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ABSTRACT

The problem of reconstructing a multi-dimensional field from noisy, limited
projection measurements is approached using an object-based stochastic field model.
Objects within a cross-section are characterized by a finite-dimensional set of
parameters, which are estimated directly from limited, noisy projection measurements
using maximum likelihood estimation. In Part I, the computational structure and
performance of the ML estimation procedure are investigated for the problem of
locating a single object in a deterministic background; simulations are also presented.
In Part H, the issue of robustness to modeling errors is addressed.

L INTRODUCTION

The problem of reconstructing an n-dimensional function from its (n-1)-dimensional
projections arises, typically in the context of cross-sectional imaging, in a diversity of
disciplines. In the two-dimensional (2D) problem, let f(x) represent the value of the
cross-sectional function (for example x-ray attenuation coefficient) at a point specified
by the vector x - (xl x2)'. The projection of f(x) at any angle 9 is a ID function
denoted as g(t,9) shown in Figure 1. For a given value of projection angle 9, the
projection evaluated at the point t is the integral

g(t,9) - f ff(x)8(t-x') dxIdx2 - f(x)ds X [Rf](t,9) (1)

along the line
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I(t,B) - (x: xcosO + x 2sin9 - t} - (x:x'9 - t (2)

0 E (cose sin#)'

(t,O) E Y i {(t,o): - < t< o % , 0 S< r}

as shown in Figure 2. In (1), 8(t) is the Dirac delta function. Equation (1)
corresponds to the Radon transformation, which maps the 2D function f: R 2-R into
the function on a half-cylinder g: Y-'R; g(t,O) is called the Radon transform of f(x)
[1-3], and is also denoted by [Rf](t, ). The reconstruction problem, determining the
function f from its projections g, is an inverse problem, since the measurements are
specified by the integral equation in (1) which must be inverted to recover an estimate
of the original function.

Reconstruction from projections has been employed successfully in radio
astronomy, electron microscopy, medical CAT scanning and other applications.
Recently, it has been suggested that these techniques be similarly applied to a number
of technologically demanding and novel applications, for example real-time monitoring
of high production rate manufacturing processes, mesoscale oceanographic thermal
mapping, quality control nondestructive evaluation, and 'stop action' imaging of very
rapidly changing media [4,51. Virtually all of these applications, as well as many
current applications, are characterized by a limited availability of measurement data,
due to:

* economic constraints that limit the total number of measurement transducers--
e.g. oceanographic transducers are sophisticated, low power units that are costly to
build, place and maintain [5].

* time constraints that limit measurement quality -- e.g. limited measurement time
interval in "stop action' imaging of very rapid events, or in nondestructive testing
of high production rate processes such as steel manufacturing [4].

* safety and operating constraints that limit the measurement quality-- e.g. high
temperature and/or caustic operating environments in certain process monitoring
applications may limit sensor accuracy and SNR performance; in medical
tomography, patient safety constrains the overall x-ray or injected radionuclide
dose [12].

* geometrical or physical constraints that limit the view angle-- e.g. in ultrasonic
imaging of the heart, where bony structures limit the view angle, or in
nondestructive testing of large objects.

* inaccuracy of the measurement model-- the simple line integral measurement
model in (1) is an idealization that does not incorporate, for example, the efects
of refraction, diffraction, scattering and polychromaticity.

It is well known, however, that when the projection measurements are limited in
number or view angle, or have high noise levels, the inverse problem is ill-posed
and/or has a numerically sensitive or noisy solution [1,2,11,12] -- that is, it is not
possible to reliably produce accurate, artifact-free and high-resolution imagery of the
cross-section.
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In a number of applications, particularly applications where the measurement data
are limited, the ultimate goal of processing the projection measurements is typically far
more modest than obtaining high-resolution cross-sectional imagery. Rather,
reconstructed imagery is an intermediate result of the overall analysis, and is itself
processed (either visually or by automated or semi-automated techniques) to extract
very particular information about the cross-section.

In many cases, this particular information is related to objects, regions or
boundaries within the cross-section. For example, in medical CAT scanning, the
detection, localization and characterization of organs and tumors is a routine step in
diagnostic interpretation [6,7]; the localization and identification of boundaries of
high.contrast objects such as bone and metallic surgical clips by direct processing of
projection data has also been studied [8]. Another application where object-related
information is desired is oceanography; large, high-contrast thermal regions are
present in many oceans (e.g. cold-core rings [5] and the Gulf stream), and
oceanographic acoustic tomography has been investigated as a means of detecting and
tracking these regions [5,9]. In the area of non-destructive evaluation, tomographic
techniques have also been studied for detecting and characterizing interior cracks and
flaws in materials [101.

The focus of this paper is on processing projection measurements when (1) the
overall goal is to extract object-related information about the cross-section, and (2)
limitations on the total number, SNR, or overall view angle of the projection
measurements preclude the formation of high-resolution, artifact-free reconstructed
imagery. In particular, an alternative to full image reconstruction is proposed and
investigated that involves processing limited, noisy projection measurements directly,
in order to detect, locate and characterize one or more objects within the cross-
section. Specifically, a stochastic, object-based field model is presented, in which
objects are represented by a finite number of parameters, characterizing, say, the
object location, size, boundary shape, contrast, and/or detailed internal density
variations. These parameters are estimated, for the case of limited projection
measurements corrupted by additive white Gaussian noise, by maximum likelihood
(ML) parameter estimation [131.

While it is possible to present procedures which may be applied to cross-sections
containing arbitrarily complex arrangements of objects and boundaries, the focus is
rather on a simpler problem, in order to lay bare the problem essentials. The specific
problem considered is estimation of the location of a single, randomly-located object
situated within a known background field; problems of this type, involving detection
of objects in an otherwise completely known field have been of interest for some time
in radiology 161. Concentrating on this specific localization problem allows (1) the
development of insight into the computational structure of the parameter estimation
(the computation is shown to resemble one solution to the image reconstruction
problem, namely the convolution back-projection (CBP) inversion formula [11), (2)
the demonstration of quantitative tools that can be utilized in critically evaluating
estimator performance and robustness in a systematic manner, and (3) the
establishment of a framework within which more sophisticated algorithms may be
developed which take into account, for example, detailed a priori information about
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object boundary shapes, or the presence of multiple objects. One particular result
obtained which demonstrates the potential utility of this approach is identification of
the minimum size of an object that can be located from given noisy projection
measurements.

In developing the relatively simple localization problem, a number of
simplifications are necessarily made. The robustness analysis in Part II assesses the
robustness of ML object localization when applied to less idealized versions of the
problem, taking into account, for example, that the real object may have a shape and
density that differ from the simple assumed shape and density, or that additional,
unmodeled objects may be present within the cross-section. This robustness analysis,
by providing insight into the sensitivity of the performance to different types of
modeling errors, in turn provides intuition about potentially useful extensions or
improvements in the development of more sophisticated algorithms.

In the next section, (i) a simple stochastic, object-based model for the cross-
section is introduced, as are models for discrete and continuous measurements, and
(ii) the ML object localization problem is formulated. In Section III, the error
covariance of the ML location estimate is examined; both local and global errors are
treated. In Sections IV and V, an example and simulations are presented which
illustrate the localization of an object having a simple geometric shape.

II. PRELIMINARY ANALYSIS

Cross-sectional Model

Suppose the cross-section under investigation is represented as a known background
function fb(x), superimposed upon which is a single "object" -- an object will be
modeled as a 2D function that is an additive component of the overall cross-sectional
density. The overall cross-sectional density, then, is of the form

f(x) - fb(x) + d'fo (X-C) (3)

where d represents the brightness or contrast of the object, fo(x) corresponds to a
unit-contrast object situated at the origin, and c - (cl c2)' denotes the object location
in the plane. 1 Note that because the function f(x) depends nonlinearly (by a shift in
x) on the object location, the problem of estimating c from measurements of f(x) (or
its integrals) is a nonlinear estimation problem. This is in contrast to direct image
reconstruction, in which a linear estimation problem of considerably higher
dimensionality is solved.

As an example of the representation in (3), consider the problem of locating a
connected region K (e.g. a disk) having constant density d relative to the background.
In this case, the object is a discontinuous function that equals zero everywhere except
at points within the set K, where it takes on the value d. Alternatively, a circularly-
symmetric object of radius R and density d may be described by using a Gaussian
object fo(x)-exp(-lxll2 / R 2), where lJxl is the distance of the point x from the origin.
See 1141 for a discussion of these and other continuous and discontinuous object

1. More generally, the object may depend on a finite number of parameters characterizing, say, its
size, shape and/or detailed boundary, and these parameters may be estimated [141.



models. In Sections IV and V, results are illustrated using as an example a
discontinuous object that has a constant density on a disk.

Measurement Model

The cross-sectional density function f(x) can be observed only via limited, noisy
projections. Two types of measurements are considered here, specifically, projection
measurements taken over a continuous interval of view angle values 9 and projection
measurements taken at only a finite number of discrete projection angles. In both
cases, the measurement at angle 9 will be modeled as the convolution of the
continuous ID projection g(t,9;c) (which depends on the object location c) with a 1D
measurement aperture h(t), and corrupted by additive zero-mean white Gaussian
noise,

y(t,O) - g(t,9;c) * h(t) + w(t,O)

A s(t,9;c) + w(t,8) (t,9)ESC Y (4)

Various aperture functions may be considered, for example a rectangular pulse
aperture corresponding to strip integration, an impulsive aperture corresponding to
line integration, or the sinc aperture

h(t) sin2irWt (5) 

corresponding to projections having a spatial bandwidth of W cycles per unit distance
in the t direction. The use of a nonimpulsive measurement aperture h(t) facilitates
the modeling of finite bandwidth projection measurements.

Case 1: Continuous-view Measurements

In the continuous-view case, measurements are taken over a total viewing
angle of 2A centered at -, i.e., views are taken up to an angle A on either2'
side of the xl axis (here, 0< AS ). The measurement set S is a subset of
the half-cylinder Y, and is given by

S - Sa A 1(t,): -o <t< co , -- AS< +A} (6)
2 2

In the continuous-view case, the additive noise w(t,9) is a 2D zero-mean
Gaussian random field on S 4 with covariance

E w(t,9)w(&,4)} - No 8 (t-,- ) (7)

where 8(t,9) is a 2D impulse. The standard tomographic reconstruction
problem, where (noise-free) measurements are assumed to be available at
all possible projection angles, is the special case of the continuous-view
measurement case where A. 2!. This will be referred to as the full-view

2

2. y(t,o) could also be considered as a counting process with a rate that depends on g(t,9;c). Such
a model is appropriate, for example, in very low-dose X-ray problems.
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measurement case, and the case A < - will be referred to as the limited-view
measurement case.

Case 2: Discrete-view Measurements

In the discrete-view case, projections are measured at N angles that are
uniformly spaced on the interval [0,7r). The measurement subset is

S- SN A {(t,9): -c <t<co j, - ,...,N-1 (8)

For each view angle Oj, the noise process w(t,9O) is a 1D zero-mean
Gaussian process with covariance

E{ w(t,9j)w (s,O ) } - No 8(t--7) (9)
2

and the noise at different view angles 9i and Oj, i;j, is uncorrelated.

For the cross-sectional density function shown in (3), the Radon transform (1) is

g(t,8) - f fb(x) ds+d f fo(x-c)ds (10)
X'9-t X'-t

Since the background function is known, the first term in (10) is known and may be
subtracted from the Radon transform (this is assumed to be done for the remainder of
this analysis) to leave the part due solely to the object, namely

g(t,9;c) - d f f(x -c)ds (11)

Let go(t,9) denote the Radon transform when the object is located at the origin,

go(t,9) A g(t,;O) -d f f f(x) ds (12)

For an arbitrary object location E C C R 2, the Radon transform is, from (11) and
(12),

g(t,9;e) - d f fo(x) ds - go(t-e'9,9) (13)
x'd-t-e'#

Equation (13) indicates the nonlinear dependence of the Radon transform g(t,9;c) on
the object location. Specifically, when an object is translated from the origin to the
point c, its Radon transform experiences a shift in the t variable, where the magnitude
of this shift, c'9 - c 1cos# + c 2sin9, depends sinusoidally on 0.

Example 1

Consider a constant-density object on a disk of radius R centered at the point c in the
plane (see Figure 3a),

I d if Ix-c1I D -,- R
d-fo (x-c) - otherwise (14)

For any value of 9, the projection g(t,9;c) is a half-ellipse centered at t-c'9,



g (t,9;c) - 2dVoR2 -(t-' 2 if (15)g0 otherwise

This Radon transform, viewed as a function g:Y-'R is the 0-dependent function
shown in Figure 3b. Note that while in this example the object f,(x) is circularly-
symmetric, an object is generally not circularly-symmetric, and consequently its Radon
transform go(t,9) is 9-dependent and nonsymmetric.

Maximum Likelihood Location Estimation

Given a set of continuous- or discrete-view measurements y(t,0), it is desired to
estimate the object location c by maximum likelihood (ML) estimation. The ML
location estimate is obtained by first using the projection measurements to compute a
log likelihood function L (e), and then finding the 2D parameter cECC R 2 at which
the maximum value occurs.

In the continuous-view case with a total viewing angle of 2A, the log likelihood
function is given by (131

V-+A ., ++A
2 ao 2 00

L&(c) - f y(t,)s(t,e;c)dtdO- N f fjs2(t,9;c)dtds (16a)
"o _VA - -- -o

2 2

and in the discrete-view case with a total of N views, it is given by

N- N-

° j i- 0 j _- o -*

In each case, the log likelihood function is the difference between two terms, the
first of which is obtained by a matched filtering operation [13] on the measurements
using a filtering template s(t,9;c). The second term compensates for the filtering
template energy. From (4), (13), and a change of variable

f s2f(t,;c) dt - fs2(t-c',0;0) dt - s2(?,9;0) de (17)

The final integral in (17) is c-independent, so the matched filter template energy
terms in (16) are constant and may be dropped, as can the first term scaling constant,
leaving

LA(c) - j y(t,O)so(t-c'9,) dt d O (18a)

2

and

LN(C) I Yy(t,0j) So(t- CEj,j) dt (18b)
j --
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where so (t,q) X' s(t,9;0) - go(t,q) * h(t).

In summary, the ML estimate for the object location is determined by computing
the log likelihood function in (18), and determining the value of the two-dimensional
parameter c E C at which the peak of the log likelihood function occurs,

1 argmax La (c) in the continuous-view case

CML | argmax LN(C) in the discrete-view case (19)
C'(

Remarks

The convolution back-projection (CBP) inversion formula [1-3] is one solution to the
integral equation in (1); it assumes the availability of noise-free full-view
measurements and is given by

f(x) -J f g(t,O) v(t-x'9,) dtd -f q(x'9,9) dO A [Bq 1(x) (20)
0 -00 0

This mapping of g-of is refered to as a convolution back-projection operation. For
perfect reconstruction from full-view noise-free projections, the convolving kernel
v-(t,O) is 8-independent, and its Fourier transform with resect to t satisfies V(&) -1X1

[1,21. The so-called back-projection operator (the integral with respect to 0) maps the
function q:Y-R into the 2D function f:R 2-- R, the latter function f(x) is called the
back-projection of q and is denoted by [Bq] (x) [3].

Consider the case of full-view measurements (a-m-), and notice the similarity
between the log likelihood function in (18a) and the convolution back-projection
inversion formula in (20). In (20), the noise-free projection measurements g(t,9) are
used to determine a 2D reconstruction ?(x) by convolution back-projection with a 8-
independent convolving kernel v(t). In (18a) with A- 2 -, the noisy projection2
measurements y(t,@) are used to determine a 2D log likelihood function by
convolution back-projection with a generally 0-dependent and nonsymmetric
convolving kernel s0(t,9)

Note that although (18a) may be interpreted as a CBP, the resulting log likelihood
function is not interpreted as a reconstructed image because the convolving kernel is
not chosen with direct image reconstruction in mind. Rather, the convolving kernel
s0:(t,8) is specified in the solution to the problem of ML estimation of the object
location from noisy projection data.

In the limited-view case (A< <- ), and in the discrete-view case, the log likelihood
function in (18) still has the same general form as the CBP operation in (20), except
that the integral with respect to 8 for OE [0,ir) (i.e. the back-projection operation) is
replaced by either an integral with respect to 9 for 8 E [ - As, + A) or by an N-point2 2
sum over 8j. These expressions resemble those associated with approximate convolution
back-projection reconstruction algorithms [3]. These are practical implementations of the
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reconstruction formula in (20) that are used to compute approximate reconstructed
images when measurements are available only on some subset of the full
measurement set Y. The distinction between reconstructing an image using (20) and
evaluating a log likelihood function using (18) still applies.

In terms of computational complexity, direct image reconstruction and log
likelihood function evaluation both involve the determination of a 2D function whose
value at any point is given by an integral or sum of weighted projection data.
Consequently, both procedures require the same amount of computation for a given
set of measurements. If the overall goal of the signal processing is to locate an object
within a cross-section, however, the task is completed when the log likelihood
function peak is found. In contrast, when a reconstructed image is formed, further
image processing (e.g. 2D pre-whitening and matched filtering) is required is the
location of the object is to be determined.

Thus far a parametric object-based field model has been put forth and the problem
of ML estimation of object location using noisy projection measurements has been
formulated. Several performance-related questions arise: (1) if the actual cross-section
satisfies the modeling assumptions exactly, how well can the object parameters be
estimated from noisy projection data? and (2) modeling errors inevitably exist; wvhen
the model is an inaccurate representation of the actual cross-section, how well can the
object parameters be estimated?

The latter question is addressed in the robustness analysis of Part II. In the
remainder of Part I, it is assumed that no modeling inaccuracies exist, and the former
issue is investigated. The overall object location estimate error covariance,
characterized by both local and global contributions, is analyzed in Section III. In this
development, algorithmic or implementation issues such as efficient procedures for
locating the log likelihood function peak are not discussed; instead, issues of how well
one can do assuming that the ML estimation procedures can be carried out exactly
will serve as the focus. In Sections IV and V, the error covariance is evaluated and
computer simulations are presented for the constant-density disk object of Example 1.

III. PERFORMANCE ANALYSIS

The maximum likelihood estimate for the location of an object in the cross-section is
obtained from projection measurements by first performing a CBP operation to obtain
the 2D log likelihood function shown in (18), and then finding the point cEC at
which the maximum occurs. As suggested by the similarity between (18a) and (18b),
the calculation of the log likelihood function for the continuous- and discrete-view
measurement cases are very similar, and the general concepts involved in the
continuous-view performance analysis carry over directly to the discrete-view case,
although the details of the analysis differ [141. Due to the similarity in the
calculations, only the continuous-view computations will be detailed here.

Because the measurements y(t,0) are noisy, the location log likelihood function is
a 2D random field. The point CMLEC that maximizes this randon field is a 2D random
variable; in this performance analysis the second moment of this 2D random variable
is characterized. First, to see how the log likelihood function depends on the
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measurement noise, let ca denote the actual object location within the cross-section,
and substitute (4) into (18a)

2 Z 2

LE(e ,e a) - I s(t,; a ) s(t,O;e) dtdO J f w(t,9) s(t,9;c) dtdO
2 2

JA I(c,C,) + n (c) (21)

The log likelihood function is the sum of two terms, a (c,ca), the expected value of
the log likelihood function, which is a 2D deterministic function known as the
generalized ambiguity function [17], and nA (c), a 2D zero-mean correlated random field
with covariance

E(n,(c)nA(c)} - ° a (cc) (22)

The ambiguity function, since it enters both the deterministic and random
components of the log likelihood function, plays a key role in the analysis of
estimation performance in the problem at hand, as it does in radar and sonar
applications in the analysis of estimation accuracy, ambiguity, and resolution [171.

Because s(t,O;c) depends on c only by a shift in the t variable, the ambiguity
function may be shown by a change of variable to depend on its two arguments only
through their difference. That is, the ambiguity function at any given point c depends
only on the position of that point relative to the actual object location ca.
Consequently, the noise na(c) is stationary; for simplicity, the following notation for
the ambiguity and log likelihood functions will be used

a A(E) ( aA (e,a)

La(e) L,A(C,Ca) c - a (23)

Estimation Error Covariance

At this point, the statistical accuracy of the location estimate CML will be investigated
by considering Ae,, the 2x2 error covariance matrix for the location estimate,

A e, - Eee' e I ML- ea (24)

One error analysis technique useful in nonlinear ML estimation problems is to write
the error covariance as a linear combination of conditional error covariances, where
each term is conditioned on the event that the estimate falls into a certain subset of
the overall parameter space [131. This approach is attractive because in many :ases
approximate conditional error covariances may be determined quite easily if the
overall parameter space is partitioned judiciously.

To apply this technique, the set of possible parameter values C is partitioned into
M nonoverlapping regions Co, C 1,..., CM_1 (for example, rectangular subsets of
the plane). Letting Ej denote the event that the peak of the log likelihood function



lies in region Cj, the error covariance may be expressed as
M-1

A,- 1 Ap pi A Prob Ej} (25)
j-o

where Aj denotes the estimate error covariance conditioned on Ej.

Two approximations are made at this time in order to simplify the analysis and
provide an approximate expression for the error covariance A e. As will be evident,
the validity of these assumptions depends upon the choice of the Cj. In Section ..V, a
detailed example is provided which includes a discussion of how one can deduce the
appropriate size for the Cj from knowledge of the ambiguity function.

1. Let {yj: yjE Cj, j-O,l,...,M-1} be a set of M points (with respect to a coordinate
system centered at c,), and for simplicity, assume that y/ -ca E Co. Let
Lj & L(yj), that is Lj is a random variable defined to be the log likelihood
function in (23) evaluated at the point yj. Since the additive measurement noise
w(t,9) in (4) is Gaussian, the random vector L-(Lo L1 .LM-I' is
Gaussian, with density p(L) and moments

E{L i} - aA (Tj)

aEi(Li-ELi)(Li-E2 aE(L - -j (26)

The first simplification which is made is to approximate the log likelihood
futetiot L&(e) as being constant on each of the M regions, taking on the value Lj
at all points in the region Cj, j=O,1,...,M-1. For this approximation to be good,
the regions Cj should be sufficiently small in size so that random variables LA (Y')
and L&(y ,") are highly correlated for any two points y' and e" in Cj; this insures
that the value Lj at a representative point yj is indicative of the log likelihood
function value over the entire region C i. When LA (c) is thus approximated as
being piecewise-constant, the computation of the probabilities pj is simplified,

pj - Prob I Lj > L i , V i;j}

. flf If p(L) dLo.. dLM- 1 dLj (27)
I0 [-N -40

In practice, the probabilities pj are computationally intensive to determine when
the log likelihood function values Lj are correlated, although some work on
bounds is available [18]. In the case of uncorrelated Li, bounds such as the union
bound [13] are more easily obtained (approximately uncorrelated Lj arise when
the regions Cj are large in size).

2. The exact expression for the conditional error covariance Aj in (25) is given by
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A 'ff(e-o)(e-Do)' p(eIEj)dCldC2
Ci

f l(e-i- j)+(, j-o0)] [(e--j) +(Tj-- 0) P(elEj)dCdC2 ; 3)
Ci

If yj is a representative point in Cj (e.g. the centroid), then conditioned or aae
event Ej, j 0O (i.e. the event that the log likelihood function peak c lies it. an
incorrect region C), the magnitude of yj- Yo (between regions) is much lea1er
than the magnitude of - yj (within a region), and the conditional -: or
covariance may be approximately written as

Aj (Tj - o) (jY- 70)' j0 (.9)

Using the approximation in (29), the error covariance in (25) may be written as

A- 2 2
1 2 T22j j-I

In (30), A o is the error covariance conditioned on the event that the peak of the Dog
likelihood function lies in Co, the region containing the true location point. If I'e
region C O is small enough so that all of its points are close to the true object locatkin
ca, the Cramer-Rao bound [13] provides an accurate estimate of the covariance ma.'ix
Ao, and in particular, of its diagonal components. Specifically,

[A] ii [J -1] ii iE (1,21 (31)

where J is the 2x2 Fisher's information matrix

Uik-- 82LA ( ) ikE 1,2 ( 2)

and Lt(e) is the log likelihood function in (23). By taking derivatives of (21), (.'2)
may be written in terms of the ambiguity function as

][Jlk No - a No 2 [lik i,kE (1,2} (33)

When the object location estimate CML lies in the vicinity of the true location ca, ti::n,
the estimate error variance is characterized in terms of Bik, the second pa -- ial
derivative of the ambiguity function evaluated at the origin.

In practice, evaluation of fik by taking two derivatives of the ambiguity functik :- is
tedious, particularly for a discontinuous object fo(x), since both the integrand and 'he
limits of integration with respect to t in (21) depend on e. The following ana'..sis
makes use of frequency domain analysis of the critical operations of interes: in
tomography (the Radon transform, convolution, and the back-projection) to dev; )p
an expression for iik which is evaluated more easily than the espression in (33).



Evaluating 1iik

etting F; '1 .·4 denote the 2D inverse Fourier transform 1151, and using capital letters
4-ene4e fb oeir .r.sfor..s, wherfe 4he *ecr 4- -,)' fepfesents a pein in the
spatial frequency domain,

a(E)- F2- 1 {A (a))- f j A (a,ai2)ei 2 (o ' '+ '1E42) d "ld12 (34)

By taking partial derivatives of both sides, ,8i may be obtained in terms of A (a), the
2D Fourier transform of the ambiguity function a(E)

Pik ' -4i'F2 qF I oi Ik A(w) I ,t0 i,kE 11,21 (35)

In a moment, an expression is developed for the Fourier transform of the
ambguitpy function as a product of several 2D Fourier transforms. First, note that the
ambiguity function a(E) may be written as

a(E) - B(Rf* h * R? h *h *) (36)

where * denotes ID convolution in the t variable in Radon space, f(x) - dfo(x) is
the object situated at the origin with contrast d, h(t) is the measurement aperture,
f(x1 ,x 2) E f(-xl,-x 2), and B and R are the back-projection and Radon transform
operators discussed in Section II. In this expression, the Radon-space function (t,9)
is a samling fncti that allows the limited-view CBP, with an integral over the
interval 0E[fd - - t,+ +A) to be written as a CBP over the continuous interval

2 2
0<0 ai.

Claim 1: In the continuous-view measurement case, ~ in (36) is given by

2s9) - a t) u29 l 0<Ab< (37)4A 2

where

I 1 if ?J I< T h
rect(r) - 0 otherwise (38)

The function a: Y-R in (37) is a truncated impulse sheet in Radon space, that is, it
is the product of an impulse sheet along the 9 axis and a 2D function that is zero
everywhere except for 9 E [ -2 A, 2+A), where it equals unity.

2 2

Proof: See Appendix 1.

Since the ambiguity function may be written as the CBP shown in (36), its Fourier
transform A (r) in (35) may be obtained by using the fact that CBP may be written as
a 2D convolution (Davison and Grunbaum [191, Tuy [201). In particular, letting F(wo)
denote the 2D Fourier transform of f(x) - d-fo (x), it is shown in Appendix 2 that
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A (w) -[I F () 12 R 2(() Bt (0) (39)

Here B (o) is the 2D Fourier transform of b(x), the back-projection of the Radon-
space function {(t,9). In (39), Rh(&), due to the measurement aperture h(t), is a
circularly-symmetric function (since h(t) is 9-independent) with a central section given
by H(o), the ID Fourier transform of h(t). The 2D inverse Fourier transform of
Rh((a) will be denoted as rh(x). The relationships in (36) and (39) are illustrated
schematically in Figure 4.

Combining (35) and (39), the second partial derivative of the ambiguity function
a(E) evaluated at the origin, is given by

38ik - -412 F2F1 { lo.k F(a) 12 Rh2() B (()} -0O i,kE {1,2} (40)

The back-projection b (x) and its 2D Fourier transform

The back-projection of the truncated impulse sheet a (t,9) is derived in Appendix 1,
and is given by

l 14 i (41)f
b,A(x) - 0 otherwise (41)

where 4O is the angular polar coordinate of x, bE [- 22). The region of the - plane

where b, 4 (x) is positive is indicated in Figure Sa. In the special case of full-view
measurements, where A ' the back-projection of ._ is positive everywhere and is

2 2

given by the function I

The 2D Fourier transform of bf I(x) is also derived in Appendix 1, and is given
by

Bfe,(Al) | 0 |° otherwise (42)

where 4, is the angular polar coordinate of A, ,E [0,ir). The subset of the e-plane
where B1A (.) is positive is shown in Figure Sb; in the full-view case, it is positive

everywhere and equals 1 a

Summarizing, an expression is given in (30) for the ML location estimate error
covariance as a linear combination of conditional error covariances. The probabilities
pi in this expression are computed from (27) or some approximation thereof, and the

3. In the discrete-view measurement case, J in (36) is a train of N two-dimensional impulses
uniformly spaced on the interval [O,lr) along the 9 axis in Y. The back-projection b f (x) and its
Fourier transform Be (m), in this case, are both spoke functions 16,141.
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conditional error covariances are approximated by (29) when j0O, and bounded as
shown in (31) when j=O, where the Fisher's information matrix entries in (33) are
obtained using the inverse Fourier transform shown in (40). Prior to evaluating these
expressions, the regions CjcC and points yjECj must be chosen appropriately. In the
next section, the constant-density disk object in Example 1 is reconsidered; systematic
use of the performance analysis machinery just developed is demonstrated through
this example. In particular, the ambiguity function for the object localization problem
is evaluated, the regions Cj and points yj are selected based on an examination of this
function, and an approximation to the estimate error covariance Ae is evaluated for
several different measurement noise levels and different values of object radius. As
will be demonstrated, localization performance is characterized by a clear threshold
effect; in particular, it is possible to identify, for a given object contrast and a given
measurement noise level, the smallest object size that can be located reliably.

In closing, it should be noted that the problem of detecting a constant density disk
object having known location by examining a reconstructed image has been considered
by Hanson [6], who empirically identified the relationship between minimum
detectable contrast and object diameter. It is well known [161 that when the noise in
projection measurements is white, the noise in the reconstructed image is nonwhite.
Hanson demonstrated the necessity of appropriate 2D filtering of the reconstructed
imagery; without such filtering, human interpreters have difficulty in detecting large
low contrast objects in the presence of colored reconstruction noise. The 'appropriate'
2D filter essentially corresponds to a whitening filter [131, which undoes the noise
correlating effect of the CBP operation.

IV. EXAMPLE

Reconsider Example 1 in Section II, involving a constant-density object on a disk of
radius R centered at the point caE CC R 2, and suppose that the set C of possible object
locations is itself a disk of radius T

C - (x: IixlI T} (43)
Since many of the expressions in this section will depend on T and R only through
their ratio, the parameter k is defined

k T/R (44)

When the object is located at the origin, its density function is given by

d'fo(x) otherwise (45)

This density function is circularly symmetric and consequently its 2D Fourier
transform is also circularly symmetric [151. Letting f(r) and F(p) denote the density
function in (45) and its 2D Fourier transform as functions of their radial polar
coordinate only,
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f(r) - d-rect(r/2R) (46)

where rect(t) is defined in (38), and F(p), known as the Fourier-Bessel or Htankel
transform of order zero of fir) [15] is given by

F(p) - 2irff(r)Jo(2irrp) rdr - (Rd/p) J1 (2irRp) (47)
0

Here, Jo0 () and J1(') are Bessel functions of the first kind of order zero and one
respectively.

In this example, the full-view measurement case is considered -- the
measurements are noisy projections that are bandlimited, i.e. smoothed by 2W times
the sine aperture in (5). The 1D Fourier transform of h(t) is

H(G) - rect(o/2W) (48)

In the full-view case being considered,

Boa (a) - 11 (49)

The ambiguity function and its 2D Fourier transform in (39) are both circularly
symmetric. Denoting them respectively by a(r) and A(p) as functions of their radial
polar coordinates only, a(r) may be expressed in terms of the inverse Hankel
transform [15] as

a(r) - 2rjfA(p)Jo(2'rrp)pdp (50)
0

From (39), (47)-(49) and a change of variable,
RW

a(r) - 2rd2R3 fJ2(2rP)J(2prpr/R)(1/p2) dp A- Ea*(r/R,RW) (51)

where E is the energy in the Radon transform (i.e. the signal part of the
measurements),

. f It 2 12 -- I ¢ 'nd2 R 3
E A ff I2d-/R2 t2j dtd- 16 rd2R3 (52)

0-R

The normalized ambiguity function a* is seen to depend on the spatial bandwidth W
only through the radius-bandwidth product RW; a* is plotted in Figure 6 for se'veral
values of RW. The radius-bandwidth product has a simple interpretation; it equals the
object radius R, expressed as a number of wavelengths at frequency W. As Figure 6
indicates, the general shape of the location ambiguity function is virtually independent
of the value of radius-bandwidth product for values of RW in excess of 0.5. i.e.
whenever the object diameter exceeds one wavelength at frequency W. In this
example, performance is analyzed for radius-bandwidth products in excess of 0.5.

As was discussed in Section m, an approximation to the error covariance o; the
location estimate may be obtained by partitioning the parameter space C into M non-
overlapping regions Cj, and then evaluating the linear combination of conditional orror



covariances in (30), where yj is a point in Cj. In this example, C is a disk of radius T,
and it is partitioned into square regions of side length 2R, centered at the points

jE I(2Rm,2Rn): (2Rm,2Rn) EC, m,n integer) (53)

This value of region size, although somewhat arbitrarily chosen, appears to be
appropriate in view of the discussion in Section III and the form of the ambiguity
function in Figure 6 for RW > 0.5. In particular, each region Cj is small enough so
that the log likelihood function L(E) can, for the purposes of global error analysis, be
reasonably approximated by a piecewise constant function on regions Cj, yet large
enough so that the statistical correlation between random variables L i and Lj, iij is
small enough to allow an easy approximation to the probabilities pj in (27), as is
discussed shortly.

When the regions Cj are squares with side length 2R, the number of regions in the
disk C is approximately the ratio of the disk area 'rT2 to the region area 4R 2, or using
k in (44),

- 'r la k (54)
4R 2 4

To proceed with evaluation of the approximate error covariance in (30), the
probabilities pj in (27) and the conditional error covariance A0 are needed.
Considering the first of these, the set of random variables Lj-L(,j), j=0,1,...,M-l are
jointly Gaussian and as indicated by (26) and Figure 6, have nonzero mean and
nonzero covariance. Because the log likelihood function values Lj are correlated,
determination of the probabilities pj in (27) is computationally intensive, involving an
M-dimensional numerical integration if evaluated directly. The analysis in this
example will exploit the fact that the coefficient of correlation between Li and Lj,

E E(Li-E(Li)) (Lj-E(Lj)j) 

LE1(4-ELib)2j EI(Lj-EtLju)21 E a( )

is always less than 0.35, for is;j. This correlation is neglected, and the random
variables L i and L1 are approximated as being uncorrelated when i;j. This is
equivalent to assuming that the ambiguity function equals zero for I '1 2.

Th error introduced by this approximation is minor, and in fact, this
approximation makes the results conservative in the following sense. When the Lj are
apptrximated as being uncorrelated, and conditioned on Ca -o, the probability
masses at the points yj are identical for j= 1,2,...,M-1. That is, conditioned or the
peak lying in an incorrect region, under this approximation it is equally likely to occur
in any one of the regions Ci,C 2, .. , CM_1, and

Pi ' M-I j-1,2, . .. ,M-1 (56)

Actually, however, since the ambiguity function is positive and monotonically



decreasing away from the point ca, if the peak lies in an incorrect region, it will be
more likely to lie close to the location of the true object, rather than far away.

Under the approximation of uncorrelated Lj, a simple approximation for the
probabilities pj in (27) may be obtained. If the true object location e a is Yo, then the
union bound [131 may be used to approximate the probability of error, 1- P0, as

Prob(error) - 1 - po - - Prob (Lo> Lj, Vj;O}

M-1 I E(57)
4~21r E~INO ""'I 2 (57)

While the last line is an upper bound on the error probabilty, it is tight for values of
E/N, in excess of five or so 1131; since the performance is assessed for SNR values
greater than five in this example, the expression in (57) is treated as an accurate
approximation to the error probabilty, rather than as a bound.

Using (56), the approximate error covariance in (30) becomes

hb-1 I 1 1 (58)
A 4 AoP + (1 -Po) X I I (v-v 0 )(n-rYO (58)

i-IM-

The (M-l)-term summation corresponds to the second moment about the point yyo of
a. discrete 2D random variable which is equally likely to occur at any one of M-1
points on the lattice

{(2Rm,2Rn): (2Rm,2Rn)EC, m,n integer, not both zero} (59)

This moment is well approximated by considering a 2D continuous random variable
uniformly distributed on the disk C; it has a second moment about the point yo - Ca
of

IT2/4 + ca2 Cal Ca2

| Cal Ca2 T 2 /4+Ca22 (60)

where ca - (cal ca2)'. For the sake of illustration, only the case where the object is
located at the origin is considered here, in which case (58) becomes

A e hp o + (1 - Po) (T 2/4) I (61)

where I is the 2x2 identity matrix.

The final step in the performance characterization is the local error analysis
involving computation of the 2x2 Fisher's information matrix J. From (33), the ikth

entry in the Fisher's information matrix is - 2 -ik, where from (40), (42), (47) and a

change to polar coordinates (p,4),

itk - (27rRd)2fv (*)di f J 2(2 rRjp l) H 2 (p) dp (62)
0 '-~

where
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J Cos2* if i-k- 

(p) - sin24, if i-k-2 (63)
|cosc sing if ik

Performing the integration with respect to I,,812 - 821 - 0, and
2wRW

ii -2R(rd) 2 f J2(p) dp - -(3r/8R 2)/E ,(RW) id (1,21 (64)

where E is the Radon transform energy given in (52). By the symmetry of the
problem, then, the Fisher's information matrix is a scalar times the 2x2 identity
matrix, and from (31) the diagonal entries of the conditional error covariance A0 are
bounded by

IAojl No3. iEf 1,2} (65)

A plot of the function j,(RW) in (64) for RWE [0,10) is shown in Figure 7. Note
that , (RW) is a monotonically nondecreasing function and as RW approaches infinity
(i.e. for a fixed object size R, as the measurement system bandwidth W approaches
infinity), p (RW) becomes infinite. This implies that the ambiguity function a(r) is
not twice differentiable in the limit RW-*o (s(t,9) approaches a half-ellipse which has
points of infinite first derivative), and the Cramer-Rao lower bound in (65)
degenerates to zero. This is a well-known phenomemon that also arises in radar
performance analysis in the limiting case of infinite measurement system bandwidth
1211. In any practical case, smoothing or bandlimiting of the projection measurements
always occurs, so that the aperture h(t) is nonimpulsive and the radius-bandwidth
product is finite.

Denoting by 4r2 the diagonal entries in the approximation to A e in (30), it follows
from (60) that

N- T No IT 2 N (66)
re 2,8u P + ( P1o -) 4 2 (66)-P

Finally, by incorporating the approximation for (1-po) in (57), approximating M-1 as
shown in (54), and using (64), the error covariance o,2 normalized by T 2, is
approximately lower bounded by the following quantity

O 'LB 12 4 +

t T J 3 rk 2 (E/N0o) (RW)

1 3 '/o4 1 .rk 2 p E| (67)
4 3rk2 (E/N 0)1k(RW) 44J2irE/No 2N.j
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The dependence of the localization performance on the object size R, for a fixed
value of density, may be illustrated by substituting E from (52) and considering (67)
for fixed values of d 2/No. The inverse of this normalized error variance is plotted in
Figure 8 versus normalized object size R/T for three values of d2/N 0 = 60, 500 and
7500, with W = 50. These curves depict a very strong threshold behavior in
localization performance; for a given object contrast d and noise level No, there exists
a clearly defined smallest sized object that can be located reliably from noisy projection
data.

Summarizing, the analysis of this section has focused on the problem of rsing
noisy, full-view projection measurements of a cross-section to estimate the location of
a constant-density disk object. A framework has been presented for evaluating the
estimation performance. Quantitative performance analyses may also be carried out
within this framework for the cases of limited-view (A< 2 ) and discrete-view

projection measurements, as well as for other object models, such as the Gaussian
object mentioned in Section H [141.

V. COMPUTER SIMULATION

A limited amount of noisy projection data were generated by computer and were
processed using a CBP algorithm for two purposes, (1) to determine the 2D log '

likelihood function for the unknown object location and (2) by using a conventional
reconstruction kernel, to develop an estimate for the 2D cross-sectional density
function.

The specific example considered in these simulations is the simple disk object of
Example 1, having radius R and situated at within the disk C of radius T. The object
size is chosen so that k=T/R in (44) equals 5. For notational convenience, the
geometry is normalized so that T equals unity, in which case the object has a radius
R=0.2. The actual object is located at the point (0.2, 0.4); an image representation of
this cross-section is shown in Figure 9.

A total of 105 projection measurements were calculated, corresponding to infinitely
narrow line integral measurements (RWoo) using a parallel-ray measurement
geometry. Five views were generated at angles 9j - jur/5, j-0,1, ... , 4. Within each
view, integrals were calculated along 21 parallel lines with t values satisfying
t, 0O.1m, m--10,-9, . .., 10, corresponding to an inter-ray spacing of 0.1.

Pseudorandom white noise samples having zero mean and adjustable variance cr2

were added to the 105 line integrals to provide noisy measurements y(tm,Oj). The
measurement signal-to-noise ratio (SNR) in dB is defined as

SNR A 10 logo (Ed/105 cr2) (68)

where E d is the Radon transform energy
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4 10
Ed -' g2(t ,j) (69)

j-0 m--10

and g(t,9) is the Radon transform of.the simulated density function.

The noisy data y(tm,oj) were processed to develop 240x240 pixel images (16 grey
levels per pixel) by using the CBP equation

4 10
a(x) - I Y(t ,9j) z(tm - x'Oj,j) lxIl, Ix21 1 (70)

j-O rm--10

The convolving kernel z(t,8) is given by one of two functions, depending on whether
the log likelihood function or a reconstructed image is being computed. In each case,
a piecewise linear approximation to the ideal continuous convolving kernel was used
in order to reduce the computation time.

Since the disk object is circularly-symmetric, the convolving kernel for thet log
likelihood function evaluation, denoted by ZLL(t), is i-independent, and is given by
the following piecewise linear approximation to the projection of a disk with a radius
of 0.2.

f 2(0.2)2 - t2 if Iti 6 0.2, t an integer multiple of 0.02
ZLL(t) -- O if Itl > 0.2, t an integer multiple of 0.02 (71)

If t is not an integer multiple of .02, the value of ZLL(t) is obtained by linear
interpolation of its two nearest values in (71).

In calculating a reconstructed image, the convolving kernel, denoted zl(t), is the
9-independent kernel presented in Shepp and Logan [11, and is given by the piecewise
linear function

1 1
zl(t) low.25- 2 if t is an integer multiple of 0.1 (72)

I0r 0.25 - 100t2

If I is not an integer multiple of 0.1, the value of z1(t) is obtained by linear
interpolation of its two nearest values in (72).

In this simulation, two measurement SNR noise levels (68) were used, namely 0
dB and -3 dB, and the same noise samples at each level were used with both
convolving kernels. To simplify interpretation of the images, the image values are
first normalized to the interval [0,11 with 0 and 1 corresponding to black and white,
respectively, and the 16-level gray scale is then uniformly distributed on the interval
[.6,11 or [.75,11 as indicated, resulting in the blackening out of lower intensity regions.

Figures 10a and 10b correspond to the log likelihood function (kernel in (71)) and
reconstructed image (kernel in (72)), respectively, when the measurement SNR is 0
dB and the gray scale is distributed on the interval 1.6,1]. Figures 10c and 10d are the
log likelihood function and reconstructed image for a SNR equal to -3 dB, and the
gray scale distributed on the interval [.75,1]. Notice that for both measurement noise
levels the image reconstruction kernel z 1(t), because of its higher gain at high
frequencies, leads to spurious peaks in the reconstruction, all having approximately
the saem sizue 4d tistirib {hrogO tthe cross-section. The log likelihood
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fEttetion, on the other hand, has only one peak in the 0 dB case, occurring at (0.24,
0.34), which is very close to the true object location (0.2, 0.4). In the -3 dB case, the
log likelihood function has several secondary peaks, but the major peak, located at
(0.18, 0.49), is also close to the true location.

As indicated by Figures 10b and 10d, object detection and localization is difmcult
by direct visual examination of noisy reconstructed imagery. As discussed at the end
of Section m, image post-processing to extract object related information has been
considered by Hanson [61 and others. In the presence of projection measurement
noise that is white, the reconstructed image noise is nonwhite [161, in which case
optimal object localization from reconstructed imagery involves 2D noise pre-,
whitening followed by matched filtering. A suboptimal approach to post-processing a
reconstructed image for object identification purposes, and one that is quite often used
in image processing, is to perform matched filtering assuming that the measurement
noise is white. For the present problem, this corresponds to performing 2D matched
filtering on the reconstructed image using a disk object template.

The reconstructed images in Figures 10b and 10d were post-processed by treating
the reconstructed image noise as white, and performing matched filtering to locate a
constant-density object of radius 0.2. The following 2D matched filter template was
used

1 if jxj -0.2
fc(x) (- 0 otherwise

The image in Figure 11a is the result of matched filtering the image in Figure 10b
with fc(x), with the gray scale distributed on [.6,11. Similarly, Figure lb is the result
of matched filtering the image in Figure 10d, with the gray scale distributed on [.75,11.
These two images are seen to be very similar to the log likelihood images in Figures
10a and 10c, although the log likelihood images were computed directly in much less
time than the two-step process of first reconstructing and then performing 2D
matched filtering. The similarity of these images is due in part to the robustness of
the matched filter -- even though the matched filter in (73) is optimal only in the
presence of white image noise, its performance is very robust to the presence of
nonwhite noise.

VI. CONCLUSIONS

In this paper the problem has been investigated of using ML estimation methods in
order to locate a single object whose geometry is known precisely a priori. An
approximate expression was developed in Section III for the location estimate error
covariance, reflecting contributions due to both local and global errors. In Section IV,
an approximation to this expression was evaluated for a constant-density disk object;
the results of this example indicate that for a given value of object contrast d and
noise spectral level No, there exists a minimum value of object size for which re;iable
localization may be performed.

A computer simulation was also presented which illustrates the evaluation of the
log likelihood function for the localization of a constant-density disk object from
computer-generated noisy projections, as well as the evaluation of a reconstructed
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image from the same noisy measurements. These simulations demonstrate that at high
noise levels and with a limited number of projections, an object in a cross-section is
much more easily discerned by examining the log likelihood function than by
examining a reconstructed image that has not undergone time-consuming post-
processing.

The focus of Part I was the simple problem of locating a single object of known
contrast and density distribution fo(x), superimposed on a known background field
that contains no additional objects. By casting the problem in this framework, insight
was obtained about the CBP computational structure of the log likelihood function
evaluation, and the peformance of the ML estimator was characterized. In Part II,
robustness issues are addressed, in particular, the robustness of these procedures
when applied to less idealized versions of the problem that take into account, for
example, that the object size, shape, or detailed density variations may differ from
those that are assumed, or that additional unmodeled objects may be present within
the cross-section.



APPENDIX 1 -- Radon Space Sampling Function c (t,O)

Proof of Claim 1:

From (21) and (23), the continuous-view ambiguity function is

2 o00

aa(E) - f s(t,0) s(t- E'9,9) dtdO

2

j rect[7,2 f j s(t,)s(t-e',O) dt dO - B Irect[17 2 | (s * s) 
0 -I 4

where s(t,o) , s(-t,O) and B is the back-projection operator defined in (20).

[-v-2s ld a,(E) - B s * f (,e0) 8 (t-r) rect I4Ai d] 

| B S §s(r,O) ,(t-7,O) d | s* (A 1.1)

which agrees with (36), since s - Rf* h by (4).

Back-projection of 5A (t,0) 1

From the definition of the back-projection operator in (20), the back-projection of the
truncated impulse sheet f (t,8) in (37) is given by

bgA(x) - jf W' ) dO - 8 (x) rect 4i-21 J dO
0 0

2 2

f 8(x's)d a- s 8(rcos(O- 4) do (A1.2)
2 2

where (r,qb) are the polar coordinates of x, rE (-ac,o), and 4.E [- 2 ' ). By a change2'2
of variable

r cos( -- +A)

8 (7) d(
bga^(x) o- f s)d ? (A1.3)

21. For an alternative derivation cose response function, see Tuy 20)

1. For an alternative derivation of the limited-view impulse response function, see Tuy 120].
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which provides

LL1 if I[l~ IA

b, (x) - x 0)O otherwise (A .4)

Fourier Transform of be A (x)

The 2D Fourier transform of bf,A(x) in (A1.4) is given in terms of the polar
coordinates (r,4) as

ff ±3 I e-j2r("cosO + '°no) rjdr do

feo
d fdf ei- j2r'* dr (Al.5)

-A -*"

where - (coso sinob)' and . - (Xo o2)'.

The second integral in (Al.5) is the ID Fourier transform, evaluated at o'+, of a
function that is unity for all r. Thus,

A..

BeA (a)- f (8') do (A 1.6)
-A

Equation (A1.6) has the same form as (A1.2), and by a change of variable yields

1 if - A

B () otherwise (A1.7)

where qJ is the angular polar coordinate of the point a.

APPENDIX 2 -- Calculating A (X)

In terms of the Radon transform and back-projection operators R and B in (1) and
(20), CBP with a O-dependent convolving kernel z(t,O) may be written as

f(x) - f f g(t,O)z(t-x',0o) dtdO - B (Rf * ) (A2.1)
0 -as

where z(t,0) A z(-t,0), and * denotes ID convolution in t,

[zl * Z21](') - Z1(t,) z 2 (7 -t,e) dt (A2.2)
-I=

Letting ** denote 2D convolution, it is shown in Davison and Grunbaum [18] that
(A2.1) may be rewritten as
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B (Rf * i) - f ** B () (A2.3)

that is, CBP operating on Rf with a convolving kernel z(t,O) may be written as the 2D
convolution of f(x) with the back-projection of Z(t,0).

The relationship in (A2.3) leads to an expression for the Fourier transform of the
ambiguity function. In particular, from (36),

a() - B (Rf * h* Rf * h * ) (A2.4)
Here, f(x) - dfo(x) is the object situated at the origin and having contrast d,
f(xl,x 2) A' f(-xl,-x2 ), and ~ is the sampling function given in (37). Denoting by
rh(x) the circularly-symmetric 2D function satisfying R(rh(x))- h(t) (that is, a
central slice of Rh(w), the 2D Fourier transform of rh(x), is given by H(W), the ID
Fourier transform of h(t)), and successively applying (A2.3),

a(E) = f * ** rt, ** bf (A2.5)

Taking 2D Fourier transforms, and noting that f is real,

A() I F(l) 12 R2() Bf () (A2.6)
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Figure 1. Projection at angle 0.
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Figure 2. Measurement geometry.
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Figure 3(a). Projetion of the disk oject.

Figure 3(a). Projection of the disk object.



Figure 3(b). Radon transform of the disk object.
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Figure 5 (a) Region where b,A (x) is npnzero.

(b) Region where Bf, (x) is nonzero.
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Figure 6. Central section of the normalized ambiguity function.
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Figure 8. Localization performance versus normalized object size.



Figure 9. Image representation of the single-object cross-section.al

density function.
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Figure 10 (a) log likelihood function, SNR=0 dB, scale = [0.6,1.0].

(b) reconstructed image, SNR=O dB, scale - [0.6,1.01.

(c) log likelihood function, SNR=-3 dB, scale = [0.75,1.01.

(d) reconstructed image, SNR=-3 dB, scale = [0.75,1.01.
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(b)

Figure 11 (a) result of convolving the image in Figure 10b

with fe(x); scale = [0.6,1.0].

(b) result of convolving the image in Figure 10d

with fc(x); scale = [0.75,1.0].


