 

The measurement error vector V corresponding to 
Equation (15) can be found by differentiating Z 
and substituting finite errors for differentials. 
By squaring and taking expected values, the 

pseudo—measurement error covariance matrix R can 
easily be found. The usual linear Kalman filter 
update equations can now be used. The state up- 
date equation is 

X' + K(Z - lix') 
where K P,HT(HP,HT + 

The error covariance is updated as 

= (I - KH)P' 

(16) 

(17) 

(18) 

The filter model at this point represents the 
Pseudo Linear Filter as presented in (4). It only 
remains to specify the value of estimated range to 
used in the pseudo-measurements and the associated 
range error variance. The problem is, of course, 
that there is no independent range information 
available. Blades and Holmes recommend using the 
current value of and a which the author there- 
fore used. The Kalman filter assumes, however, 
that the error associated with each new "measure- 
ment" is independent of the previous errors and, 
of course, this is not the case. The filter 
believes that range estimates are improving when, 
in fact, there is no basis for this and the range 
variance becomes unrealistic. 

Correlated Pseudo-Linear Filter 

An algorithm that accounts for serial corre- 
lation of the measurement error was developed in 
Reference 5 from a smoother/filter originally pub- 
lished by Sage and Melsa (6). It uses the basic 
measurement Equation (15) as before but also 
assumes that the measurement noise is the output 
of a linear discrete system driven by zero-mean 
white noise. The development of this filter is 
rather lengthy and will not be reproduced here but 
the interested reader is referred to Clark (5). 
In order to use this model, we assume that the 
range measurement error obeys a linear, first- 
order model, i.e. 

Vr 
= 

PVro + (19) 



where p is the range error correlation coeffi- 
cient for a one time interval A displacement. 
The variance of ,, the uncorrelated zero-mean 
discrete Gaussian random variable, is 

= a2(l - p2) (20) 

Notice that for the special case of p = 1, which 
corresponds to the situation when the range error 
is completely correlated (a simple bias), c van- 
ishes and the only random portion of the mesure- 
ment is that which originates for the observed 

bearing. 

The results of the Correlated Pseudo-Linear 
Filter as a function of the assumed range error 
correlation coefficient p are unfortunately not 
what one might expect. The performance degraded 
consistently as p moves away from zero toward 
one. In fact, no results were obtained for the 

p = 1 case due to the loss of the positive defi- 
nite property for the error covariance matrix. 

Apparently, there is nothing--except an observed 

improvement in error to covariance matching--to 
be gained by trying to account for the serial 
correlation of the range error in the Pseudo- 
Linear Filter. So, we therefore discard the 
Correlated Pseudo Linear Filter. 

An alternate approach to the range error 
correlation problem considered the effect of 
measurement error correlation with the state 
vector error. Unfortunately, this method suf- 
fers from the range collapse problem similar to 
the Extended Kalman Filter. Therefore, it also 
was discarded from consideration. 

Pseudo-Linear Alpha Beta Filter 

The Pseudo-Linear Alpha Beta Filter is very 
similar to the Pseudo-Linear Filter in that it 
uses estimated range to form Cartesian pseudo- 
measurements. The main difference is that it is 
not a Kalman filter, as are the others in this 
study, and does not require error covariance to 
compute the gains. For this reason, it is one 
of the fastest of all the filters tested. Also, 

by not using error covariance, the Psuedo-Linear 
Alpha Beta Filter also avoids a potential source 
of instability due to nonlinear coupling of the 
state and gains through the covariance matrix. 

Although the filter is still nonlinear in the 
state due to the use of estimated range in the 

measurements, it did not in fact display any 
stability problems in the simulated runs of this 
study. The alpha-beta filter is also presently 
the most widely used filter type for tracking 
and smoothing applications, and for this reason 

alone, no tracking filter study is really com- 
plete without, at least, considering it. On the 
negative side of the ledger, without the use of 
the error covariance, there is no easy method of 

coupling the two spatial dimensions and this fac- 

tor, because of the strong cross correlation 

present in the bearing-only problem in Cartesian 
coordinates, limits the accuracy obtainable from 
this method relative to the coupled Kalman filter. 
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The alpha-beta filter is usually considered 
to be a recursive formulation of the global least 
squares solution—-fitting" a straight line to 
the data--obtained from the normal equations. The 

gains used can be obtained from nuriTerous sources 
such as Quigley and Holmes (13) and they are for 
the k-th measurement 

2(2k-i) — 
k(k+1) (21a) 

Transformed Alpha Beta Filter 

The Transformed Alpha Beta Filter takes a 
different approach to Cartesian filtering than the 
previously described four filters. Conceptually, 
this filter starts with four stages: (1) Carte- 
sian extrapolation; (2) transform to polar; 
(3) update bearing and bearing rate assuming 
alpha-beta gains; and (4) transform to Cartesian. 
The last three stages can then be combined into 
one nonlinear Cartesian update step. 

By eliminating the intermediate polar states, 
the entire nonlinear Cartesian update can then be 
written compactly in vector-matrix form as 

X" = GX' (22) 

where 

S = sin cv (24c) 

y = Qv/A (24d) 

Even though written in this matrix form, which 

appears linear, the nonlinearity is embedded in 
the G matrix through the residual V term. In 

fact, this particular form of Cartesian filter 

presents the nonlinearity in a much clearer fash- 
ion than any of the others. 

Polar filters locate the tracking nonlinear- 

ity in the extrapolation step of the filter pro- 
cess. As bearing is necessarily an element of 
the state vector of a polar filter, the update 
step is always linear. Three polar Kalman filters 

= 
k(k+1) (21b) 

rC 0 S 01 

[ 

V V 

-yS C yC S 
V V V V 

G = (23) 
-S 0 C 0 
V V 

yC -S -yS C I 
- 

V V V VJ 

v = H - arctan (x'/y') (24a) m 

C = cos cv (24b) v 
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are presented in this section. The first one, 
the Transformed Polar Filter, is identical in 

concept and perfomrance to the Hybrid Polar- 
Cartesian Kalman Filter of Blaydes (2) but, by 
combining several steps of this filter into one, 
is several times faster. The second filter, 
which has been called the Compact Polar Filter, 
is a three-state contracted version of the trans- 
formed filter. Finally, the Random Acceleration 
Filter takes a different approach to the target 
kinetics as viewed in the polar frame. Let us 
now consider each of these three filters in turn. 

Transformed Polar Filter 

As mentioned in the introduction, the Hybrid 
Polar—Cartesian Kalman Filter generally performs 
quite well but suffers in implementation due to 
its considerable computational load. It appears 
to be several times slower than any of the other 
algorithms studied. Therefore, if a method could 
be found to speed up this filter, it could be 

very useful. In this section, a modification to 
the Hybrid Polar-Cartesian Kalman Filter is made 
which serves to accomplish this very aim. The 

resulting algorithm appears to operate at a rate 

comparable to the other filters. The idea for 
this approach originated from discussions between 
John Holmes of ASWE and the author. 

The orginial Hybrid Polar-Cartesian Kalman 
Filter was thought of as being basically Carte- 
sian with a transformation to polar after the 
extrapolation. Upon executing the linear polar 
update, the state and covariance were transformed 
back to Cartesian form. In order to understand 
the modification to obtain the Transformed Polar 

Filter, it is better to think of the Hybrid 
Polar-Cartesian Kalinan Filter as basically polar. 
The polar elements are therefore transformed to 
Cartesian for the linear extrapolation and then 
back to polar for update. The modification, 
which is called the Transformed Polar Filter, 
then merely combines these three steps into one 
nonlinear state extrapolation and a combined 
effective transition matrix. 

The polar and Cartesian state vectors are 
defined as 

r r] 

and 

X[x C 

If the transformation from polar to artesian is 
given by a vector nonlinear equation X = X(X), 
then the polar covariance is then transformed to 
Cartesian via 

= DPDT (27) 

where the Jacobian of X(X) is D(X) = aX/aX. 

The Cartesian state and covariance are then ex- 

trapolated as before 

XI = X (28) C c c 

P 4 P t (29) 
C c C c 

where is simply the same Cartesian transition 
matrix aCs defined in Equation (12). The subscript 
c is used again to distinguish Cartesian quanti- 
ties from unsubscripted polar elements. Finally, 
the extrapolated Cartesian state is transformed 
back to polar by X' = X'(X') and the extrapolation 
polar covariance is found €o be 

= 
CtPCIT (30) 

where C(X) = 

Notice that Equation (36) uses C' C(X') and not 
C. 

It now becomes clear that the state equations 
can be combined to form a single, nonlinear polar 
state extrapolation function which turns out to be 

X' = X'(X) = = (31) 
r' yr 

br + at 

where p = /r (32a) 

= 1 +Ap (32b) 

t (32c) 

y =Jt2 ÷ (32d) 

cv = arctan(t/) (32e) 

b con cv /y (32f) 

a = sin cv = t/y (32g) 

It is now easy to see that the covariance can be 
extrapolated in one step 

(33) 

where the equivalent transition matrix 4 is the 

product 

= 
C'4O (34) 

After a not insignificant amount of algebra, it 
can be shown that 

T 

T 
y y] 

(25) 

(26) 

1 Ac -Apd -Ad 

0 c2—a2/y2 2pcd 2cd 

0 aAr b+at 

0 ar(l+c) aA(1+Ap/y2) b—at 
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where c = b/y (36a) 

d = a/(yr) (36b) 

Actually, as it turns out, forming the matrix 
triple product in Equation (34) is not necessary. 
It can be shown--as it was determined after the 
fact--that the resultant matrix is exactly 
identical to the Jacobian of the nonlinear extra- 
polation function in Equation (31). That is, 

= BX'(X)/BX (37) 

In retrospect, this is not too surprising since 
one is dealing with linearization. It is not 
the type of result, however, that one could sim- 
ply write down without comfirmation. In any 
case, this linearization technique is the one 
used in the remaining filters of this type, i.e., 
those with nonlinear state extrapolation equa- 
tions. 

Compact Polar Filter 

Upon examination of the polar state extrapo- 
lation, Equation (31), it can be determined that: 
(a) r and r can be combined into one state vari- 
able .P = r/r; and (b) the remaining variables 0 
and 0 are functions only of p and not r or r. 
This is another way of saying that r and r are 
perfectly correlated in the extrapolation stage. 
For passive tracking with no measurements of r 
or r available, nothing in the update step serves 
to separate these variables. Therefore, we can 
say that there are really only three independent 
variables present in the bearings-only tracking 
problem. By eliminating a fourth, dependent 
state element from the estimation algorithm, one 
should be able to improve the performance of the 
filter. Also a 44 percent reduction in the num- 
ber of covariance elements results in an obvious 
computational advantage to be enjoyed by a three 
state filter over the ones with four state vari- 
ables. Let us therefore investigate this filter. 

The state extrapolation equation is readily 
obtained from Equation (31) and can be written 

0' 

= X'(X) = 0' = ely2 (38) 

p (p + 

where the definitions of the various extra param- 
eters are identical to those just given. The 
transition matrix can again be obtained by the 
differentiation process of Equation (31) and will 
not be repeated here. 

Since this is a three-state filter, it is 
not possible to completely specify position and 

velocity. This is due to the fact that the 

complete state is not observable in the bearings- 
only tracking problem. In order to estimate the 

complete state for comparison purposes, it is 

necessary to make an assumption about the state. 
For all the three—state filters in this study, 

it was decided that the speed, which is a con- 
stant and for which one might make a reasonable 
estimate, would be the most desirable parameter 
to assume and the initial estimated value was 
used. It is then relatively easy to determine 
the range estimate. 

Random Acceleration Filter 

The Random Acceleration model represents a 
different approach to the problem of describing 
the kinetics of the target. All the other filters 
in this report assume a constant velocity Carte- 
sian target. While this model is not, of course, 
strictly accurate as targets can and do maneuver, 
it generally is applicable the greater part of the 
time or at least piecewise between maneuvers. The 
problem for polar filters is that this linear 
Cartesian motion is nonlinear in the polar frame 
as can easily be observed in the previous two 
models. Polar accelerations appear which are 
sometimes referred to as "pseudo' maneuvers in the 
literature. The Random Acceleration Filter, 
rather than propagating these pseudo maneuvers in 
an exact nonlinear fashion, instead represents the 
observed angular acceleration as a sample trajec- 
tory from a population of random trajectories with 
first order temporal correlation. For a detailed 
discussion of this model, the reader is referred 
to Quigley and Holmes (13) or Clark (5).1 In 
other words, the filter assumes the angular accel- 
eration is a serially correlated random variable 
with known statistics. Specifically, the auto 
correlation for the acceleration is 

Q() = E[O(t)O(t÷A)] 

a EXP(-A/t) 
We therfore require only two parameters (a.. and 

to characterize the target maneuverabiIity. 
The parameter a is the standard deviation of tar- 
get angular acceleration and is the angular 
acceleration characteristic time (approximately 
0.8 times the mean time between zeroes or the 
inverse of angular acceleration frequency). One 

does not necessarily require that any particular 
trajectory will be well matched by this model but 
that one would expect that trajectory to be "con- 
tained" statistically in the random acceleration 
model and thus he a 'reasonable' sample from the 
assumed population. 

The state vector for this model is 

X= [0 ó 01T (40) 

with transition matrix 

1 q 

4= o 1 X (41) 

0 0 p 
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where z = A/to (42a) and range do not appear independently and, except 
for a priori initial conditions, no independent 

q = exp(-z) (42b) information is garnered from the bearings-only 
tracking process on either variable. In fact, 

= tö(l-q) (42c) only the ratio of these variables is inferred 
and speed and range are highly correlated. The 

p = t(rI+z-l) (42d) combination of these variables to eliminate this 
correlation therefore appears to be a logical 
modification. 

Another distinction of the Random Accelera- 
tion Filter is that, unlike the other filters in The state vector for this filter was chosen 
this report, it has non—zero process noise which to be 
is given as a function of the two parameters.. T 
The equations for the symmetric process noise X = [0 c c] (46) 
matrix can be found in Clark (5). 

where the dimensionless quantity c was used pre- 
viously in the .Course and Speed Filter. The state 

extrapolation equation can easily be obtained 
COURSE AND SPEED POLAR FILTERS from Equation (44) and is found to be 

o + arccos U 
This section deals with another type of 

polar filter in which the original polar velocity = c' c/f (47) 
components, angular and range rates, are replaced 
by course and speed. Three different filter con— c' c 

figurations are developed in turn based on this 
basic form of state vector. Let us now consider where u and f are defined as before. 
the first filter. 

Point of Closest Approach Filter 
Course and Speed Filter 

By calculating the point of closest ap- 
The state vector for this filter is given as proach (PCA), one can construct a version of the 

T Speed Over Range Filter which is even simpler in 
X [0 c s ri (43) that it has two constant parameters and only bear- 

ing itself as a function of time. First, we find 
The target state can be extrapolated a time in- the range at PCA by differentiating range as a 
terval A via an exact nonlinear function. The function of time and setting the derivative to 
extrapolated state can be written zero. Solving for time yields the time at which 

range is a minimum and substituting this time 
0' 0 + arccos u back into the original range equation gives us 

the range at PCA. 

x' = (44) rc 
= r(t) (48) 

Equation (48) can be used to eliminate r(t) in 
fr favor of the constant rc in the bearing equation. 

Let us define a new state variable 
where u = (1+cC )/f (45a) ô 

t = r /(As) > 0 (49) 
f = \"1+c+2cCô (45b) 

c — 

The reader might recognize the ratio s/r as the 
ô = c-B. (45c) maximum bearing rate which occurs at PCA. 

c 

c6 
= cos ô (45d) The state vector for this filter is then de- 

fined as 
c = As/r (45e) T X=[0 t ci (50) 

It can be seen that Equation (44) is of the gen- 
eral nonlinear form and the linearized matrix which can be extrapolated via 
Jacobian can be used to approximate the transi- 
tion matrix used for covariance extrapolation. 0' B + arctan w 

= t' = t (51) 
Speed Over Range Filter 

c 
As in the case of the Compact Polar Filter, 

a simpler variation of the previous Course and 
Speed Filter can be obtained by noting that speed 
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where w = sin ô/(h ÷ cos ô) (52b) 

h t/sin ô = r/(tis) 1/a (52c) 

Notice that for the radial target case, both I 
and sin 5 vanish but h can still be calculated 
using the later part of Equation (52c). Notice 
that for this situation h assumes a large value 
and the transition matrix 4) approaches the iden- 

tity matrix which is appropriate for the radial 

target case. 

The filters in this section are distinct 
from all the others presented in that the state 

vectors, in an effort to minimize the filter non- 
linearities, are chosen as a mixture of polar and 
Cartesian elements. Specifically, bearing is 
chosen as one element so that the update step 
will be linear. Ideally, one would like the re- 

maining elements to be Cartesian so that the ex- 
trapolation stage is, to the extent possible, 
also linear. 

x 

which can again be extrapolated by an exact non- 
linear function. 

0 

x' = 

xl 

y, 

where w (fi cosO - rj sin0)/(1 + e) (55a) 

= Luc/r (55b) 

= A/r (55c) 

= fi sine + fi cosO 
x y 

f = l + 2e + C2 

C = s/r =Vflx2 + fly2 
(55f) 

The reader might note that the definition of f 
and t are identical to their original defintions. 
They look somewhat different, however, because of 
the different functional dependence on the new 
variables. 

Compact Hybrid Filter 

It is again obvious that range and the Carte- 
sian velocities do not appear independently in the 
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Hybrid State Filter. These variables can there- 
fore be combined to form a compact (three state) 
filter as before. The obvious new variables are 

and 
fly. 

x=[0 
fix fly] 

The state extrapolation equation is then 

0' 0 + arctan(w) 

= = q/f (57) 

fly' fly/f 

The transition matrix is now smaller but more com- 

plex than for the Hybrid State Filter. 

The simulation is written in the BASIC compu- 
ter language for use on the Hewlett-Packard 9830 
computer. The simulation program was developed 
as a tool to evaluate the relative performance of 
the various passive filter configurations against 
three representative straight line targets ob- 
served by a bearings—only tracker with given 
measurement error statistics. For the interested 

reader, complete details of the simulation with 

listings and flow diagrams can be found in Clark 
(15). 

The trajectories were obtained by integrating 
from an initial position (x = -100 km, y = 100 kin) 

with given constant velocity Cartesian components. 
One trajectory is directly closing (C = 135°), one 
is initially crossing (C = 450) and one is in be- 
tween (C 90°). The starting point for each is 
identical and the velocity of each is 0.60 km/s 
(approximately Mach number 1.61). There are 
50 data points generated which are separated by 
4 second time intervals. The true bearings are 
calculated from the true Cartesian coordinates and 
simulated errors are added to generate the meas- 
urements. Gaussian random numbers are created 
from uniform random numbers using the Box-Muller 
transformation. A particular different seed is 
selected for the uniform random number generator 
for each of the three trajectories so that the 
measurements errors for each trajectory are 
different but that each filter configuration sees 
the same measurements for each of the trajec- 
tories. This procedure ensures that the results 
for the various filters are directly comparable 
without resorting to long Monte-Carlo type simu- 
lations. 

The previous sections have described 11 dif- 
ferent bearings-only tracking filter configura- 
tions, the computer simulation used to stimulate 
them and the detailed performance results which 

T 

HYBRID STATE FILTERS 

(56) 

DESCRIPTION OF THE SIMIJLATION 

Hybrid State Filter 

The state vector for this filter is chosen 
to be 

x = I® (53) 

0÷ 

fr 

x 

y 

(54) 

(55d) 

(55e) 

RESULTS 



were monitored by the program. This section 
evaluates the filters on a relative basis in 
terms of their estimation accuracy, stability 
and covariance behavior and finally their rela- 
tive computational load. One filter appears to 
have an edge as the best on the basis of these 
tests and three or four others appear to be good 
enough to also merit further consideration. 
Recommendations for additional work on these four 
filters are then suggested. 

Since this study is basically a relative 
comparison of several filter forms, the absolute 

performance of each particular filter is not 

highly relevant as a single entity but can best 
be interpreted when directly compared with other 
filters operating with the same data set against 
each particular target. With this thought in 

mind, one finds in Table 1 an overall summary of 
error performance in an absolute sense (except 
for a normalizing factor which is constant for 
each variable). En fact, all the bearing and 
course errors are normalized by the bearing 
measurement standard deviation and the range and 
speed errors by their respective initial error 
standard deviations, It should be noted that the 
use of the normalized errors does not imply that 
the error results will necessarily scale for 

other error levels because the filters in this 
report are nonlinear and, in all probability, so 
are the results. This form of dimensionless pre- 
sentation is nonetheless useful in that results 
should be approximately scaleable over some rea- 
sonable neighborhood of the nominal values. In 
Table 1 across the top, one finds the three tar- 

get numbers--with a reminder below each one de— 

scribing what kind of trajectory that target 
represents--and the last column represents the 

average of the three targets. Each of these 
columns is in turn divided into three columns 

representing the best root-mean-square error 
values of all the filters for that particular 
variable as well as the average of all the fil- 
ters for RFIS and bias errors. A few trends 
between the targets are certainly worth noting 
at this time. First of all, for the radial tar- 

get (number 2), the bearing and course errors 
are much better than for the crossing targets 
while the range and speed are much worse. It is 

easy to see why this is the case since bearing 
and course are easily discernable for the radial 
case while range and speed are totally unobserv- 
able. In fact, Target 3, which starts out exact- 
ly crossing, has the worse course errors and the 
best range and speed errors. One also notices 
that the bias portion of the errors tend to be 
the significant factor in that they are relative- 

ly small when the filters are performing best and 
tend to dominate the worse error values. Looking 
at course errors, one also suspects that the 
radial inbound initial condition estimate for the 
Kalman filters must influence the final outcome. 

Similarly, the range and speed initial conditions 
would have influenced their results. Obviously, 
for the three state filters, the speed bias error 

represents the total error in all cases. 

In order to present the results for each 
filter in a manner which does not require refer- 
ence to the performance of other filters, it was 
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decided to utilize the best 1*IS values to define a 

figure of merit as follows. 

FM = Figure of Merit 
a Best RMS Value/Filter RMS Value (58) 

This figure of merit necessarily lies between 
zero and one. The closer the value is to unity, 
the better is the filter and, if the figure of 
merit equals one, then that filter has equaled the 
best performance of any of the filters for that 
variable (say course) and that target. The bias 
errors will also be represented as a fraction of 
the corresponding root-mean-square values to make 
them easy to interpret on their own. Finally, 
another measure is defined for the Kalman type 
filters which is the covariance normalized state 
estimation errors. These values, called Covari- 
ance Factors, for each state variable and each 

trajectory, are the mean value of the square of 
the state error divided by the value of the re- 
spective Kalman filter error standard deviation. 

Therefore, if the Kalman filter is performing 
properly, the value of the Covariance Factors 
should be near unity. 

The computational effort required to effect 
one cycle (an extrapolation and measurement up- 
date) was also estimated. This was done by ex- 

amining each vector-matrix equation required to 

implement each configuration and counting or 
otherwise estimating the number of add/subtracts, 
multiply/divides and special "functions" such as 

trigometric functions (or their inverse) or square 
roots. Each of these computation types were 
totalled and then combined by more-or-less arbi- 
trarily assigning a relative value, called a com- 

putational unit, to each type of calculation. 

Specifically, the add/subtract were assigned the 
value one, multiply/divides the number 10 and 
functions the value of 100 computational units. 
Obviously such assignments actually depend on the 
particular computer used and on the algorithms 
used to evaluate the functions. These values were 

thought to be somewhat representative, however, 
and were therefore assumed to serve the purpose of 

obtaining a single number for comparison purposes. 
Two methods were used to obtain the actual values 
for each phase. If the equation under considera- 
tion was nonlinear--such as the nonlinear state 

extrapolations--or if a multiplicative matrix was 
sparse, the algebraic form of the equation was 
used and the number of operations actually were 
counted. If, on the other hand, normal matrix 

algebra with more-or-less full matrices could be 

employed, then formulae from Nendel's paper (14) 
on Kalman filters was used. If the values for a 

particular matrix were constant (such as the 4 

matrix for Cartesian filters) or were otherwise 

available, then it was assumed no calculations 
were necessary for that phase. As can be seen, 
the Random Acceleration and two alpha beta fil- 
ters are the fastest of all the configurations 
while the Transformed Polar Filter is the worst 

taking about 10 times more computational units 
than the Random Acceleration Filter. 

Table 2 is the overall summary evaluation of 
all the filter configurations studied here and 



includes a summary of all the performance and 

computational measures considered. The first 
seven columns are the average root-mean—square 
Figure of Merit values averaged over both param- 
eters and targets. Again, more detailed results 
can be found in (15). The next-to-last column is 
a weighted combination of these seven average 
values where the weighting factors are somewhat 

arbitrary values reflecting the author's opinion 
of the relative importance of each of the values 
when considering the potential use to which the 

bearings-only tracker might be put. Briefly, the 

following is the reasoning used in selecting the 

weighting factors: (a) between the coordinates 

(bearing, course, range, and speed), bearing is 

obviously the most important because it can be 

independently estimated and can be particularly 
useful when associating these tracks with those 
from other sensors; (b) Between the targets, it 
is felt that, for tactical reasons, the closing 
target (Target 2) is most important and the 

weighting factors were reduced as the targets be- 
coma oriented more toward crossing; (c) the coor- 
dinate weightings are more important than those 
for the target geometry. The final set of 

weighting factors for the seven columns are 
therefore as follows: (0.300, 0.225, 0.150, 
0.075, 0.075, 0.125, 0.050). Note that these 
seven values add up to one. Applying these mul- 

tiplicative weighting factors to the seven col- 

umns, one gets the weighted performance factor 
in the next to last column. The eighth column is 
the average fractional RMS bias where the average 
is taken over all the individual values in the 
results. Notice the high negative correlation 
between these values and the weighted performance 
values. It is obvious that the poor performance 
of some of the filters is driven by the propor- 
tionally high bias content in the root-mean- 

square errors. It also appears that, on average, 
even the best filters operating in these ide- 

alized (simulated) environments are going to con- 
tain about 50 percent bias content in their 
estimation errors! That is surprisingly high for 

supposedly unbiased estimators but it only serves 
to emphasize the difficulty of designing filters 
for this highly nonlinear situation. The next 
column of average Covariance Factors also dis- 

plays a high degree of negative correlation with 
the weighted performance factors. This also 
could be expected since one cannot expect the 
Kalman filters to perform well in an absolute 
sense when the actual errors are large relative 
to their own calculated error covariance. The 
next column of computational requirements for the 
filters only serve to point out that good per- 
formance in this situation can only be obtained 
at the expense of heavy computational burden. 

Pseudo Linear Kalman Filter 

The estimation performance values for this 
filter are very good. In fact, the FM values for 
two of the cases are 1.00 and the average values, 
particularly for bearing, are excellent. Unfor- 

tunately, the Covariance Factors are not particu- 
larly good although they are not so bad as to 
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indicate a divergence problem. The Pseudo Linear 
Kalman Filter does not perform nearly as well as 
it thinks it does and, given the correlated nature 
of the pseudo-measurement, this behavior is not 

unexpected. One possible method of eliminating 
the erroneous state error covariance is to artifi- 

cially increase the assumed range measurement 
error variance used by the filter in the R matrix. 
This technique keeps P from falling so rapidly-- 
thus making it more realistic--and partially 
accounts for the serial correlation of the range 
error. The results of this experiment are that if 
we double the assumed range error standard devia- 
tion, the desired effect is achieved, i.e., the 
Covariance Factors fall from an average of 1.41 to 
the almost perfect value of 1.01 while the per- 
formance in bearing and course degrades only 
slightly. In fact, the range and speed values 
actually improve. Tripling the range error does 
not further improve the Covariance Factor but 
starts to degrade performance more seriously. 

Presumably, one would want to optimize performance 
by varying the range error standard deviation 

although there seemed little point in doing that 
here. The main conclusion is that, by carefully 
choosing the assumed range error standard devia- 

tion, the Pseudo Linear Kalman Filter can provide 
stable bearings-only tracking with good perform- 
ance and realistic error covariance. 

Pseudo Linear Alpha Beta Filter 

The performance of the Pseudo Linear Alpha 
Beta Filter is poor, the worst in fact of all the 
filters tested here, although the bearing esti- 
mates for Target 1 happened to be the best of all 
the filters. It is understandable that the course 
and bearing errors for Target 2 are so bad, rela- 
tive to the Kalman filters, because all the Kalman 
filters are initialized assuming the correct ra- 
dial inbound course. The a priori weighting of 
this information in the Kalman filter propagates 
the correct course estimate longer than the least 

squares filter which uses no a priori information. 
This same reasoning probably also explains the 

good bearing performance of the alpha beta filter 
for Target I when the Kalman filter propagates the 

wrong course estimate. The overall speed errors 
for this filter are very poor and no explanation 
for this behavior has been found. Summarizing, 
the Pseudo Linear Alpha Beta Filter, while appar- 
ently stable, generally yielded quite poor per- 
formance. 

Transformed Alpha Beta Filter 

The Transformed Alpha Beta Filter might be 
described as a higher order or "more nonlinear"—- 
in the sense of not having been linearized--fil- 
ter than the Pseudo Linear Alpha Beta Filter 

because, by utilizing the small angle approxima- 
tion for the residual angle, one recovers exactly 
the Pseudo Linear Alpha Beta Filter. This inter- 

pretation of the effects of applying an approxi- 
mation might lead one to feel justified in 

expecting better performance from the Trans- 
formed Alpha Beta Filter. On the other hand, the 



assumptions in the update atep might, on reflec- 

tion, indicate poorer performance. Firat of all, 
range and range rate are not explicitly updated 
but are implicitly modified via other changes in 
the system state vector. It requires a Kalman- 
type filter to calculate the necessary cross 
correlations with bearing to obtain the gains 
and actually update range and range rate with the 

bearing residual. Also, the alpha beta gains 
that are employed for the bearing channel were 
derived under circumstances that do not exist for 
this application. Namely, these are that bearing 
is a linear function of time and that bearing is 
not correlated with any other variable (like 

range). In fact, a comprehensive least squares 
approach to the hearings-only problem can appar- 
ently only be attempted using a global (non- 
recursive), iterative nonlinear estimation meth- 
od. In any case, the author has found from the 
experiences of this study that performance expec- 
tations based on arguments of this type as often 
as not are incorrect. 

Let us therefore look at the results for the 
Transformed Alpha Beta Filter. On average, rela- 
tive to the Pseudo Linear Alpha Beta Filter, the 
Transformed Alpha Beta Filter performed slightly 
better in bearing, course, and range but slightly 
worse with speed. Since the first variables are 
more important, the Transformed Alpha Beta Filter 
has to be considered a bit better than the Pseudo 
Linear Alpha Beta Filter. On the other hand, 
contrasting these results with the Pseudo Linear 
Filter, which is a Kslmsn filter, one finds the 

slpha beta filters coming off poorly indeed. 

Transformed Polar Filter 

Comparing the results for the Transformed 
Polar Filter with the best filer so far, the 
Pseudo Linear Filter, we find the performance 
of the Transformed Polar Filter equals that of 
the Pseudo Linear Filter for bearing and course 
and exceeds it for range and speed. Also, the 
Covariance Factor is much better--without resort 
to artificial means—-with a value of 0.67 as 

compared to 1.41. Therefore, the Transformed 
Polar Filter provides the best overall perfor- 
mance of any filter discussed so far and it will 
be used as a standard for additional comparisons. 

Compact Polar Filter 

done. It is interesting that this filter produced 
all the best results for the closing case (Tar- 
get 2). The results only serve to emphasize that, 
for a highly nonlinear filtering application 
such as bearings—only tracking, it is not always 
possible to anticipate the performance of a parti- 
cular form of implementation. The average Covari- 
ance Factor is unity which is exactly what one 
would like to see. Based on these results then, 
the Compact Polar Filter should be considered a 
viable candidate tracking filter that should he 
considered further. 

Random Acceleration Filter 

The original description of the Random Accel- 
eration Filter did not specify the values of the 
two parameters, o and t0. Normally the selection 

process would involve an examination and/or anal- 

ysis of the target scenario to choose a set of 
parameters or an upper and lowerS bound for each 
parameter that might be used in some type of adap- 
tive filter as in Clark (5). Rather than go 
through this procedure, it was decided that a 

more expedient approach for the purposes of this 
study-—that is a quick answer to determine if the 
filter offers any promise--would he to perform a 
rough optimization on the two parameters over the 
targets in the simulation. As an initial guess, 
it was decided to vary a0 between 1C6 and 10_2 
radians/second2 and t0 between 20 and 100 seconds. 
The bearing and other estimation errors were then 

compared to find roughly the best combination of 

parameters. Surprisingly, it was found that the 
results were not particularly sensitive to t0 but 
that s value of approximately 50 seconds apparent- 
ly gave the best overall results. On the other 

hand, the results, particularly for course, were 
much more sensitive to the value of cx and a 

strong and definte error minimum was foun2 in the 

neighborhood of io radians/second2. Therfore, 
these were the parameter values used for the re- 
sults reported in Table 2 and used for purposes of 

comparison with the other filters. The overall 
tracking performance of this filter is relatively 
poor as compared to the Transformed Polar Filter. 
The Covariance Factors are very good with sn over- 
all average of 0.60. Therefore, the Transformed 
Polar Filter is the best of all the polar fil- 

ters with the Compact Polar Filter a close second. 

Course and Speed Filter 

The results for the Compact Polar Filter are 

disappointing to say the least. While one would 
have expected an improvement in performance over 
the Transformed Polar Filter when a extraneous-- 
or dependent--variable is eliminated, instead the 
performance is essentially the same for bearing 
and course but considerably worse for range and 

speed. The speed errors for a three-state filter 

are--using the basic constant speed assumed in 
this study--of course uncontrollable and it is 

likely that the speed error generated in turn 
the range error. The error in range over speed 
should have been monitored as well in the simula- 
tion and it is unfortunate that this was not 
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The only linearizing approximation that ap- 
pears in the Course and Speed Filter is in the 

extrapolation of the error covariance for bearing 
and range. Everything else is exact whether 
linear or nonlinear. The basic idea of this fil- 
ter was to minimize the smount of approximation 
required of course. As error covsriance is only 
approximate in any case and since an unknown 
amount of process noise must eventually be added 
to account for target maneuver, it would seem 
that this approach of putting the approximating 
linearization in the covariance extrapolation to 
be relatively insensitive. The use of course and 
speed should also be advantageous since they are 



constants for the non-maneuvering targets con- 

sidered here and are ideal target—oriented param- 
eters for which to specify maneuver statistics 
when a maneuver does occur. All these arguments 
supporting the apparent advantages of this con- 
figuration tend again to lead one to expect good 
performance. Unfortunately, as the results indi- 

cate, the a priori arguments are once again mis- 

leading, or at least partially so. The absence 
of results for Target 2 are due to an instability 
that will he discussed shortly. The irony of the 
situation is that the results for Targets 1 and 3 
are excellent--among the best of all the filters. 
In fact, for Target 1, the results for bearing, 
range and speed, and the average were the best of 

any filter. For Target 3, the course was the 
best of all filters and all the averages were 

quite good. Also, the average Covsriance Factor 
was excellent with a value of 0.70. Unfortu- 

nately, the instability of Target 2 spoils the 
other results as it obviously renders the filter 
unusable. 

Target 2 is the directly closing target and 
the instability is of the type known as "range 
collapse" which is known to plague other bear- 

ings-only trackers such as the Cartesian Extended 
Kalman Filter. The problem, of course, is that a 
radial target displays no information on either 

range or speed when observed with bearings-only 
so thst the filter can only hope to "coast" in 

range motion over the course of the trajectory. 
The Course and Speed filter, in fact, properly 
did just that over the first half of the trajec- 
tory. Eventually, however, the bearing error 
effects in the state vector crept into the non- 
linear state transition matrix and accelerated 
the range decrements and increased the closing 
spned at an ever increasing rate until eventually 
range vanished and even went negative. With no 

range observations to contain range estimates, 
this is a serious potential problem for any bear- 
ings-only tracker. Therefore, the Course and 

Speed Filter, while offering much promise, is 

unacceptable in its present form due to range 
instability. 

Speed Over Range Filter 

Point of Closest Approach Filter 

The results for the Point of Closest Approach 
Filter are again disappointing in that overall 

performance, in particular bearing, is quite poor. 
Again, arguments that might lead one to expect a 

priori good performance—-such as the simplicity 
of the configuration, tbe constant parameters, the 
linearity--have again led the author down the 

wrong path. The Covariance Factor, with an aver- 

age value of 1.71, is not at all good. In fact, 
erroneous error covariance may be responsible for 
the overall poor performance. This filter model 
(or a close variant) with its constant parameters, 
is probably the best candidate of all the models 
for implementation with a global nonlinear least 

squares estimation technique. In any case, the 

current Kalman filter configuration of the Point 
of Closest Approach Filter is unacceptable on the 
grounds of poor performance. 

Hybrid State Filter 

The results for the Hybrid State Filter are 

very fine indeed--particularly for bearing, range, 
and speed. Course errors are acceptable but not 

nearly as good as the Transformed Polar Filter. 
The Covariance Factor, with an average value of 
0.78, is very good. Apparently, the idea com- 

bining polar and Cartesian elements in one state 
vector has produced the desired results. 

Compact Hybrid Filter 

Again, the idea of combining dependent states 
has not yielded the desired improvement for the 
Compact Hybrid Filter. Although, coQrse shows a 

slight improvement, the overall performance de- 

grades relative to the original Hybrid State Fil- 
ter. Again, one reason for the lower performance 
might be due to a covariance problem since the 

average Covariance Factor here is 1.81. 

CONCLUSIONS 

In the Speed Over Range Filter, although the 

range instability problem has disappeared, the 
overall performance is very poor. In fact, the 
performance is so poor and inconsistent with the 
calculated covsriance that this filter could 

reslly be described as unstable, but the insta- 

bility is not strong enough to terminate the 

computer program. The Covariance Factors are so 

exceptionally large that it is surprising the 
absolute errors are as good as they are. This 

filter was, by fsr, the worst from the covariance 
viewpoint and is obviously unacceptable on this 
basis alone. The author could find no factor in 
either the design of the filter or in the compu- 
ter program that would explain the erstic behav- 
ior of this filter. Therefore, we must discard 
from consideration the Speed Over Range Filter. 
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Of the 11 filter configuration studies, 
therefore, we conclude that four (or maybe five) 
yield a performance good enough to merit further 
consideration. Four others should probably be 
discarded on the basis of poor performance rela- 
tive to what can be obtained. One filter--the 
Course and Speed Filter--must be discarded due to 

stability problems when tracking the important 
closing target. The last filter, the Speed Over 

Range Filter, should be discarded on the basis of 
a totally unrealistic Covsriance Factor. On the 
basis of only the results reported here, the best 
filter is the Transformed Polar Filter. This 
filter is similar to the Alternating-Coordinate- 
System Filter recommended by Cbou (12) and is a 
more developed (and quicker) version of Blaydes 

Hybrid Polar/Cartesian Kalman Filter (2). 



Since this study does not provide an ulti- 
mate choice as to which of the five filter con- 
figurations to recommended, three suggestions for 
further work appear pertinent at this time. 

(1) Maneuvering Targets. A representative selec- 
tion of maneuvering targets should be added to 
the targets considered here to determine which, 
if any, of the recommended filters offer any ad- 

vantages in this situation. It is important to 
keep the non-maneuvering targets in the scenario 
as well, of course, in order to measure the prob- 
able degradation of performance due to false 
alarms in any adaptation logic that may be imple- 
mented to deal with the maneuvers. The author 
would be surprised if typical performance against 
maneuvering targets is not considerably worse 
than against the constant velocity targets con- 
sidered here. If this is the case and if it is 

anticipated that the target scenario is dominated 
by such maneuvering target, it could call into 

question some of the conclusions presented here. 
It may be then that one of the simpler, but 
poorer, performing filters might be adequate for 
that situation (2) Parametric Studies. Some of 
the parameters held fixed in this work should be 
each varied over some realistic specified range 
of values to determine if the performance of the 
various filters remains basically the same and 

particularly if the same filters that perform 
best here remain the best under other conditions, 
Two parameters that come immediately to mind here 
are measurement error level and measurement up- 
date rate over which the passive bearings-only 
receiver has no control. (3) Sensitivity stud- 
ies. Studies should be made to determine the ex- 

pected degradation of performance when the 
assumed measurement error level in the Kalman 
filters does not match the real error level input 
to the filter. This a particularly troublesome 
problem to any maneuver detection and adaptation 
logic that may be employed. Also, ability to 
degrade gracefully in the presence of spatially 
and temporally varying biases and serially cor- 
relation should be examined. Ultimately, of 

course, while such general studies as this pro- 
vide the general base of information for deci- 

sion-making, the final implemented algorithm must 
reflect consideration of the realities of the 
actual sensor data, the actual target motions and 
the allocated computer time and storage. 
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