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Abstract-The results of a new method are presented for discrete 
utterance speech recognition. The method is based on rate-distortion 
speech coding (speech coding by vector quantization), minimum cross- 
entropy pattern classification, and information-theoretic spectral distortion 
measures. Separate vector quantization code books are designed from 
training sequences for each word in the recognition vocabulary. Inputs 
from outside the training sequence are classified by performing vector 
quantization and finding the code book that achieves the lowest average 
distortion per speech frame. The new method obviates time alignment. It 
achieves 99 percent accuracy for speaker-dependent recognition of a 
20-word vocabulary that includes the ten digits, with higher accuracy for 
recognition of the digit subset. For speaker-independent recognition, the 
method achieves 88 percent accuracy for the 20-word vocabulary and 95 
percent for the digit subset. Background of the method, detailed empirical 
results, and an analysis of computational requirements are presented. 

I. INTRODUCTION 

C URRENTLY successful approaches to discrete utter- 
ance speech recognition involve time alignment [l], 

[2]. From an unknown input utterance, a feature vector is 
obtained every lo-30 ms by making a set of measure- 
ments. The resulting sequence of feature vectors is classi- 
fied by comparing it to a set of prestored reference se- 
quences derived from training data and finding the best 
match. An important step in these comparisons is the 
alignment of the input sequence in time with each refer- 
ence sequence. In the simplest form of alignment, the 
endpoints of the input sequence are aligned with the end- 
points of the reference sequence and the intervening input 
data is stretched or compressed linearly in time. Because 
variations in speaking rates are nonlinear, the best current 
systems use more sophisticated methods in which the time 
axis of the input data is transformed by a constrained, 
nonlinear warping function that is chosen by dynamic 
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programming to provide the best possible match between 
the input sequence and the reference sequence [3], [4], [5]. 
Such methods generally are called dynamic time warping 
PTW- 

The time-alignment approach is successful-a recent test 
of commercial speech recognizers yielded accuracies in the 
90 percent to 99 plus percent range for a 20-word vocabu- 
lary [2]. The approach is also intuitively compelling-it 
seems obvious that accurate recognition requires the ex- 
ploitation of time sequence information. 

It appears, however, that time sequence information is 
less critical than is commonly assumed. In this paper we 
present recent results of a new method for discrete utter- 
anqe speech recognition. The new method does not use 
time alignment-indeed, no time sequence information is 
used at all. Nevertheless, the method achieves 99 percent 
accuracy for the same 20-word vocabulary used in [2]. The 
method is based on a variety of ideas and methods from 
information theory and related fields, namely, rate-distor- 
tion speech coding (speech coding by vector quantization) 
[6], [7], minimum cross-entropy pattern classification [8], 
and information-theoretic spectral distortion measures [9]. 
We reported initial results in [lo], [l 11. Similar work has 
been reported by authors from Japan [ 121, Mexico [ 131, and 
the United States (Bell Laboratories) [ 141. 

II. BACKGROUND 

Speech coding by vector quantization [6], [7] is a 
narrow-bandwidth speech coding technique based on linear 
predictive coding (LPC). Input speech is divided into a 
sequence of fixed-length segments called frames-typical 
frame lengths are 20-30 ms. Using estimates of the sample 
autocorrelation function that are measured in each frame, 
the shape of the speech spectrum in each frame is coded in 
terms of the identity of a prestored set of LPC parameters 
that defines an autoregressive model and is called a code- 
word. The parameters used are the inverse filter gain 
squared u2 and sample coefficients ai, i = 1,. . . , M, with 
a0 = 1. The collection of possible codewords is called a 
code book. Let C = {C,, C,, . . . , C,} be a code book of N 
codewords C,, each defining an autoregressive model. Let 
sj be the autocorrelation estimates from the jth frame of 
the speech to be coded. Then the shape of the spectrum for 
thejth frame is coded by identifying the codeword C, that 
“best represents” 4 according to the “nearest-neighbor 
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rule” 
d(Sj, Cb) = hnd(Sj, Cl), 

i 
(1) 

for some distortion measure d. The distortion measure used 
in [6], [7] is the Itakura-Saito distortion [15], [9]. 

Speech coding by vector quantization using the Itakura- 
Saito distortion has strong connections with information 
theory. In particular, under suitable assumptions the 
Itakura-Saito distortion can be shown to be a special case 
of the asymptotic cross-entropy rate between two stochas- 
tic processes [9], 171, [16]. C ross-entropy-also called dis- 
crimination information, directed divergence, Kullback- 
Leibler number, etc.-is a measure of information dissimi- 
larity [ 171, [ 181. Cross-entropy minimization, which can be 
viewed as a general method of inference about probability 
distributions [19], is useful in a variety of applications [S], 
[16], [20]-[23]. Speech coding by vector quantization is a 
particular example [6]. Not only can it be derived directly 
by cross-entropy minimization [7], it can be derived as a 
special case of a more general minimum cross-entropy 
classification method [8]. Specifically, vector quantization 
using the Itakura-Saito distortion measure is equivalent to 
choosing the codeword C, such that the set of input speech 
parameters Sj provides the least additional information 
beyond what C, provides [8]. 

Vector quantization code books are designed to mini- 
mize the average distortion that results from encoding a 
long training sequence of speech frames. In particular, if 
I;., j = 1; * *, L is such a training sequence, the code book 
C is designed so that 

(2) 

achieves at least a local minimum, where Cjj) is the code- 
word resulting from encoding T/. If the training sequence 
comprises a representative sample of the speech to be 
coded, then C should also encode speech from outside the 
training sequence with a similarly small distortion. In 
practice, code books are designed by an iterative, clustering 
technique. The original ideas were published in [24]; for 
details about the vector quantizer design algorithm, see [6], 
[7], [25]. Put simply, the algorithm divides the L frames of 
the training sequence into N clusters of frames such that all 
of the frames in any particular cluster have similar spec- 
trum shapes. The N codewords are the centroids of these 
clusters. Usually, the size of the code book C is a power of 
2-i.e., N = 2R. The code book is then known as a rate R 
code book because R bits must be transmitted to identify 
the best codeword for each speech frame. 

III. DESCRIPTION OF APPROACH 

In speech coding by vector quantization, a single code 
book is designed from a training sequence that is as long as 
computational constraints permit and that is chosen to be 
representative of all speech to be encoded by the system. In 
our approach to discrete utterance recognition, we use 
multiple code books-one for each word in the recognition 

vocabulary-and we design each code book using a rela- 
tively short training sequence containing repetitions of one 
word in the recognition vocabulary. For example, a code 
book for the word SEVEN is designed by running the vector 
quantizer design algorithm on a training sequence of several 
repetitions of the word SEVEN. When an unknown word is 
to be classified, every frame of the word is encoded as in 
(1) using each code book. The average distortion over all 
frames of the input is computed for each code book, and 
the input is classified as the word corresponding to the 
code book yielding the lowest average distortion. A 
threshold on the average distortion can be used to reject 
input words that are not in the recognition vocabulary. 
Note that the basic approach can be used for both single- 
speaker and multiple-speaker training sequences. 

To be more precise, let I’ be the number of words in the 
recognition vocabulary. Then there are I’ code books C,, 
k = l;.., v-one for each word-which together com- 
prise a code book set. Let Cki, i = 1, * * *, Nk, be codewords 
in C,, where Nk is the size of C,. Let there be L frames of 
speech in the utterance to be classified, and let Sj be the set 
of autocorrelation estimates from the jth frame ( j = 
1;. *, L). Finally, let D, be the average distortion resulting 
from coding the utterance with the k th code book, 

D, = ; t d(S,, c#), 
J=l 

(3) 

where C,& is the codeword resulting from encoding.5 with 
code book C, as in (1). Then the utterance is classified as 
the r th word in the recognition vocabulary, where 

D, = minD,. 
k (4) 

Note that this procedure classifies the unknown utterance 
without performing any kind of time alignment or normali- 
zation. 

A problem can occur if one word in the recognition 
vocabulary is contained within another word. This would 
happen, for example, if the words SEVEN and SEVENTEEN 
were both in the recognition vocabulary. In this case, it is 
likely that an utterance of SEVEN would result in low 
average distortions from two code books. One way to deal 
with this is to include in the classification decision the 
extent to which each code book is “spanned” by the input 
utterance-if the correct code book is C,,,, then we expect 
that b in C,@ from (3) will vary over more of C,,, than over 
Cj, j f m. To test this idea, we tried classifying by mini- 
mizing D,/A, instead of D, in (4) where A, is the fraction 
of the codewords in code book C, that were selected 
during the classification of the input utterance. We refer to 
A, as the span fraction. 

If desired, one can select a set of threshold values 0: and 
require 0,. < 0; in (4) for a valid classification. This can 
improve classification reliability and can also be useful in 
rejecting words outside of the recognition vocabulary. 

A. Distortion Measures 

We used several alternatives for the distortion measure d 
in (l)-(3). Let f (9) and j‘(S) be two power spectra. Then 
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the Itakura-Saito distortion between them is 

d,,(f,j) =/” g[f-ln!- 11. (5) 
-77 

As we ment ioned earlier, the theoretical significance of d,, 
arises from maximum-likelihood classification [ 151  and also 
from d,, being the asymptotic cross-entropy between the 
stochastic processes underlying f and  j [9], [7], [ 161. 

W e  are concerned with power spectrum estimates f and  f 
that have the autoregressive (LPC) form 

f@) = &Y (6) 

where 

A(z) = f akzTk 
k=O 

and z = exp (i6). In this case, (5) can be  expressed as [9] 

d,,(f,j) = s + ln(G’) - ln(a’) - 1, (7) 

where 

a  = r(O)?JO) + 2  : r(n)fJn), 
n=l 

M-n 
f=(n) = c (ii(ii+n, 

i=O 

and where r(n) are the time-domain autocorrelations of 
f(8)- 

The Itakura-Saito distortion between a  power spectrum 
and a  scaled version of itself is 

d,,(f, Af) = 4 + 1nX - 1, 

which shows that the use of dIs in (l)-(3) could lead to 
problems if an  overall amp lifier gain can vary during 
training and classification. To  avoid such problems, two 
gain-insensitive versions of d,, have been introduced. The  
first is called the gain-optimized Itakura-Saito distortion [9], 

d,o(f, i‘) = y$d,s(f, hj‘) 

In the case of LPC forms (6) d,, can be  expressed as 

d,,(f,j) = In(a) - ln(a*). (9) 
The  second gain-insensitive measure, the gain-normalized 
Itakura-Saito distortion [9] is defined for spectra of the 
LPC form (6): 

d,,(f,?) = d,, 

=-- ,g l- (10) 
For power spectra that have the LPC form (6) the follow- 
ing relationshins hold amone the three forezoinz distortion 

measures: 
d GO = ln(1 + dGN) 

d GO . 

During classification, the input speech frames provide 
the argument f in (7) (9), or (10). 

B. Code Book Generation 

Each classification code book C, is designed from a  
separate training sequence containing repetitions of the 
kth word in the recognition vocabulary. For speaker- 
dependent  experiments, the training sequence for each 
code book is spoken by one person and the code books are 
used to classify additional utterances from the same per- 
son. For mu ltiple-speaker and  speaker- independent experi- 
ments, the training sequence for each code book is spoken 
by several people and  the code books are used to classify 
additional utterances from these people or utterances from 
different people. 

W e  used two different types of classification code books. 
The  first, called clustered code books, are full-search, opti- 
ma l, vector quantization code books ment ioned in Section 
III and  fully described in [6], [7]. Our clustered code book 
sets were generated either to fixed-size or to fixed-distor- 
tion criteria. As the name implies, in a  fixed-size code 
book, the size Nk is specified ahead of time  and the design 
algorithm chooses Nk codewords that m inimize the average 
distortion resulting from encoding the training sequence. 
All code books in a  fixed-size code book set have the same 
size. For a  fixed-distortion code book, the design algorithm 
increases the code book size until it can design a  code book 
that encodes the training sequence with an  average distor- 
tion that is less than or equal to a  prespecified value. All 
code books in a  fixed-distortion code book set are gen- 
erated with the same average distortion threshold and  can 
therefore have different sizes. The  use of fixed-distortion 
code books for discrete utterance classification was sug- 
gested by Rabiner [ 141. Because each fixed-distortion code 
book is only as large as necessary to satisfy the distortion 
criterion, it follows that fixed-distortion code books m ight 
lead to the same classification performance as fixed-size 
code books but with fewer total codewords. This in turn 
would lead to smaller memory requirements and  faster 
classification performance. Furthermore, fixed-distortion 
code books have the intuitive advantage that they are 
approximately equal in terms of a  measure that should be  
connected closely to classification performance-average 
distortion in classifying the known training sequence. This 
measure may not, however, predict how well the code book 
set can discriminate among the different words in the 
recognition vocabulary. For both fixed-size and fixed-dis- 
tortion code books, code book sizes are lim ited for con- 
venience to powers of 2, i.e., Nk = 2+, where rk is the rate 
of C,-typical classification code books contain on  the 
order of 32  codewords (rk = 5). 

The second basic type of code book we used is the 
unclustered code book. These are generated simnlv bv mak- 
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ing a codeword out of each frame in the training sequence. 
Training sequences for unclustered code books usually are 
much shorter than training sequences for clustered code 
books. Our motivation for considering unclustered code 
books was computational efficiency and convenience- 
generating them obviously is much easier than generating 
clustered code books. Although we did not expect them to 
perform as well as clustered code books, we thought that 
their performance might be sufficiently good for some 
applications. 

In generating clustered code books, we used both d,, 
and d,, as the distortion measure in (2). We didn’t use 
d because it led to difficulties in computing cluster 
czroids-in the case of d,, and dGN, the centroid of a set 
of spectra can be computed simply by averaging the auto- 
correlations of the members (see [6], [S]). We refer to 
clustered code books generated with d,, and dGN respec- 
tively as IS and GN code books. In performing classifi- 
cation of unknown utterances, we used all three distortion 
measures ( dIs, dGN, and d,,) as the distortion measure in 
(3) except that d,, was used only in the case of IS code 
books. (GN code books are generated by setting the gain to 
1 before computing centroids, so it doesn’t make sense to 
use the gain-sensitive measure d,,.) 

Spectrum shapes that result from analyzing nearly silent 
frames can be quite arbitrary. In order to avoid cluttering 
up code books with codewords that that would result from 
including such frames, we used an energy threshold during 
code book generation-frames with energy below the 
threshold were ignored. Similarly, another threshold was 
used to ignore the low-energy frames of an input utterance 
during classification. 

C. Figures of Merit 

We used two figures of merit in evaluating the experi- 
ments. The first is simply the number of classification 
errors made. The second attempts to quantify the extent to 
which the classifications are correct or incorrect. In partic- 
ular, suppose that the input utterance is the m th word in 
the recognition vocabulary. For correct classification, D, 
should be the smallest of the average distortions (3) i.e., 
D, = D,,, (see (4)). Define 

D* = min D, 
k*m 

(11) 

as the smallest average distortion of all code books except 
the correct one, and define 

D* - D,,, 
F= D . 

m 
(12) 

If the classification is correct, F > 0; if the classification is 
incorrect, F < 0. For correct classifications, F is the frac- 
tional difference between the distortion of the correct code 
book, and the distortion of the next best choice-a large 
value of F means that the correct code book stands out 
clearly from the other choices. For each experiment, we 
computed the number of errors, the average value of F 
(F,), and the standard deviation of F (F,). 

D. Experiments 

In this subsection we list the various experiments re- 
ported in the remainder of the paper. Section IV contains a 
brief summary of some previously reported experiments. 
The rest of the paper reports on experiments with the data 
base used in the test of commercial recognizers that we 
mentioned earlier [2]. The data base is described in Section 
V-A, and our experimental parameters are defined in Sec- 
tion V-B. The rest of Section V contains the results of 
speaker-dependent classification tests on all 16 speakers in 
the data base using fixed parameters that we selected after 
studying a single speaker. In particular, we performed the 
following experiments, which are listed according to the 
corresponding subsection of Section V: 

C. Single-speaker (WMF) study of classification perfor- 
mance versus code book rate for fixed-size IS and 
GN code books and various classification distortion 
measures (Fig. 1); 
Single-speaker (WMF) study of classification perfor- 
mance versus autoregressive model order for fixed-size 
code books (Fig. 2); 
Single-speaker (WMF) study of classification perfor- 
mance versus average distortion for fixed-distortion 
IS and GN code books (Figs. 3-4); 

D. Full-vocabulary classification performance for all 16 
speakers using fixed parameters based on the WMF 
study (Tables I-III); 
Digit-subset classification performance for all 16 
speakers using fixed parameters based on the WMF 
study (Tables IV-VI). 

Section VI contains the results of various speaker-depen- 
dent performance studies. The following experiments are 
listed according to the corresponding subsection of Section 
VI: 

A. 

B. 

C. 

D. 

E. 

Classification performance versus code book rate for 
fixed-size IS and GN code books (Table VII); 
Classification performance versus average distortion 
for fixed-distortion IS and GN code books (Figs. 
5-6); 
Classification performance versus fixed-size code 
book rate for classification by average distortion 
divided by span fraction (Table VIII); 
Results for data downsampled to 8000 samples per 
second from 12 500 samples per second (Table IX); 
Full-vocabulary results for classification with unclus- 
tered code books (Tables X and XII); 
Digit-subset results for classification with unclustered 
code books (Table XIII); 
Results for classification for power-normalized data 
(Table XIV). 

Section VII contains results of the following multiple- 
speaker and speaker-independent experiments. 

A. Results for classification of 4 speakers using a fixed- 
size code book set designed from utterances of all 
four speakers (Table XVI); 
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B. Single-speaker (RLD) study of speaker- independent 
classification performance versus fixed-size code book 
rate, versus size of training sequence, and  versus 
method of estimating autoregressive mode l (auto- 
correlation or Burg technique) (Table XVII); 

C. Full-vocabulary, speaker- independent classification 
performance for 8  ma le speakers using parameters 
based on  the RLD study and two training sequence 
lengths (Table XVIII-XX); 
Digit-subset classification performance for 8  ma le 
speakers using parameters based on  the RLD study 
and two training sequence lengths (Tables XXI-X- 
XIII). 

IV. SUMMARY OF PREVIOUS EXPERIMENTS 

In this section we summarize some previous experiments 
in speaker-dependent  classification; utterances from indi- 
vidual speakers were classified using code books designed 
from training sequences spoken by the same speaker. These 
experiments, conducted using a  small data base, were 
reported in [lo]. The  experiments used a  data base of the 
digits ZERO through NINE, each spoken eleven times by one 
ma le speaker-l 10  utterances in all. The  beginning and 
end of each utterance were marked by hand. The  speech 
was passed through an  anti-aliasing filter, sampled at 6500 
samples/s, and  divided into frames of 128  samples (ap- 
proximately 20  ms). Tenth order LPC analysis was per- 
formed on  each frame by means of Levinson recursion on  
autocorrelations that were estimated with Hamming 
windowing and 90  percent preemphasis. Eight utterances 
were used as a  training sequence in designing a  fixed-size, 
rate-4 (size 16) IS code book for each word in the vocabu- 
lary. This left three utterances of each word outside of the 
training sequences. The  thirty total utterances outside of 
the training sequences were classified using the rate-4 code 
books and d,, for d in (3). No errors were made,  with 
F, = 1.20. The  thirty utterances were classified again, this 
time  usmg d,, in (3). The  results were similar: no  errors 
were made,  with F, = 1.05. 

W e  also performed lim ited studies with one- and  four- 
utterance unclustered code books. Classification with d,, 
was much better than with d,,, and increasing the size of 
the unclustered code books improved performance. The  
unclustered code books, which were all larger than the 
clustered code books, generally performed worse than 
the clustered code books. For details, see [lo]. 

V. SPEAKER-DEPENDENT PERFORMANCE ON LARGE 
DATA BASE 

All of our subsequent  experiments were conducted using 
a  much larger data base that was prepared by Texas 
Instruments, Inc. (TI), during a  systematic test of existing 
discrete utterance recognition systems [2]. Some pre- 
lim inary results were reported in [ 1  I]. 

Such a  data base can be  useful in both tuning and 
testing a  recognition algorithm. In order to balance the 
conflict between tuning and unbiased testing, we chose the 

following procedure: we tuned the algorithm based on  
prior experience and on  a  preliminary study using one of 
the speakers in the TI data base. W e  then tested the results 
(without changing parameters) on  the other speakers in the 
data base. The  results of that study are reported in this 
section. Subsequently, we varied some of the parameters 
and  performed studies on  the entire data base in order to 
gain additional insights. The  results of those studies are 
reported in subsequent  sections. 

A, TI Data Base 

The TI data base [2] consists of twenty words: the digits 
ZERO through NINE and the ten control words YES, NO, 
ERASE, RUBOUT, REPEAT, GO, ENTER, HELP, STOP, and START. 
Eight ma le and eight female speakers each recorded 
twenty-six repetitions of each word in the vocabulary, for a  
total of 8320 utterances. The  data was recorded on  analog 
tape under  tightly controlled conditions: the noise level 
was low, the speech level was restricted to a  _+ 3  dB range, 
the acoustic environment was unvarying and all errors in 
the input words were eliminated. After collection, the data 
was low-pass filtered and sampled at 12  500 samples per 
second. W e  received the data in digital form on  magnetic 
tape. Each utterance, preceded and followed by short seg- 
ments of amb ient noise, was contained in a  separate file. 

W e  used automatic endpoint detection for both 
training-sequence and classification utterances in all of our 
experiments with the TI data base. Our endpoint-detection 
algorithm is based upon ideas described in [26], [27]. The  
algorithm first analyzes the background noise to determine 
its average magn itude A, and then uses the results to set 
three thresholds for the average adjusted magn itude-the 
average of IS(t) - Al over 10  ms, where S(t) is the speech 
waveform. The  three thresholds-a start threshold, a  high 
threshold, and  an  end threshold-are used to find signifi- 
cant “energy clumps” in the data. The  end threshold is 
required to be  lower than the start threshold. Briefly, a  
word is detected when the average adjusted magn itude 
satisfies the following sequence of criteria: 

1) it rises above the start threshold; 
2) it remains above the start threshold until it rises 

above the high threshold; 
3) it drops below the end threshold; and  
4) it doesn’t exceed the start threshold for another 150  

ms. 
When  all four criteria are satisfied, the endpoints are 
defined as the points at which (1) and  (3) were satisfied. If 
(l)-(3) are satisfied, but (4) is not, the algorithm applies (3) 
and  (4) again starting at the point where (4) failed. The  
purpose of this correction is to avoid being confused by 
short periods of low energy that occur in the m iddle of 
certain words (e.g., REPEAT). 

Like the algorithm in [27], ours does not use zero-cross- 
ing information to try and  distinguish between noise and 
sibilant speech. For this reason, the algorithm should also 
work well on  lowpass-filtered speech such as exists in 
telephone channels or m ilitary communication channels. 
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B. Experimental Parameters after examining a few utterances. We selected the autocor- 

In this subsection we describe the various experimental relation method of LPC analysis using Levinson recursion, 

parameters associated with code book generation and along with N = W = 250 (20 ms), Hamming windowing, 

utterance classification. The parameters associated with * and 90 percent preemphasis. 

code book generation are as follows: 

a) code book type (clustered or unclustered); 
b) number of utterances in the training sequence; 
c) energy threshold Eti, where E is computed by 

W 

E= xxi’ 
i=l 

Because we believed that classification performance 
would depend strongly on the remaining parameters, we 
conducted a preliminary study on a single speaker (WMF) 
to determine them. In particular, we investigated 1) code 
book size and method of determining size; 2) LPC filter 
order (M); and 3) distortion measures for clustering and 
classification. 

(Here, W is the analysis window width (see below), 
and xi are the time-domain samples of the TI data 
after optional preemphasis and Hamming 
windowing.); and 

d) LPC analysis parameters for determining inverse filter 
gain and sample coefficients of autoregressive models 
(see (6)). 

For clustered code books, we also have 

4 
f) 
s> 

distortion measures used in clustering (d,, or dGN); 
method of determining code book size (fixed-rate or 
fixed-distortion); and 
code book rate (for fixed-rate code books) or maxi- 
mum average distortion (for fixed-distortion code 
books). 

The parameters associated with utterance classification are 
as follows: 

a) LPC analysis parameters for determining inverse filter 
gain and sample coefficients; 

b) energy threshold; and . c) distortion measure (d,,, d GO, Or dGN). 

The LPC analysis parameters for autoregressive modeling, 
relevant both to code book generation and to utterance 
classification, are 

a) analysis method (autocorrelation or Burg); 
b) number of points to shift between successive speech 

frames (N); 
c) analysis window width (number of points within a 

speech frame that contribute to the analysis of the 
frame) (IV); 

d) data window (rectangular or Hamming); 
e) preemphasis factor (O-98 percent); and 
f) filter order (M). 

For consistency, the LPC analysis parameters used in 
classifications were always chosen to match those used in 
generating the code books. 

C. Parameter Selection 

For the initial study, we selected clustered code books 
with the first 10 utterances of each word as the training 
sequences. (This choice for the training sequences is the 
same as that in [2].) The TI data has little background 
noise, and we chose an energy threshold of E,, = 250 

We began by designing rate-2 through rated, fixed-size 
code book sets with both d,, and d,. In each case, the 
first ten utterances of each word were used as training 
sequences. The remaining 320 (total) words were classified 
by all five code book sets using dIs, d,, and d, with the 
IS code books and using d,, and d, with the GN code 
books. The LPC filter order was fixed at M = 16. The 
results are shown in Fig. 1. Three trends are apparant: 

1) 

2) 

3) 

independent of distortion measure types, the error 
rate tends to decrease with increasing code book rate; 
classification using d,, y ields the best classification 
performance; and 
increasing the code book rate decreases the perfor- 
mance differences resulting from the various distor- 
tion measures. 

Next, we studied the effect of analysis filter order (M). 
We generated fixed-size, rate-5, IS and GN code book sets 
for M = 8, 10, 12, 14, 18, and 20. Only d,, was used as a 
classification distortion measure. The results are shown in 
Fig. 2. For a particular value of M the results for IS code 
books were usually better than those for GN code books, 
but both IS and GN code books exhibited the same general 
trend: the error rates initially decreased smoothly with 
increasing M and became constant for large M. 

Next, we evaluated the choice between fixed-size and 
fixed-distortion code books. We designed fixed-distortion 
IS and GN code book sets with five different distortion 
thresholds and with parameter settings otherwise the same 
as those for the fixed-size study that was summarized in 
Fig. 1, except that only d, was used as a classification 
distortion measure. The performance of the IS code book 
sets is plotted in Fig. 3 as a function of the actual average 
distortion of the code book set. (The actual average is 
different from the design threshold because the code book 
sizes are limited to powers of 2.) Also plotted in Fig. 3 is 
the performance of the fixed-size, IS code book sets from 
Fig. 1 for the case of classification with d,,. For these 
fixed-size code book sets, the performance is plotted as a 
function of the average distortion with which the code 
books in the set encoded their training sequences. For both 
the fixed-distortion and fixed-size code book sets, the 
average code book size appears in parentheses next to the 
plotted point. Note that all code books in a fixed-size code 
book set have the size indicated. Analogous results for GN 
code book sets are shown in Fig. 4. Comparing fixed-size 
code book sets to fixed-distortion code book sets with 
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Fig. 11 Single-speaker study of error rate versus code book rate. LPC 
filter order is 16. “IS on IS’ means classifications were performed using 
d,, with IS code books; “GO on IS’ means classifications were 
performed using dGO with IS code books; “GN on IS’ means classifi- 
cations were performed using d, with IS code books; “GO on GN” 
means classifications were performed using d,, with GN code books; 
and “GN on GN” means classifications were performed using d,, 
with GN code books. 

A = IS Codebooks 
* 7  GN Codebooks 

2  4  6  8  10  12  14  16  18  20  
M  

Fig. 2. Single-speaker study of error rate versus LPC filter order (M). 
Code book rate is 5. Classification distortion measure is d,,. 

approximately the same average code book size, it is ap- 
parent that the fixed-size code books performed better. W e  
therefore selected fixed-size code books for the full data 
base experiment reported in the next subsection. Since the 
results in F igs. 3-4 are somewhat counterintuitive, how- 
ever, we explored the issue again in studies on  the full data 
base reported in Section VI. 
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Fig. 3. Single-speaker study of error rate versus average code book 
distortion using IS code books. Classification distortion measure is 
d,,. LPC filter order is 16. For each code book set, the average 
number of codewords per code book is shown in parenthesis. 
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Fig. 4. Single-speaker study of error rate versus average code book 
distortion using GN code books. Classification distortion measure is 
d,,. LPC filter order is 16. For each code book set, the average 
number of codewords per code book is shown in parenthesis. 

D. Results for the Full Data Base 

For the initial study on  the entire data base, we used the 
same parameter settings that we fixed for the preliminary 
study on  W M F : clustered code books with lo-utterance 
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TABLE I 
INITIALRESULTSFORFULLTIDATABASE 

IS Code Books GN Code Books 
No. 

Speaker Class Errors 8 Right F, F, Errors % Right F, F, 

WMF 320 5 98.4 0.499 0.328 8 91.5 0.415 0.302 
RLD 320 1 99.1 0.653 0.466 2 99.4 0.664 0.431 
RGL 320 0 100.0 0.909 0.431 0 100.0 0.894 0.423 
MSW 320 6 98.1 0.618 0.372 0 100.0 0.592 0.337 
GRD 320 4 98.8 0.592 0.384 4 98.8 0.590 0.378 
TBS 320 13 95.9 0.606 0.388 7 97.8 0.591 0.346 
KAB 320 4 98.8 0.615 0.369 8 91.5 0.618 0.392 
REH 320 2 99.4 0.825 0.503 1 99.7 0.852 0.511 
CJP 320 4 98.4 0.629 0.323 1 99.7 0.648 0.325 

DFG 320 5 98.4 0.612 0.338 1 99.1 0.621 0.329 
GNL 320 2 99.4 0.883 0.554 2 99.4 0.897 0.542 
JWS 320 2 99.4 0.941 0.570 1 99.7 0.947 0.568 
HNJ 320 4 98.8 0.830 0.494 3 99.1 0.836 0.469 
SAS 320 3 99.1 0.798 0.423 2 99.4 0.804 0.428 
SJN 320 0 100.0 0.909 0.502 0 100.0 0.931 0.501 

ALK 320 1 99.7 0.723 0.409 0 100.0 0.693 0.410 

all 5120 56 98.9 0.728 0.456 40 99.2 0.728 0.450 

training sequences, E,, = 250, and LPC analyses by means 
of Levinson recursion on autocorrelations estimated with 
Hamming windowing and 90 percent preemphasis. Based 
on the results of the WMF study, we chose fixed-size, 
rate-5 (size 32), IS and GN code books, LPC order M = 16, 
and classification distortion measure do,. 

Shown in Table I are the results for all 16 speakers for 
both the IS and GN code books. The first 8 speakers are 
male, the rest are female. The performance for both code 
book types was approximately the same-error rates of 
about 1 percent. Although we are testing an algorithm as 
opposed to a commercial device, it is worth noting that 
these results are better than six of the seven commercial 
devices tested with the same data base [2]. The results show 
that much more can be done without time-sequence infor- 
mation than is commonly assumed. 

The results in Table I exhibit the so-called “goat-sheep” 
phenomenon [2], in which a large fraction of the errors 
occur within a small segment, the “goats,” of the popula- 
tion. For the GN code books, over half of the errors 
occurred for just three speakers: KAB, TBS, and WMF. 
WMF and TBS were also hard speakers for the IS code 
books. Contrary to what is usually found [2], our results 
were better for female speakers than they were for male 
speakers, and we have no explanation for this trend. 

In Tables II and III, we present summaries of the 
specific errors in the form of confusion matrices for the 
total IS and GN code book results. Each row comprises 
the results for one word in the recognition vocabulary; the 
columns correspond to the different classification deci- 
sions. Each row contains the results of classifying all 
utterances of one word in the vocabulary. 

Some of the error classes shown in the confusion matrices 
are easily understandable. For example, the NO ++ ONE 

confusions are not surprising-if a recording of NO is 
played backwards, it sounds like ONE and vice versa. It 
follows that the two words have many similar spectra and 
could be confused by a method that ignores time sequence 

information. This is an example of a general class of 
potential confusions. The Go @ No confusion is another 
example of this general class. Because there is a time- 
sequence similarity as well, it is a confusion that occurs 
with many other methods of word recognition. The uni- 
lateral confusions like SIX + YES are probably examples of 
the same phenomenon-more of the spectra in SIX are 
similar to spectra in YES than vice versa. As we mentioned 
in Section III, one possible way to reduce confusions 
between words that comprise similar spectra is to classify 
by minimizing average distortion divided by span fraction. 
This possibility was the basis for one of the studies re- 
ported in Section VI. 

Since many word-recognition applications involve only 
the digits ZERO through NINE, we also obtained results for 
this restricted case. The results for each speaker are shown 
in Table IV, with summary confusion matrices in Tables V 
and VI. As one would expect, the digit results are much 
better than those for the full vocabulary. For the digits, 
there was an extreme example of a “goat’‘-nine of the ten 
errors with IS code books and five of the eight errors with 
GN code books occurred for one male speaker (TBS). 

VI. SPEAKER-DEPENDENTSTUDIES 

In order to gain additional insights into the method in 
general as well as into the effects of the various parameters, 
we performed a variety of additional studies. In particular, 
we studied performance as a function of code book size, IS 
versus GN code books, fixed-size versus fixed-distortion 
code books, average distortion classification versus average 
distortion divided by span fraction, clustered versus un- 
clustered code books, performance on 4 kHz. bandwidth 
data, and performance on power-normalized data. 

A. Clustered Code Book Type and Classification Measure 

We repeated the experiment described in Section V-D 
using fixed-size, IS and GN code book sets with rates 2, 3, 
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TABLE II 
FULL DATA BASE CONFUSION MATRIX FOR IS CODE BOOKS 

0 1 2 3 4 567 8 9 ENTER ERASE GO HELP NO RUBOUT REPEAT STOP START YES 

0 256 ................... 
1 253 ... 1 ........ 2 ..... 
2 .. 255 ....... 1 ......... 
3 ... 253 ............ 3 ... 
4 .... 256 ............... 
5 ..... 251.1 ..... 1. 3.. .. 
6 ...... 248 3 ... 2 ...... .3 
7 ....... 256 ............ 
8 ........ 252 ....... 4 ... 
9 .. 2 .. .2.1 251 .......... 
ENTER .......... 256 ......... 
ERASE ........... 256 ........ 
GO .......... .242. 13 1 .... 
HELP ...... , ...... 255 ...... 

NO .. 4 ......... 3 . 249 ..... 
RUBOUT ............... 256 .... 
REPEAT ................ 256 ... 
STOP 1 ............... 252 3 . 
START ................ 256 . 
YES .......... I... ... 255 

TABLE III 
FULL DATA BASE CONFUSION MATRIX FOR GN CODE BOOKS 

0 1 2 3 4 5 6 7 8 9 ENTER ERASE .GO HELP NO RUBOUT REPEAT STOP START YES 

0 256 ................... 
1 254 ............ 2 ..... 
2 .. 2551.. .............. 
3 ... 254 ............ 2 ... 
4 .... 256 ............... 
5 ..... 247 ....... 5 . 4.. .. 
6 ...... 252 1 ... I.... ... . 
7 ....... 256 ............ 
8 ........ 255 .......... 1 
9 .. 2 .. ., .. 253 .......... 
ENTER .......... 256 ......... 
ERASE ........... 256 ........ 
GO 1 ........... 241 1 I ..... 
HELP ............. 256 ...... 
NO .5.. ......... 2 249 ..... 
RUBOUT ............... 256 .... 
R,ZpEA’,- ................ 256 ... 
STOP ................ 255 1 . 
START ................ 256 . 
YES .......... , ....... 255 

TABLE IV 
INITIAL RESULTSFORDIGIT SUBSET 

IS Code Books GN Code Books 
No. 

Speaker Class Errors % Right F, F, Errors % Right F, F, 

WMF 160 1 99.4 0.714 0.371 2 98.8 0.670 0.364 
RLD 160 0 100.0 1.043 0.543 0 100.0 1.059 0.550 
RGL 160 0 100.0 1.144 0.507 0 100.0 1.117 0.503 
MSW 160 0 100.0 0.923 0.458 0 100.0 0.901 0.432 
GRD 160 0 100.0 0.915 0.459 0 100.0 0.943 0.466 
TBS 160 9 94.4 0.850 0.510 5 96.9 0.810 0.444 
KAB 160 0 100.0 0.970 0.511 1 99.4 0.970 0.520 
REH 160 0 100.0 1.255 0.686 0 100.0 1.239 0.710 
CJP 160 0 100.0 0.983 0.462 0 100.0 0.996 0.459 

DFG 160 0 100.0 0.923 0.378 0 100.0 0.934 0.412 
GNL 160 0 100.0 1.428 0.702 0 100.0 1.424 0.677 
JWS 160 0 100.0 1.540 0.845 0 100.0 1.512 0.816 
HNJ 160 0 100.0 1.215 0.614 0 100.0 1.188 0.576 
SAS 160 0 100.0 1.138 0.507 0 100.0 1.146 0.549 
SJN 160 0 100.0 1.441 0.698 0 100.0 1.412 0.690 

ALK 160 0 100.0 1.200 0.607 0 100.0 1.124 0.542 

all 2560 10 99.6 1.105 0.611 8 99.7 1.090 0.600 
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TABLE V 
DIGITS-ONLY CONFUSION MATRIX FOR IS CODE BOOKS 

To 1 2 3 4 5 6 7 8 9 
256 . . . . . . . . . 

. 255 . . , . . . . 

. . 256 . . . . . 

. 256 . . . . . . 
. . 256 . 

. . 255 . 1 . . 
. . . . 253 3 . . 
. . . . . . 256 . . 

. . . . . 256 

. 2 . 2 . 1 251 

TABLE VI 
DIGITS-ONLY CONFUSION MATRIX FOR GN CODE BOOKS 

10 12 3 4 5 6 7 8 9 

0 256 . . . . . . . 
1 . 256 . 
2 255 1 . 
3 . . . 256 . . . . . . 
4 . . 256 . 
5 . . . 253 2 1 
6 . . . 255 1 . 
I . . . . . 256 . . 
8 . . . . . . 256 
9 . 2 . . . 1 . . 253 

0 = Fixed Distortion 0 = Fixed Distortion 
. . = Fixed Rate = Fixed Rate 

0 0 ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ I I I I I I I I I I I 
.2 .2 .4 .4 .6 .6 .8 .8 1.0 1.0 1.2 1.2 

Average Distortion Average Distortion 
4, and 6. The overall results and those from the previous 
rate-5 experiment are shown in Table VII. The GN code 

Fig. 5. Full data base study of error rate versus average code book 
distortion using IS code books. Classification distortion measure is 

books generally performed better, but the difference was 
substantial only for code book rates 2 and 3. The computa- 

d,,. LPC filter order is 16. For each code book set, the average 
number of codewords per code book is shown in parenthesis. 

tional complexity of generating IS and GN code books is 
essentially the same, but the GN code books require no 
gain term so they require slightly less storage. Perhaps the 
most surprising result in Table VII is the remarkably good 10 - 
performance of the rate-2 code book sets. With only four 0 13.71 

codewords per code book, the GN code books had an error 
rate of only 2.3 percent. 

Next, we repeated the experiment using fixed-distortion 8 - 
IS and GN code book sets that were designed to five 
different average distortion thresholds. The results and 0 = Fixed Distortion 

those for the fixed-size code book sets (Table VII) are l = Fixed Rate 

plotted in Figs. 5-6-overall performance is plotted as a 6 - 
function of the average distortion with which the code $ 
books in the set encoded their training sequences. Each ” - 
point in Figs. 5-6 is based on the classification of 5120 6 ~ 
utterances outside the training sequences. The results con- 4 

(6.8) 

firm the conclusion of the WMF study (Figs. 
3-4)-fixed-size code books perform better with fewer (12.71 
total codewords. For example, for almost every fixed-dis- 
tortion point in Fig. 6, one can find a fixed-size point with ’ 

(21.9) 

/, 

/ .” ,@'(41 

.c c. 
higher average distortion but with fewer average codewords ,47.3bo/ 0. 

/* 

per code book and lower error rate. The higher average .--.--y:6; ----- (8) 

distortion of the fixed-size code books is reasonable since @4) (321 

I I I I I I I I I I 

they have fewer average codewords per code book than the .2 .4 .6 .8 1.0 

fixed-distortion code books. The lower error rate of the Average Distortion 

fixed-size code books is, however, puzzling. Fig. 6. Full data base study of error rate versus average code book 

An examination of the errors showed that the fixed-dis- distortion using GN code books. Classification distortion measure is 

tortion code books performed slightly better on some mul- 
d,,. LPC filter order is 16. For each code book set, the average 
number of codewords per code book is shown in parenthesis. 
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TABLE VII 
RESULTSOFRATESTUDYFOR FIXED-SIZECODEBOOKS 

IS Code Books GN Code Books 
Code Book No. 

Rate Class Errors %  Right F, F, Errors %  Right F, F, 
2 5120 423 91.7 0.342 0.301 116 97.7 0.447 0.294 
3 5120 144 97.2 0.519 0.373 62 98.8 0.597 0.373 
4 5120 69 98.7 0.647 0.416 52 99.0 0.684 0.422 
5 5120 56 98.9 0.728 0.456 40 99.2 0.728 0.450 
6 5120 52 99.0 0.765 0.472 41 99.2 0.745 0.455 

TABLE VIII 
RESULTSOF SPANFRACTIONSTUDY 

IS Code Books GN Code Books 
Code Book No. 

Rate Class Errors %  Right F, F, Errors %  Right F, F, 

2 5120 460 91.0 0.382 0.340 138 97.3 0.504 0.348 
3 5120 224 95.6 0.709 0.530 123 97.6 0.810 0.537 
4 5120 99 98.1 1.018 0.706 78 98.5 1.054 0.684 
5 5120 82 98.4 1.155 0.780 73 98.6 1.124 0.756 
6 5120 76 98.5 1.161 0.799 64 98.8 1.100 0.749 
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tisyllabic words, but considerably worse on  some of the 
monosyllabic words. The  confusions that the fixed-distor- 
tion code books made  on  monosyllabic words were gener- 
ally a  superset of those made  by the fixed-size code books. 
The  additional confusions made  by the fixed-distortion 
code books were usually into mu ltisyllabic words that 
corresponded to code books containing about twice as 
many codewords as those of the monosyllabic words, the 
most frequent examples being FIVE -+ RUBOUT, SIX --) 
ERASE, THREE + REPEAT, and EIGHT -+ REPEAT. It seems 
that the spectra in these larger code books were sufficiently 
varied so that a  low average distortion resulted from encod- 
ing some of the shorter words in the recognition vocabul- 
ary. As pointed out by an  anonymous referee, this explana- 
tion suggests that classification by m inimizing average 
distortion divided by span fraction m ight work better for 
fixed-distortion code books than for fixed-size code books. 

Our results concerning fixed-size versus fixed-distortion 
code books points out that the key to high recognition 
accuracy is how well the code books discriminate among 
the vocabulary words, not simply how well the training 
sequence is characterized. Apparently, fixed-size code books 
discriminate better than fixed-distortion code books. 

B. Average Distortion Versus Span Fraction 

W e  repeated the fixed-size code book set experiments 
(Table VII) with identical parameters except that classifica- 
tion was performed by m inimizing average d,, divided by 
span fraction instead of just average d,,. The results, 
shown in Table VIII, are always worse than the corre- 
sponding results in Table VII. 

In response to the referee’s comment  ment ioned in the 
previous subsection, we repeated the fixed-distortion code 
book experiments described in that subsection, except that 
classification was performed by m inimizing average distor- 
tion divided by span fraction. Indeed, some improvement 
resulted. In terms of the results plotted in F igs. 5-6, the 

performance improved slightly for the fixed-distortion code 
books designed to distortion thresholds greater than about 
0.4-below this point the performance was worse. In no  
case, however, did performance improve to the level of the 
equivalent fixed-rate code book. 

C, Performance on 4 kHz Bandwidth Data 

The excellent results shown in Tables I-VII were for 
high-fidelity data sampled at 12  500 samples/s. This repre- 
sents a  larger bandwidth than available over most commer- 
cial and  m ilitary telephone and radio telephone networks. 
Our original experiments, reported in [lo] and  summarized 
in Section IV, were performed with data that was sampled 
at 6500 samples/s. The  performance of d,, classification 
using fixed-size, rate-4 code books was good, and  it implied 
that our technique could be  useful with telephone-band- 
width speech, but the data base was extremely small (a 
total of 110  utterances). To  obtain more data on  the 
classification of telephone-bandwidth speech, we per- 
formed some classification experiments on  the TI data base 
after down sampling the data to 4000 Hz. The  sampling 
rate conversion was carried out by [28]: 

1) padding the signal with zeros to create a  signal sam- 
pled at 200  000 samples/s; 

2) lowpass filtering the signal at 3900 Hz; and  
3) down sampling the signal to 8000 samples/s. 

The  interpolation/decimation filter consisted of a  
fourth-order elliptical filter cascaded with a  third-order 
Chebyshev filter. After converting the sampling rate, we 
ran the endpoint detection algorithm described in Section 
V-A. 

The  4000 Hz bandwidth and  the following LPC analysis 
conditions were chosen for compatibility with the Navy’s 
2.4-kbs LPC-10 [29]: N = 180, W  = 128, M  = 10, and  
Hamming windowing. W e  continued to use Levinson re- 
cursion, al though LPC-10 uses the covariance method. As 
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TABLE IX 
RESULTSFOR~~HZBANDWIDTHDATA 

IS Code Books GN Code Books 
No. 

Speaker Class Errors % Right F, F, Errors % Right F, F, 

WMF 320 7 97.8 0.738 0.491 5 98.4 0.720 0.464 
GRD 320 5 98.4 0.659 0.481 6 98.1 0.687 0.499 
CJP 320 2 99.4 0.758 0.436 2 99.4 0.773 0.429 
JWS 320 5 98.4 1.114 0.745 2 99.4 1.167 0.743 

all 1280 19 98.5 0.817 0.579 15 98.8 0.837 0.581 

TABLE X 
RESULTSFORIO-UTTERANCEUNCLUSTEREDCODEBOOKS 

d,, Classification d,, Classification 
No. Avg. 

Speaker Class Size Errors % Right F,, F, Errors % Right F, F, 

WMF 320 225.8 21 93.4 0.532 0.389 3 99.1 0.518 0.312 
TBS 320 248.3 18 94.4 0.585 0.464 7 97.8 0.618 0.336 
RLD 320 225.0 6 98.1 0.658 0.457 1 99.7 0.663 0.449 
CJP 320 321.0 1 99.7 0.812 0.388 2 99.4 0.669 0.336 

all 1280 255.0 46 96.4 0.647 0.439 13 99.0 0.617 0.367 

TABLE XI 
RESULTS FORFIXED-SIZE,RATE-~,CLUSTERED CODE BOOKS(FROMTABLEI) 

IS Code Books GN Code Books 
No. 

Speaker Class Errors % Right F, F, Errors % Right F,, F, 

WMF 320 5 98.4 0.499 0.328 8 97.5 0.475 0.302 
TBS 320 13 95.9 0.606 0.388 7 97.8 0.591 0.346 
RLD 320 1 99.7 0.653 0.466 2 99.4 0.664 0.437 
CJP 320 4 98.8 0.629 0.323 1 99.7 0.648 0.325 

all 1280 23 98.2 0.597 0.385 18 98.6 0.595 0.364 

before, we generated fixed-size, rate-5 clustered IS and GN 
code books using lo-utterance training sequences, and an 
energy threshold of E,, = 250. We tested two male and 
two female speakers using average d,, as a classification 
criterion. The results, which should be compared with rows 
in Table I that correspond to the same speakers, are shown 
in Table IX. For the 1280 classification trials, the error 
rates for the narrow-bandwidth tests are approximately 
equal to those of the full bandwidth tests. Although there 
was some overlap, different errors tended to be made in the 
tests at different bandwidths. 

Based upon these results, we believe that our approach is 
capable of achieving a high level of performance on tele- 
phone or military-channel bandwidth data. 

D. Results for Unclustered Code Books 

Unclustered code books are generated simply by making 
a codeword out of every frame in the training sequence. 
Unclustered code books therefore can be viewed as a 
limiting case of clustered code books, namely when one 
requires that the resulting code book encode the training 
sequence with zero distortion. Since the clustering proce- 
dure attempts to find codewords that are representative of 
a training sequence, this suggests that the effectiveness of 
clustering can be evaluated by comparing the performance 
of clustered and unclustered code books designed from the 
same training sequence. 

Accordingly, for four speakers we generated unclustered 
code books from the lo-utterance training sequences that 
were the basis of the fixed-size, rate-5 clustered code book 
experiments discussed in Section V and summarized in 
Table I. All other parameters were the same, except that we 
classified the utterances outside of the training sequences 
using both d,, and d, instead of just d,,. The results are 
shown in Table X. For ease of comparison, the appropriate 
four lines from Table I are collected in Table XI. Compar- 
ing Tables X and XI shows that classification using d,, 
worked better with the unclustered code books than either 
the clustered IS or GN code books. The differences were 
small, however, which attests to the effectiveness of the 
clustering procedure- the clustered code books were about 
one eighth the size of the unclustered code books. 

If one views the use of clustered code books as a method 
of condensing unclustered code books, the foregoing re- 
sults suggest the potential of using other methods for 
condensing the training sequences, as has been done in 
some related work by Miclet and Nehame [30]. Note that 
unclustered code books are used as an initial guess in the 
k-means clustering technique [31]. One general class of 
methods for condensing the training sequence involves 
picking a subset that satisfies an optimality criterion. Possi- 
ble methods include that of Hart [32]. Another class of 
methods involves picking an arbitrary subset, for example, 
by using fewer utterances in unclustered code book train- 
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TABLE XII 
RESULTSFOR I -UTTERANCEUNCLUSTERED CODE BOOKS 

d,, Classification d,, Classification 
No. Avg. 

Sneaker Class Size Errors %  Right F., F, Errors %  Right F, F, 
1  I. - 

W M F  320 21.9 132 58.8 0.100 0.529 31 90.3 0.339 0.280 
TBS 320 23.9 142 55.6 0.081 0.500 41 87.2 0.481 0.462 
RLD 320 24.4 83 74.1 0.235 0.397 30 90.6 0.366 0.326 
CJP 320 30.4 41 87.2 0.439 0.415 14 95.6 0.408 0.264 
all 1280 25.2 398 68.9 0.214 0.485 116 90.9 0.354 0.292 

TABLE XIII 
RESULTSFORCLASSIFICATIONOFDIGITSU~SETWITHI-UTTERANCEUNCLUSTEREDCODEBOOKS 

d,, Classification d,, Classification 
No. Avg. 

Sneaker Class Size Errors %  Right F., F, Errors %  Right F,, F, -. 
- W M F  160 22.4 77 51.9 0.303 0.975 14 91.3 0.462 0.3 16 

TBS 160 23.3 64 60.0 0.276 0.768 11 93.1 0.496 0.338 
RLD 160 24.4 30 81.3 0.494 0.535 3 98.1 0.677 0.398 
CJP 160 30.9 4 97.5 0.602 0.362 0 100.0 0.657 0.278 
all 640 25.3 175 72.7 0.419 0.713 28 95.6 0.573 0.348 

TABLE XIV 
RESULTSOF d,, CLASSIFICATIONUSINGFIXED-SIZE,RATE-5, 
CLUSTEREDISCODEBOOKSFORPOWER-NORMALIZEDDATA 

Normalized Data Unnormalked Data 
No. 

Speaker Class Errors %  Right F,, F, Errors %  Right F, F, 
W M F  320 9 97.2 0.494 0.293 14 95.6 0.518 0.356 
TBS 320 21 93.4 0.587 0.459 20 93.8 0.575 0.459 
RLD 320 5 98.4 0.669 0.461 6 98.1 0.679 0.479 
KAB 320 8 97.5 0.699 0.452 8 97.5 0.640 0.375 

all 1280 43 96.6 0.612 0.430 48 96.3 0.603 0.425 

ing sequences. The  “random quantizers” in [33] are unclus- 
tered code books comprising a  random selection of frames 
from the training sequence. Some lim ited results with l- 
utterance unclustered code books in our original experi- 
ments suggested that surprisingly good performance could 
be  obtained [lo]. To  obtain more data, we repeated the 
experiments reported in Table X, except that we used only 
one  utterance from the training sequences for the unclus- 
tered code books. In each of the four experiments, the 
same 320 utterances as before were classified. The  results 
are shown in Table XII. The  results for classification with 
d,, show that about 90  percent accuracy can be  expected 
using single-utterance, unclustered code books. For the 
digit subset, accuracy increases to about 95  percent (Table 
XIII). Since unclustered code books are so easy to gener- 
ate, these results are quite good. They suggest that the 
method could be  used for an  easy-to-program, easy-to-train, 
“poor-man’s” discrete utterance speech recognizer. 

E. Power-Normalized Itakura-Saito Classification 

Classification using d,, in (3) can only be  used for code 
books that include gain terms, i.e., for IS clustered code 
books and unclustered code books. Results from F ig. 1, 
Table X, and  Table XII show consistently that classifica- 
tion with d,, in these cases is always inferior to classifica- 
tion with d,,. These results are somewhat disturbing, since 

d,, is a  special case of asymptotic cross entropy [9], [7], 
[ 161, and  since classification with d,, is optimal in a  well- 
defined information-theoretic sense [8]. 

The  problem appears to be  that small code books are not 
capable of reflecting the large gain variations that occur, a  
conjecture supported by the large difference in perfor- 
mance for d,, classification between l- and  lo-utterance 
unclustered code books (see Tables X and XII). It follows 
that decreasing the gain variations in the training and 
classification data m ight improve the performance of dIs. 
In an  attempt to remove large gain variations for similar 
spectra, but still to allow different spectra to have char- 
acteristic gain terms, we normalized each utterance so that 
they all had  the same average power. This power-nor- 
ma lized data was then used to build code books and used 
as classification data. W e  didn’t expect dramatic dif- 
ferences since TI restricted the level of the speech data to 
within a  * 3  dB range when they recorded it. 

W e  generated fixed-size, rate-5 clustered IS code books 
for four ma le speakers using the power-normalized utter- 
ances and parameter settings otherwise equivalent to the 
experiments reported in Table I. For each speaker, we 
classified the 320 utterances outside of the training se- 
quence using d,,. W e  then repeated the four experiments, 
except that we used the original, unnormalized data. The  
results are shown in Table XIV. For ease in comparing 
with the previous results for classification with dGO, the 
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TABLE XV 
RESULTSOF d Go CLASSIFICATIONUSING FIXED-SIZE,RATE-~,CODE BOOKS(FROMTABLE I) 

IS Code Books GN Code Books 
No. 

Speaker Class Errors % Right F, F, Errors 8 Right F, F, 

WMF 320 5 98.4 0.499 0.328 8 91.5 0.475 0.302 
TBS 320 13 95.9 0.606 0.388 I 97.8 0.591 0.346 
RLD 320 1 99.7 0.653 0.466 2 99.4 0.664 0.437 
KAB 320 4 98.8 0.615 0.369 8 97.5 0.618 0.392 

all 1280 23 98.2 0.593 0.395 25 98.1 0.587 0.379 
- 

TABLE XVI 
RESULTSOFMULTIPLE SPEAKEREXPERIMENT 

IS Code Books GN Code Books 
No. 

Speaker Class Errors % Right F, F, Errors % Right F, F, 

WMF 320 18 94.4 0.302 0.210 17 94.7 0.303 0.214 
TBS 320 15 95.3 0.318 0.244 15 95.3 0.317 0.245 
REH 320 8 97.5 0.478 0.332 I 97.8 0.509 0.341 
GRD 320 22 93.1 0.365 0.283 19 94.1 0.353 0.257 

all 1280 63 95.1 0.366 0.280 58 95.5 0.317 0.245 

appropriate four lines from Table I are collected in Table 
XV. The results for d,, classification with normalized data 
are still significantly worse than the results for do, classifi- 
cation with unnormalized data. The results for d,, classifi- 
cation with normalized data may be slightly better than 
those for unnormalized data, but clearly there is no signifi- 
cant improvement. 

VII. MULTIPLE-SPEAKER AND 
SPEAKER-INDEPENDENT EXPERIMENTS 

We use the terms multiple-speaker and speaker-indepen- 
dent recognition when a set of speakers contribute to the 
training sequence of a code book. Multiple-speaker recog- 
nition is the case when the resulting code book is used for 
classifying utterances from these same speakers. Speaker- 
independent recognition is the case when the code book is 
used for classifying utterances from a speaker who is not in 
the training set. 

In this section we present the results of one multiple- 
speaker classification test, several preliminary speaker- 
independent parameter studies, and a male speaker- 
independent experiment. The data and the LPC analysis 
conditions in these experiments were the same as in the 
speaker-dependent experiment discussed in Section V (Ta- 
ble I). The number of speakers in the training sequence, the 
number of utterances per speaker in the training sequence, 
and the code book rate were varied in the preliminary 
experiments. 

A. Multiple-Speaker Test 

To gain an appreciation for the degradation introduced 
by interspeaker variations in the training sequence, a four- 
speaker training sequence was used to generate IS and GN 
code books. In particular, fixed-size, rate-5 clustered code 
books were designed from two utterances each from REH, 
GRD, WMF, and TBS (all males). Additional utterances 

from the same four speakers were then classified using 
d GO’ The results are shown in Table XVI. As expected, 
classification accuracy is less than that of the speaker- 
dependent case (Table .I), but the degradation is surpris- 
ingly small. 

B. Speaker-Independent Parameter Studies 

Using the same four speakers as in the multiple-speaker 
experiment, we generated four additional code book sets: 
fixed-size, rate-5 and rate-6 clustered IS and GN code 
books using six utterances per speaker in the training 
sequences. We then classified all 520 utterances from RLD, 
a male speaker not included in the training set, using d,,. 
The classification accuracies for all six code book sets are 
shown in the first row of Table XVII. The results do not 
strongly favor any of the code book sets. 

The second row in Table XVII was motivated by results 
in [34]. There, the Burg technique for estimating LPC 
parameters was used in speech coding by vector quantiza- 
tion. The Burg technique led to code books that encoded 
the training sequence with lower average distortion than 
the code books designed from LPC parameters estimated 
by the autocorrelation method. To see if the Burg tech- 
nique would lead to better classification code books, we 
estimated LPC parameters and equivalent autocorrelations 
with the Burg technique, using 90 percent preemphasis, 
order M = 16, and frame size N = 250. We then generated 
new multiple-speaker code books using the results together 
with the usual energy threshold of Eti = 250, and we 
repeated the classification of RLD except that we again 
used Burg estimation for the autocorrelations. The results 
were about the same as those for the autocorrelation 
method. 

For additional information, we compared the spectra in 
the code books designed using the two methods of estimat- 
ing LPC parameters-they were similar but hardly identi- 
cal. Next we compared how well the code books repre- 
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TABLE XVII 
CLASSIFICATION OF RLD USING dGo ON VARIOUS SPEAKER-INDEPENDENT CODE BOOKS 

(r = FIXED-SIZE CODE BOOK RATE) 
(11 = No. OF UTTERANCES PER SPEAKER IN TRAINING SEQUENCE) 

Method 

Auto 
Burg 

IS Code Books GN Code Books 

No. r=5 r=5 r=6 r=5 r=5 r=6 
Class u=2 u=6 u=6 u=2 u=6 u=6 

520 11.5 11.3 78.1 14.2 11.1 78.5 
520 71.9 81.9 78.6 12.5 80.4 78.7 

TABLE XVIII 
SPEAKER-INDEPENDENT CLASSIFICATION USING d,, 

ON RATE-~, CLUSTERED GN-CODE BOOKS 

2-Utterance Training 9-Utterance Training 
No. 

Speaker Class Errors %  Right F,, F, Errors %  Right F, F, 

W M F  520 61 88.3 0.183 0.162 63 87.9 0.188 0.164 
RLD 520 107 19.4 0.139 0.178 91 82.5 0.173 0.198 
RGL 520 61 88.3 0.229 0.196 41 92.1 0.256 0.201 
M S W  520 65 87.5 0.215 0.194 45 91.4 0.237 0.210 
GRD 520 119 71.1 0.134 0.158 106 19.6 0.121 0.164 
TBS 520 85 83.7 0.159 0.184 77 85.2 0.162 0.170 
KAB 520 83 84.0 0.178 0.187 57 89.0 0.221 0.192 
REH 520 41 92.1 0.270 0.217 18 96.5 0.321 0.254 

all 4160 622 85.1 0.189 0.191 498 88.0 0.210 0.205 

sented the training sequences by examining the average 
distortion for encoding them. W e  computed the code book 
set distortion AD by averaging the average distortion with 
which each code book encoded its training sequence. As in 
[34], we computed the RMS log spectrum error for each 
code book set, SE = 6.142(eAD - 1)‘12. The  average dif- 
ference in SE between the autocorrelation method and the 
Burg technique code books was 0.05 dB for IS code books 
and 0.06 dB for GN code books. Although the code books 
designed using the Burg technique had smaller average 
distortion, the difference appears to be  too small to have a  
significant effect on  classification accuracy. 

As an  additional test, we classified the 520 utterances of 
one  female speaker (HNJ) using d,, on the 4-male, rate-5 
code books designed from two utterances per speaker. The  
classification accuracy was only 58.5 percent for the IS 
code books and 37.9 percent for the GN code books. These 
are significantly worse than the results for RLD (a ma le). 

C. Speaker-Independent Results 

W e  performed speaker- independent experiments using 
the 8  ma les in the TI data base. To  increase the total 
number  of classifications, we classified all 520  utterances of 
each ma le in turn using code books designed from the 
other seven. Except for the training sequences, parameters 
were the same as those in the speaker-dependent  experi- 
ment discussed in Section V (Table I)-rate-5 clustered 
GN code books, E,, = 250, autocorrelation method of 
LPC analysis with Hamming windowing and 90  percent 
pre-emphasis, N = W  = 250, and  M  = 16. For each 
speaker, we generated two GN code book sets-one from 
training sequences of two utterances per remaining speaker 
and  one from nine utterances per remaining speaker. The  

two-utterance training sequences were subsets of the nine- 
utterance training sequences. W e  are not suggesting that 
mu ltiple repetitions by the same speaker is a  good way to 
train a  speaker- independent word recognizer; we did it 
only to evaluate the adequacy of using only seven speakers 
in the training sequence. On ly d,, was used as a  distortion 
measure for classification. 

Table XVIII contains the results for the 8  ma le speakers 
in the TI data base. Tables XIX and XX are the confusion 
matrices for the two different code book sets. Accuracy is 
higher for the code books designed from the longer train- 
ing sequences. This suggests that higher accuracy would 
result from a  training sequence with more speakers. Com- 
paring Tables III, XIX, and  XX shows that the same types 
of errors occur in both the speaker-dependent  and  
speaker- independent cases. 

As in the speaker-dependent  case, we obtained speaker- 
independent results for the subset of the vocabulary con- 
sisting only of the digits. Table XXI shows the classifi- 
cation results and  Tables XXII-XXIII are the confusion 
matrices. Again, the higher accuracy of the nine-utterance 
per speaker code books suggests that better performance 
could be  achieved by increasing the number  of speakers in 
the training sequence. The  results show that speaker- 
independent digit classification can be  performed with 
about 95  percent accuracy, which is quite good. 

VIII. COMPUTATIONAL CONSIDERATIONS 

Most of the software for these experiments was written 
in FORTRAN-77 and run on  a  DEC VAX11/750 with a  
floating point accelerator. Generat ing the fixed-size, rate-5 
clustered code books required l- 1.5 m inutes of execution 
time  each. Classification of a  single utterance with these 



TABLE XIX 
SPEAKER-INDEPENDENT CONFUSION MATRIX FOR 2 - UTTERANCE PER SPEAKER TRAINING SEQUENCES 

lo I2 3 4 567 8 9 ENTER ERASE GO HELP NO RUBOUT REPEAT STOP START YES 

20, . 3 , . . . . . . , . . 1 , . 

L 
3 
4 
5 
6 
7 
8 
9 
ENTER 
ERASE 

GO 
HELP 
NO 
RUBOUT 
REPEAT 
STOP 
START 
YES 

1 156 . . 1 . 1 . 14 . I 4 26 4 . . . 
6 . 195 . 1 . I . . . 1 . I . 1 2 . . 
1 . 166 . . . . . 3 5 . . . . 33 . . 
. 2 . 1964.. . . . . 4 . 2 . 
. . I . 162 . . 3 . . 9 1 I3 18 2 . 
. . I . . .1871 . . . 2.... . 3 . I4 
. . . . 3189. . . . . . . . 16 
. . 12 . 2 . 130 . 1 5 . . . 39 . I9 
. 5 . . . 11 5 . 166 3 . 6 3 9 . . . . 
. . , , . . . . . 204 . . . 2 . . 
. 12 . . . . . . . 203 . . . . .- . 1 1 
2 124.. . . . . . . . 121 41 19 9 . . 
.3...6 . . . . . .5 1872 4 . I . 
.i6.. I ..I. I . . 14 28 134 2 . I . . 
2 . . . . 2...3. . . . 200 . I . 
2 . 21 . . . . . 1, . . 174 . . . 
. . . . 2 , . . . . I . . 179 25 . 
9 . . . . . 2... . , . . 5 2 188 I 
. . . . . . I... (j.,.. I . 200 

f 
4 
5 
6 
7 
8 
9 ‘. 
ENTER 
ERASE 

GO 
HELP 
NO 
RUBOUT 
REPEAT 
STOP 
START 
YES 

0 1 2 3 4 561 8 9 ENTER ERASE GO HELP NO RUBOUT REPEAT STOP START YES 

0 1198. , . . . . , . . . 3 3 . 1 , . . . 
145 . 1 3 . 1 9 . . . 5 41 2 . . 1 

4 . 196 . , . , . . 3 . I 2 . 
I . . ,(jg . . . , 8 . . . 30 

. 204 . . . . . . 1 . I 2 . 
. . . . 180. 2 . . I4 . 5 . 4 3 

. . . I91 I . . . 6 . . . . . . . 10 
. . . .l96. . . . . . . 2 . IO 

. . . 4 . . 161 . I 7 . . . 18 . . 17 

. 6 . . 14 . 2 . 170 7 . 3 4 2 . . . . 

. . . . 3 . . . . . 203 I . . . , . 

. . . . I..... . 207 . . . . . . 
3.,........ . 134 45 16 9 . . . . 

, . . . 10. . . . . . , 192 . 2 . 1 I 
2 24 . . 1 . 1 . . . g 26 143 I . 2 . a 

. . . 2.1.3. . . . . 199 . 2 I . 
. . . 7 . . , . 1 5 . . . . 194 . . . 

. . . 2 . . . . . . . 2 . 176 28 . 
. . . . . 1.1.. . , . . . I . . 202 2 
. . . . . . ,. . 4 . . . . . . 203 

TABLE XX 
SPEAKER-INDEPENDENT CONFUSION MATRIX FOR ~-UTTERANCE PER SPEAKER TRAINING SEQUENCES 

TABLE XXI 
SPEAKER-INDEPENDENT CLASSIFICATION OF DIGITS USING d, 

ON RATE-~, CLUSTERED GN-CODE BOOKS 

NO. 
2-Utterance Training 9-Utterance Training 

Speaker Class Errors % Right F, F, Errors % Right F, F, 

WMF 260 20 92.3 0.317 0.223 18 93.1 0.320 0.221 
RLD 260 7 91.3 0.283 0.197 6 91.1 0.339 0.224 
RGL 260 9 96.5 0.398 0.250 6 91.1 0.408 0.274 
MSW 260 20 92.3 0.360 0.259 I2 95.4 0.391 0.279 
GRD 260 31 88.1 0.252 0.194 22 91.5 0.252 0.215 
TBS 260 IO 96.2 0.330 0.229 9 96.4 0.317 0.200 
KAB 260 14 94.6 0.309 0.197 11 95.8 0.378 0.228 
REH 260 15 94.2 0.409 0.282 2 99.2 0.499 0.327 

all 2080 126 93.9 0.332 0.236 86 95.9 0.363 0.259 
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TABLE XXII 
SPEAKER-INDEPENDENT, DIGIT-SUBSET CONFUSION MATRIX 

FOR ~-UTTERANCE PER SPEAKER TRAINING SEQUENCES 

0 12 3 4 5 6 7 8 9 

02031 3 1 
1 1 188 I 1 . 1 I6 
26 I 199. I I 
33.. 204. . 1 
4.3.. 2005 . 
5.6... 192 . 2 8 
6.. , . . 202 5 . . 
7.. . . . 3 205 . . 
8 1 21 5 I81 . 
9. 5 . . . 16. 7 . I80 

TABLE XXIII 
SPEAKER-INDEPENDENT, DIGIT-SUBSET CONFUSION MATRIX 

FOR ~-UTTERANCE PER SPEAKER TRAINING SEQUENCES 

0 12 3 4 5 6 18 9 

0 203 1 2 . . 2 . . 
1 . 191 . 2 4 1 . 10 
26. 199. 2 I . . 
32.. 205. . . 1 
4.1.. 206 I . . 
5.,... 198 . I 8 
6.. . , . . 205 2 . 
7...... 2 206 . 
82..5..3. 198 
9. 8 . . 15. 2 . I83 

code books took about 1 s/code book. All of the software 
was designed for research purposes; we are confident that 
specially designed programs would run considerably faster. 

In general, let N = code book size, M = LPC model 
order, and L = length of an input utterance in frames. 
Then GN code books each require N(M + 1) storage 
locations, and the classification of an input utterance re- 
quires NL distortion calculations per code book. Several 
approaches could be used to reduce these requirements. 
For example, some codewords might contribute more to 
incorrect classifications than to correct classifications. If 
they can be found and removed, code book storage would 
decrease and classification speed would increase. Also, one 
could track the accumulating average distortions during 
classification, and reject some of the hypotheses without 
having to compute the average distortion of every code 
book over the entire input utterance. 

Even without such improvements, it is instructive to 
compare the computational requirements of the vector 
quantization (VQ) approach with those of DTW. Both 
requirements are dominated by the number of distortion 
calculations. In typical DTW approaches, the reference 
template and the input utterance are linearly normalized to 
the same length L before performing DTW, and ap- 
propriate constraints are applied to the search path [5]. 
High recognition accuracies can then be achieved with aL2 
distortion computations per reference template, where (Y is 
in the approximate range 0.2 to 0.3 [5]. Thus the ratio P of 
the number of distortion calculations required by the VQ 
approach to the number required by the DTW approach is 
about P = N/&L. For fixed-rate code books with N = 2R, 
and for a nominal value of (Y 5: 0.25, the ratio becomes 

P = 2R+2/L. We shall assume that a typical input utter- 
ance is L = 32 frames long (640 ms at 20 ms per 
frame)-this is perhaps too large, but it is conveniently a 
power of two. It follows that the ratio of distortion calcula- 
tions becomes 

p z 2R-3. (13) 
For our best results-achieved with rate-5 code 

books-(13) shows that DTW requires fewer distortion 
calculations. But for rate-2 and rate-3 code books, which 
still achieve excellent recognition accuracies of about 98 
percent (see Table VII), the VQ approach requires fewer or 
about the same number of distortion calculations. 

A DTW approach using ordered, graph-searching tech- 
niques can reduce the number of distortion computations 
by an additional factor of about 2.5 [35], which changes the 
exponent in (13) from R - 3 to about R - 2. It does so, 
however, at the expense of a more complicated control 
structure. Whether the overall computational requirement 
is reduced depends strongly on the hardware available for 
distortion calculations [35]. 

The foregoing comparison does not apply to the 
speaker-independent case, since conventional speaker- 
independent recognition systems usually have several tem- 
plates for each word in the recognition vocabulary. Since 
the VQ approach still requires only one code book, consid- 
erably fewer distortion calculations are required for the VQ 
approach than for DTW. The moderately good perfor- 
mance of the VQ approach in this case suggests its use as a 
preprocessor for DTW systems [14]. 

During classification, the input speech frames provide 
the argument f in (7), (9), or (10). It follows that both the 
time domain autocorrelations r(n) and the LPC gain 
squared u2 must be known for each input frame, which in 
turn means that an LPC analysis must be performed. For 
4, and dGo, however, the gain enters as a constant term 
(In (u 2)) that contributes a constant term in the computa- 
tion of the average code book distortions (3). The classifi- 
cation can therefore be performed without this term, which 
means than no LPC analysis of the input utterance is 
required. However, because only the relative values of the 
classification distortion will be known in this case, an 
overall rejection threshold cannot be used. 

IX. CONCLUSION 

The strongest conclusion from our study is that, for 
speaker-dependent recognition of a 20-word vocabulary, 99 
percent accuracy results from classification using the aver- 
age distortion of specially designed vector quantization 
code books. For the digit subset, performance is consider- 
ably better. This performance is about the same as that 
achieved by DTW, which shows that much more can be 
done without time-sequence information than is commonly 
assumed. Other strong conclusions are as follows: 

a) The method achieves almost 98 percent accuracy with 
rate-2 code books-only four codewords per code 
book. 
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b) The method achieves 88 percent accuracy for 
speaker-independent recognition of the 20-word 
vocabulary and 95 percent accuracy for the digit 
subset. 

c) Clustered code books should be designed to fixed-rate 
rather than fixed-distortion criteria. 

d) With l-utterance unclustered code books, the method 

For suitably chosen vocabularies, our results show that 

achieves about 90 percent accuracy for speaker- 
dependent recognition of the 20-word vocabulary and 
95 percent accuracy for the digit subset. This ap- 
proach has the advantages of fast training and no 
requirement for code book design software. 

characteristic spectra contain enough information for re- 
cognition, ‘and that information-theoretic clustering does a 
good job of extracting that information from training data. 

Given the performance obtained without exploiting time 
sequence information, it seems worthwhile to consider 
ways of increasing performance by incorporating some 
time sequence information. We see two basic approaches. 
One is to observe the sequence of code words that are 
closest to frames of an input utterance when the utterance 
is classified with the correct code book. If typical code 
book “trajectories” can be defined, it might be possible to 
incorporate them into the classification algorithm. Another 
approach is to divide utterances into sections and to use a 
separate code book for each section, an approach suggested 
by Buzo [13]. Preliminary experiments with this approach 
show substantial improvements in both classification accu- 
racy and computational efficiency [36]. 
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Minimax Optima l Universal Codeword Sets 
PETER ELIAS, FELLOW, IEEE 

.46struct--In an interactive multi-user data-processing system, a user 
knows the probabilities of his messages and must encode them into a fixed 
system-wide variable-length codeword set. He needs to receive the answer 
to his last message before selecting the next, so his encoding is one-shot. 
To minimize average codeword length he encodes his messages in order of 
decreasing probability into codewords in order of increasing length. An 
algorithm is given which, for each of several measures of performance, 
finds the codeword set best by that measure for the worst user, and some of 
the minimax optimal codeword sets the algorithm has found. Some of the 
results hold for all user distributions: others require, e.g., that all users send 
exactly or at most M  distinct messages, or that there is an integer k such 
that no user has a message of probability greater than I/k. 

I. INTRODUCTION 

I N an interactive mu lti-user data-processing system each 
user or user group may have a  different message set or 

probability distribution, but it may be  convenient for the 
system to require that each user encode his messages into a  
fixed systemwide set of codewords. Since a  user may need 
to receive the answer to his last message before sending the 
next, his encoding must be  one-shot. To  m inimize average 
codeword length he  assigns his messages in order of de- 
creasing probability to codewords in order of increasing 
length. He evaluates the cost of using the system by 
comparing the resulting average codeword length to the 
average length of a  set of codewords designed to be  opti- 
ma l for his particular probability distribution. 

As an  example, let a  user whose probability distribution 
has entropy H bits per message encode his kth most 
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probable message into the standard binary representation 
of the integer k (of length 1  + [log, k], where 1x1 is the 
largest integer no  greater than x) prefixed by a  sequence of 
[log, k] O’s, so that the most probable codeword is 1  and  

the seventh most probable codeword is 00111.  It is shown 
in [2] that the resulting average codeword length is no  more 
than 1  + 2H, and therefore cannot be  much more than 
twice as great as the average length of the best (Huffman) 
code for that distribution, which is known to lie between H 
and 1  + H. 

W e  discuss in this paper  the problem of finding the best 
codeword set in a  m inimax sense to use in such a  
system-i.e., the codeword set which m inimizes over all 
admissable codeword sets the maximum (over some class 
of acceptable user probability distributions) of some mea-  
sure of the extra cost of using that single codeword set for 
all distributions in the class. The  solution to the problem 
depends on  the class of acceptable user probability distri- 
butions and on  the cost measure used. Section II estab- 
lishes notation for distributions, entropies and codeword 
lengths and gives some well-known single-user results for 
reference. Section III establishes notation for the mu ltiuser 
problem and defines a  set of relevant cost measures and a  
number  of interesting classes of probability distributions. 
Section IV summarizes previous work [ I]-[41 in terms of 
these definitions. Section V shows that for each of the cost 
measures and classes of distributions defined in Section III 
the worst distributions are uniform, and  that for the cost 
measures most relevant for comparing one-shot encodings, 
the worst uniform distributions lie in a  subset whose size 
grows only logarithmically with the maximum allowed 
number  of messages. These results make it computationally 
feasible to check a  proposed codeword set for optimality. 
Section VI uses the results in Section V to derive an  
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