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ABSTRACT

Svarse delta function series occur as data in
many cremical analysis and seismic methods. This
original data is often sufficiently degraded by the
recording instrument response that the individual
delta function peaks are difficult to distinguish
and mpasure. A metnod, whicn has been used to mea-
sure these peaks, is to fit a parameterized model
by a nonlinear least sauares fitting algorithm.

The decon-olution approaches described here have
the aavantage of not requiring a parameterized
point spread function. nor do they expect a fixed
number of peaxs.

Two new metrods will be presented. The maxi-
mun power technique will be revizwed. A maximum
a posteriari tecnnique will be introduced. Resylts
on both simulated and real data by the two methods
will be presented. The characteristics of the data
can determine vhich metiod gives superior results.

INTROOUCTION

There are\two main requirements for the defini-
tion of a signai restoration method. The first {s
the date formation mudel. The second., and more con-
troversial requirement, is the restoration crite-
rion. It is in dac!ding upon this criterion that
the operator has the most latitude in determining
the appearance of the restored signal. Because of
this great latitude this is the stop most frequent-
1y subjected to criticism.

Tha choice of the data formation model s 3
facter of many things besides realistic accuracy.
Som: of these other factors are mathematical trac-
tabilfty, computaticral difficulty, and subjective
results. One model we will use Is the standard
lnear masei. This can be written in matr1r/vector
notation as

g s Nr +n, (N

~ ~

where 7 is an n x 1 data vector,
E is an n x nopoint spread funclior matrix,
fis ann x 1 voctor of the original signal,
nois an n x 1 vector of random nofse,

While not always the most accurate, this mdel has
proved useful 1n many applications, [n particular
ft has proved adequate tor one of the algori thms
described here.

orl sorrered unider the ausnices of the U.S. Dopt.
of Energy, Contract No. W740i-ENG-J6.

A modification of the above n»del {s useful
for Poisson noise. This model is more accurate
when the sensor is a photon-counting device as are
many x-ray detectors. Here we write

9° n(Hf) , 2)

~

where g(i) 1{s obtained by a Poisson noise process
n(:) with a mean of the ith element of Hf.

Once the model {s selected, although sometimes
before, a restoraticn criterion can be defined. It
{s in this definittion that the peculiar character-
istics of the signal can be tasen into account.

The signals that are being considered here are
sparse positive delta function trains. A signal

of a few positive spikes can arise in many areas
including chemical cnalysis and seismology. Th:
data we will usa comes from x-ray fluorescence spec-
tra. In this process a sample material s {rradfat-
ed Ly an x-ray source; the material then fluoresces
at discrete vnergies characteristic of the compo-
nent ¢lements. The intensity of detected radfation
at cach energy is required to determine the amuunt
of the clement present.

This ideal data is degraded by blurring and
nofse. The blur is caused by the imperfect re-
sponse of the recording instrument. The enerqgy of
every detected photon {s not measured correctly.
The noise arises from the statistical nature of the
emission of photons from the sample and the )imited
eff. iency of the detector.

Bec use of the nature of this type of signal,

the usur  restoration criteria do not produce yood
results. We would 1ike to recreate the orfy.nal
peaks or : least separate the peaks so that the

fnteyrated arca under cach one can be easily mea-
sured.  Qur iInterest In the peak values al the ex-
pense of the? backoround values precludes the use
of the minimum mean square error (or Wiener) filtor.
Likewise, conatrainod least squares deconvelution,
which finds the smoothest solutfon satisfying a
residual constraint, would not be appropriate for
this application. Linear r{lters, In goneral, do
not seem to produce acceptable results for thiés
pecial case.  Let us now consider two methods de-
signed with this type of data in mind.

MAXIMUM POWER

The fdeal signal, which was degraded to give
our data, consisted of o serios of spikes on a
retatively constant hackgreound.  The restoration
riterton that s selected must not only allow but



also encourage such spikes to exist. Furthermore,
the criterion =zust result in a restored sigral.
whicn could nave reasonably given rise to the data.
From the examination of the constrained least
squares retnod and later maximum a posteriori
methads, minymzing 3 quadratic function of the

estimate, ¢ resulis 1n a "smooth" restoration. The

resu.t that is d2sired here is just “he opposite.
Thus, 3 surple criterion is to maximize the func-
tion ij. It 1s noted taat this function is un-
bounced unless scme consi.;aint is placed on the
sglution.

The solution that is found must be feasible,
that is, it must be plaucsible that the solution
could have been degraded by the chosen model to
have produced 'he given data. One way to test this
{s to examine the residual of the linear model

ragq-=Hf . (3)

-~

[f f » f, the true solution, then r = n the noise.

Since we can never know what the true noise is, the
best we can 4o is to impose a condition that v is

1ike nofse. While the desircd statistical proper-
ties of r can be easily defined, finding methods of

enforcing *hese properties upon the residual is
more difficult. A less demanding statistical con-
straint is used in practice. In this paper, a fea-
sible soiution 1s one that satisfies

Zain e, (4)

19 - Hfy
where < is arbitrary. This cquation says that the
variance of the residuai s close to the variance
of the noise. [t is noted that this constraint
does not explicitly require f to be nonnegattve.

A special step In the alqorithm is raquired to en-
force this restriction. -
The maximum power solution is the estimate f,

-~

which satisfies Eq. (4) and has the largest norm
Ift, The method for obtaining this solution is

a4 double fteration method described in [1]. First,
a feasthle solution is found by an fterative method,
then 1t 1S iroved in the direction of maximum power
(norm), Annther feasibl~ solutfon is found from
this starting point as the cycle starts again,

Maximum power restoration is rased on the Vin-
car modee) (1), [t has been menticned that this
model 1S not the most accurate for most cases. We
will now cxaming a method hased on thg more accu-
rata Poisson noise model (Z2).

WAX1IWH A POSTERIORE/POESSON

An advantaae of the maximum a posteriori res-
toratfonr rethad 14 1ts versatility., This method
maximizes the pasterfor probability density,
p(tlu). which bv Dayes' law 1s a function of the

prior Jdensities ond is written

plgifin(f)
p(flg) = —— . ()
- »(s)

The maximization then is the restoraticn critericn.
The solution has teen derived for —any moaels anc
many a oriori probability distritutions.

The prcbapilities that neeo to be defined are
p(g{f) and p(f}. The former is just the Poisson

noise procass and is defined by

. L TR Y .
plgif) = & =—p 9. . (8}
~ ja) 91

where g, is the ith element in the vector Hf.

Because of the nature of x-ray fluorescence it s
reasonable to assume that the ideal signai is alsd
voisson distributed, hence

il £y

N e fi .

plt) o 7 — —— {r.
= a) £.1

where the overbar denotes the mean.

To derive the solution from £qs. (5-7) we take
the natural logarithm of £q. (5) and substitute :n
Eqs. (6) ana (7). Stirling's approximation for
the factorial is used to obtain the function

N
Y(f) = - i::I ‘-71 + L g,ing - Ig;ing + TG
(8)
- ofy ¢ If nf - If Inf 4 If,

Substituting Kf for g, differentiating with re-
spact to f, ond setting the result equal to zero,
we obtain the implicit solution

HTg T
fu >~ . \
tnf = inf + = - MY (92
or
- T‘]
Eqiexpl_llnl-{--l]. (1)

where | (l.l....l)T. and the division and mulg -

ptication of vectors is done pointwise, [t shouid
be noted here that the solution to Eq. (10) fs
{mplicitly nonneqative.

The solution mothod s the modfified Plcarcd
iteration [2), wnig¢n is given by

1
.
=

, P A P
foor et (e B e G 1)]



wnere - is 2 convergence acceleration term. The
1 cerori average f can de fixed at the start of Lhe
It nas
Seen fcuna that letting f = fk produces the best

res.12s. This is reasonable if the mean is the
soluticn t¢ wnich we wish the algorithm to con-
verce. The estimate of the mean should improve
witn successive iterations.

The tw0o methods just cescribed are based on
different models and nave very different appearing
solutian equatians, The two iterative algnrithms
have one factar in common: the solution at the

(k *+ l)‘h sten is the solution at the kth step plus
a multiple of that solution. This characteristic
means that hign valyues will be emphasized and low
values deemphasized. This is the kind of behavior
that is desired for the type of functions discussed
in thrs paper.

iterat:ion or it can vary at each iteration.

RESULTS

The restoratian metnods were compared on “our
camputer simulations and on one set of actual x-ray
fluorescence data. The parameters that were varied
in the simulations «ere the noise 'evel and the
backgrourd intensity., The magnitudes of the spikes
in the simulated data were chosen to be realtisti-
cally similar to the xctual data. The results of
the applications of these methods are seen in the
figures. B8ecause the range of the data {s large
compared to tne magnitude of some of the effects
that are Iimportant, the results are plotted on two
scales.

in the case of a low noise level and 2ero
background (Fig. 1) the maximum power gives the
correct pedak values within '% accuracy. The MAP/
Poisson method gives an integrated vaiue about the
peaks of the same accuracy, however, the restored
peaks are not as wel’ defined. There are more ob-
vious noise artifacts dlong the baseline of the
maximym power restoration. These spike artifacts
are caused by the algorithm generating a maximum
power solution in a reqion of the data where it is
{nappropriate.

The integrated value nf the highest peak o
the MAP/Poisson method for the case of luw back-
ground and high noise (Mg, 2) is agaia within 1%
of the correct value. The integrated value of the
same peak for the maxinum power restovation is over
2% high. This again reflects the nature of maximum
power; adding 1ofse {s adding power to the total
signel.  The nrica of the qood soparation appears
to be numerrcal accuracy.

The other two cases clearly show the problem
that a hiun background yives the maxfmum power
methos (Fias, J and 4), The case of high noise and
high background (I'tg. 4) causes artifacts of such
maguitude 1n the maximum power solution that the
smallast peak fs difficult to detect., The MAP/
Pofsscn method produces a distinct undershoot about
the peaks that is wndesirable tor the cases of high
backqround.

fhe mstoration of actudl recorded (Fig. 5)
shows thn sann praperties as the simulations,  This
case F111s sonevhere between the high and low nofse
cdses and combines high background on one side of

the peaks and low on the other. The separation of
the peaks is better in the maximum power restora-
tion. The integrated peak values can still be re-
liably estimated from the MAP/Poisson solution.
Both methods yield integrated values that are with-
in 55 of the known values for this experiment.

CONCLUSIONS

Eoth methods produce results that are superior
to the usual linear restoration methads for the
sparse delta function series signal. The maximum
power method appears to be of more linited value
than the MAP/Poisson method. This is a result of
its global definition: that Is, it produces a
maximum power restoration in areas cf little signal
power where thls criterion is inappropriate. This
characteristic could be altered by local processing
of the signal.

The MAP/Poisson method is less aggressive than
maximum power and is less sensitive to noise. Al-
though the separation of peaks is less definite,
the numerical accuracy is greater in the case of
higher noise levels. Because of this the MAP
method is probably the more useful methad in the
general case.

Future work on the maximum power method might
concentrate on an automatic method of detecting
when to apply that algorithm. Methods of elimi-
natirg the effects 2f high backgrounds also need
study. The undershnot beside peaks in the MAP/
Poisson schema needs to be corrected. It would be
{nteresting to see 1f th. methods could be com-
bined to give the gnod separation of one and the
stability of the other.
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