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AR PLUS NOISE MODEL

Asymptotic statistics for spectral density
estimates of noise corrupted autoregressive (AR)
series are evaluated. The "high-order" Yule-Walker
equation estimates of the autoregressive parameters
are used to form a spectral density estimate. The
estimate is shown to be a consistent asymptotically
normal (CAN) estimate. An expression for the
variance of the limiting distribution in terms of
the AR process parameters and the noise variance is

provided.

INTRODUCTION

We consider the evaluation of asymptotic
statistics associated with the estimation of the

spectral density for an autoregressive process
observed in additive white noise. The asymptotic
statistics for the spectral density estimate with-
out the presence of additive noise have been con-
sidered by Akaike fiJ, Kromer [2], and Berk [3].
For the noise corrupted case asymptotic statistics
for the AR pFter estimates have been evaluated
by Walker [4], Pagano 15], Gingras 16] and Lee [7].
The combined problem of evaluating the asymptotic
statistics for the spectral density estimate in the
presence of additive noise has not previously been
considered.

In this paper we assume that the parameters

of the AR process {a2, a1, ., a are estimated

from observations of the noise corrupted series
using the high-order Yule-Walker (Y-W) equations.
The spectral estimate is formed by substitution of
the parameter estimates into the AR spectral
density function. We show that the resulting
spectral density estimate is a consistent
asymptotically normal (CAN) estimate. We calculate
an exact expression for the variance of the
limiting distribution. In its general form the
variance expression is formidable, but its evalua-
tion for specific cases should be straight forward.
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Assume that the observed process Y is a
real process consisting of the sum of a stationary
autoregressive (AR) process X and a noise process
w, that is

Y = X + w. (1)

The AR process X, assumed to be of known order p,
is generated or adequately modeled by

X -aX -"-aX cn in-i pn-p n (2)

where the sequence {c} is assumed to be Gaussian

i.i.d. with zero mean and variance cJ2. The noise

sequence {w} is assumed to be wide sense

stationary, Gaussian i.i.d. with zero mean and

variance ci. The noise w and the AR process X are

assumed to be uncorrelated.

Define the polynomial in z, z complex, by

p
A(z) 1 - a

j
j=1

(3)

The AR parameters {a.]1 are chosen such that the

zeros of A(z) lie outside of the unit circle on
the 2—plane. This guarantees that the AR process
is stationary. The spectral density function for
the stationary noise corrupted process V is given
by

2 2
o

Vt A(e) A iA(e )

(4)

Walker [4] and Pagano [5] showed that the AR
plus noise process of (1) can be written as a
special case of an autoregressivemoving average
(ARMA) process. We can write (1) as

Y -a? -•-aYn in-i pn-p

C +w —aw - -aw
n n in-i pn-p (5)
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Define the covariance sequence for the Y process to vector will be denoted by F and
be (r }, where r = E[Y Y ]. Multiplying (5) —p

k k n n-k respectively. The high-order Y-W equations (9) can
through by Y and taking expectations term byn-k be expressed in terms of the estimated covarisnces
term we obtain the following "Yule-Walker" (Y-W)

as
equations:

2 2- a r = a + a (6) = R . (11)r0 - a1r1
-

p w —p — —p+l
2 To estimate the spectral density we require-ar -a ark - alrk_i

-
k-p k w estimates of the AR parameters from observations of

(1 < k < p) (7)
the noise corrupted process Y, such as by (11) and

an estimate of a2. Because of the presence of the
C

• - a r = 0 noise w the usual estimate of the vaCiance of therk - alrkl -
p k-p AR process from (6) is not adequate. For the noise

(p+l < k < 2p) . (8) corrupted case (6) will provide an estimate of
2 2a + a thus one of the equations of (7) must beThe set of p equations (8) are referred to g

as the high-order Y-W equations and can be used in used to estimate 2 Using this approach, with
wconjunction with estimates of the covariances rk to

the covariance estimates of (10), and the estimates
provide unbiased estimates of the AR parameters of of the AR parameters of (11) we have

an ARNA process. Let F be a (pxp) covariance
—p p p

matrix with elements F = r ,
then a — A 2 + (i/s ) A 2 (12)

k,j p+k-j jO j=0

Tr r . . . r1 where a = -1 and a 0.
p p-i 0 p

r .. . r21
r . . . I SPECTRAL ESTIMATE STATISTICS
—p

.
I

Define the parameter vector 0T by

T 2
2p-i r22 8 a a , a— C' 1' p

Define the (lxp) vectors By (11) and (12) we form estimates for 0T and use
T A these to form the spectral density estimate, i.e.,

a= [5 a,
0

(A 0) (13)
[r1, r2, ••., r2 I

'— = p IA p -iJp 2itA(e )A(e
iX

then the p equations of (8) can be written as where A1(e ) is formed by substituting the AR

parameter estimates into (3) and evaluating at z =
a = R

—p— p e . In order to evaluate asymptotic statistics

Gersch f8J proved that the nonsymrnetric Toeplitz
matrix F, p finite, is nonsingular, thus a solu-

for Qx(A,O) we first establish asymptotic

statistics for 8.
tion for (9) always exists. —

Define the vectors and matrix:
Given a finite set of observations of the

noise corrupted process Y, that is {Y }N N >
— [0, 0, ", 01 (lxp)nnl 0

we estimate the covariance sequence (rk) by

T A
a [a a ", a]______ — p' p—i' 1

(10) TAR — Er1, , r—

Iki > N—i
TA i r ", r]When the covariances r in the matrix F and the o = .Cç, pk —p

vector R are replaced by their corresponding T A—p+1 R = [restimates using (10) the estimated matrix and —p p' p+i' "' r2_1i
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then
-a —a •"—a 1 0 "OP P1 1 = urn N E [, zj [2 cT
o —a -a 1 0 0 N

p 1 [c
o -a -a1 1 Now, using (15) and (16) we can write

= urn N E[2]
From the development in [6] we have

N( - ) N½ L1 D (R - R) (14) = a4 + a2 + 2a2a2 - 2a4 - (2/a )a2rp 5 w wC w p rp
where — indicates that the limit distribution, as
N-, is identical for both random vectors. By (12) P
and the fact that the high-order Y—W equation + [1 + (1/a )2}[a2a2 + a2r + a4 2 a2]. (18)
estimates of the AR parameters converge in prob— P w c c 0 W j=0
ability to the true parameters we have

cT urn N E[C zTi

2 2 T N-*oo

N1(â - a ) N1 ([-1 a J[R - R
S S '— —o —o - -

a2R (F )
- (1/a )P (F ) (19)

s—p—p P——p— (1/a)[a , —11[R0
—

R0]} - (15)
where

Under our assumption that the Y process is a T p-li

linear Gaussian process, by Hannan [91 and Walker {P = I(a)2aô(J) + +
k—0 akak+J]

[101, we have that the vector N1(R - R) is

asymptotically jointly normal and j=0, 1, ", p-i

lim E[N½(R - R), N1(R - R)TJ 11; o— — —
and ô(j) =

2 LO;
2a f U 4) (X)dX (16)_ —

Using (14) and (16)

4) = urn N E[Z ZT]
where the matrix U is defined by

— N- —

u + i(k-j)?
= arplr0(r;l)T + a!i;'[a + a}(L;l)T (20)

k1, ", 2p
j1, , 2p -

where
By (14) and (15) and the above result it is
straight forward to conclude that p 1

2a2 - . - 2 aa
1 2' m=0 m m m+(p-1)

- 0) —- N1(0, ) (17)

that is, the parameter error vector converges in j
distribution to a zero mean p+1 variate normal 2 a a . . - 2
random vector with limiting covariance . We now mo m m+(pl) m0 m
evaluate the form of the covariance matrix .

Define and Z by We can now proceed to show that our

A T
estimate of the spectral density 4)x(X,0) is a con—

= N1 '0 - 0' sistent asymptotically normal estimate and evaluate

- - the variance of the limiting distribution. Since
(1/a)[! , i][ the function 4(X,0) is totally differentiable then

A -1
using (17) and a convergence theorem in Rao [11] we

Z = F B (R - R) have that- -p -- -
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T a(X,o) x"- _____
—

2 ' ' 'Pa
1 p

Let.

= 1_____
2 2Tt A( iXp -iXPu e )A(e )
C

T J X' X'-
Pa ' '

1 p

IX IpX
= 2x(X,O) Re , ", Re

Thus ,the variance of the limiting distribution for

the spectral density estimate is given by

T 22 T T
p 21 p = b v + bB (A)C + bC 11(X)

+ PT(X) mb 11(X)

CONCLUSIONS

We have shown that given observations of a
noise corrupted AR process the high-order Y-W
equation estimates of the AR parameters produce an
estimate of the spectral density that is a con-
sistent asymptotically normal (CAN) estimate. We
have also developed an exact expression for the
variance of the limiting normal distribution. This
general variance expression is formidable, but
specific low order cases can be evaluated
relatively easily.

For the noise corrupted case we now have a
method for comparing the estimator stability for
finite sample size experiments with a theoretical
limiting value specified in terms of the AR process
parameters and the noise variance.
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N1x(X,O) - N (0, 11T

where p is a gradient vector given by
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