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ABSTRACT

A technique is presented for designing linear-phase
digital FIR filters, with a prescribed degree of flatness
in the passband, and a prescribed (equiripple) attenu-
ation jfl the 3topband. The design is based entirely on
appropriate use of the McClellan-Parks algorithm along
with certain maximally flat building blocks.

1. INTRODUCTION

The purpose of this paper is to advance a new tech-
nique for the design of linear-phase FIR filters with
equiripple stpbands and with a presciibed degree of
flatness in the passbands. Darlirigton [1] has considered
certain general transformation techniques for handling
these problems. Steiglitz [2] employs a linear program.-
ming approach for the design of such FIR filters, by im-
posing constraints on the derivatives of the frequency
response. In [3] Kaiser and Steiglits point out the exis-
tence of numerical difficulties in the design of such FIR
filters based on linear programming.

The tech:aique we propose here is based on the well-
known McClellan-Parks algorithm [4] for FIR filter de-
sign. 1o otner optimization programs are iixvoweà. 'The
design technique directly leads to a filter structure that
has very low "passband sensitivity" (which is crucial in
the implementation of filters with very flat passbands).
In Section 2 the method is introduced along with nu-
merical examples. For the design of narrow passband
filters, improved methods are described in Section 3.

2. THE PROPOSED APPROACH

Recall that, in the McClellan-Parka method [6], a
weighted error function is first formulated:

E(w)=W()[D(W)—P(())]

where P(i) is a sum of cosines. D(ci) is the desired
frequency re;ponse and W(w) is the "weight"of the ap-
proximation error. The algorithm [6] essentially finds
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Desired response:

H(s) = Hj(z)H2(z)
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P(w), such that E(w) is equiripple, thus minimizing the
peak weighted error for a given filter order. All the
techniques to be presented in this paper are based on
appropriate choices of the functions W(w) and D(w).

Consider the design of a lowpass linear-phase FIR
transfer function C(s) such that G(e.") has a tangency
of M — 1 at w = 0 (i.e., the first M — 1 derivatives of

G(e"') are zero at i = 0). Let the specifications 51, 62
and w, be as in Fig. 1. In order to design C(s), we
first design a lowpass filter ff(z) with "complementary"

a tiowu. lii. Fig. %. The deered tangency
at w = is easily forced by decomposing H(s) as

(2)

where
M

H2(z)=( 2 ) (3)

The transfer function H1 (z) can now be designed by
using the McClellan- Parks algorithm with the following
specifications:

fI1/H2(e')I,
0

Weighting function W(w) for the weighted equiripple
error:

1IH2(e)I
W(w)=r

—
(5)

1. 62/si H2(eJ(TF))I —(4 � W <

The choice of the desired function and the weighting
function as in Eqns. (4) and (5) ensures that (a) the
cascaded filter of Eqn. (2) has equiripple response in the

?nd tht ( t1t r?.t> o p zzband error to
the peak stopband error is 62/61. Assuming that H(s)
has been designed as above, if we now construct the
function, C(s) = 5N/2 — H(s), the resulting response
is as shown in Fig. 3. If each delay unit in the circuit
for O(z) is replaced with (—z), the required transfer
function is thus obtained:

C(s) = (_5)—N/2 — H(—z) (6)

(1)
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Figure 4 shows the overall implementation of G(z). _____
(N is assumed even in Equ. (6).) In summary, the filter
section H2(z) takes care of the flatness of the passband
of G(z), whereas the section Hi(z) takes care of the
equiripple stopband of G(z).

Letting N1 denote the order of H1 (z), the overall
filter order N = N1 + M should be even, so that the
"complementation" of Eqn. (6) can be realized. Given
a certain "degree of tangency" equal to M 1 at w =0,
and given the tolerances 6 and 2, it only remains to
find N1. An estimate of N1 can be found as

N — —101og106162—13' 14.6f (7)

where tif = (w, — w)/2w. Notice that, even though
the overall filter order is N1 + M, the number of multi-
plications involved is only about N1/2.

Example 2.1

Consider the following lowpass specifications: w, =
(0. 3)2w , ', = (0 35)2w; öj = 0• 016, 62 0 26
(corresponding to —50 dB); order of tangency (M— 1)
at zero frequency = 15. The estimated order of a con-
ventional equiripple design Ge(Z) is 42 from Eqn. (7).
An order, N5 44 was actually required for G(z). As.
suming that the required order N1 of Hj(z) is also equal
to 44, and taking M = 16, the filter G(z) was designed
as described earlier. Figure 5 shows the frequency re-
sponse magnitudes of the new design IG(e") and the
equiripple design Gc(e'iI. Note that G(e')l is ex-
tremely flat at w = 0, as expected, and furthermore
that the tolerance specifications are met.

Example 2.2. Narrowband Design.

Let us assume that, starting from certain specifi-
cations, we have arrived at the following parameters:
ip =(0. 1)2w, w, = (0.14)2w, N1 = 44, M— 1 =
orderoftangency 7, 6 =O.2&. Thevalue
of 5 is automatically fixed because all the remaining
parameters have been specified. The narrowband na-
ture of G(z) implies that H(z) is a wideband lowpass
filter (see Fig. 2). The desired response D(w) which
is input to the "McClellan-Parks" program (Eqn. 4) is
D(w) = 1/ cos8 in the passband of H(z), and spans
a huge dynamic range. So, the coefficients of H1(z) are
numbers of large magnitude. however, at w 0 these
"large" numbers add up to approximately unity. Thus,
the sensitivy of IH(e"')I in its passband, with respect
to the coefficients of Hj(z), tends to be severe. Conse-
quently, the stopband sensitivity of LG(e')t is high.

The above sensitivity problem has its root in the fact
that G(z) is a narrowband function. A simple means of

Fig. 6. The IFIR approach

2.1.2
42

l-tangency M-l _____

I)oo__
U)pWs

Fig. 1. The desired specifications

IH(eJw) I

Fig. 2. Complementary specifications

-11 i1
IG(eJw)i

0 71

Fig. 3. The response of 0(z)

0

Y

Fig. 4. The overall implementation

J(a)

jG1 (e)

'J-
01 01

j
2w.2o 01-p

(b)

jGi(e32)I (c)



w/ 2

Fig. 5. Example 2.1

overcoming this problem is based on the interpolated
FIR (IFIR) approach [5], and is described in the next
section. Essentially, a narrowband filter can be designed
by designing a wideband filter and then manipulating
it.

3. NARROWBAND LOWPASS DESIGN

J.n order to understand the IFIR. techniques [5], con-
sider a narowband specification for G(e") as shown
in Fig. 6(a). Instead of designing G(z) directly, one
can first design a filter with specifications as shown in
Fig. 6(b) where the frequency axis has been
by a factor of 2. In the resulting transfer function Gi(z),
if each dehy element is replaced by two units of delay,
then the response is as shown in Fig, 6(c). If now the
paseband around w = is suppressed vithout affecting
the passbard around w = 0, then the specifications of
Fig. 6(a) are met. This suppression is done by cascad-
ing an 9nterpolator' G2(z) with Gj(z2). As Gi(z) has
a wider transition band, it requires a lower order. G2(z)
is usually multiplierless, hence the overall implementa-
tion is less complex than a conventional design.

In this section we use the IFIR approach for a dif-
ferent reason: we wish to convert the narrowband de-
sign problem (G(z)) to a wideband problem(Gj(z)),
so that the function H(z), now defined as H(z) =

zI2 —Gi(—z) has a narrower paseband (and a wider
transition band, equal to that of Gi(z)) as compared to
the function H(z) defined according to Eqn. (6). Hlz) is

then designed as the product ffi(z)H2(z), where 112(z)
is given by the righthand side of Eqn. (3). Thus, the
IFIR technique has the usual advantage of reducing the
total number of multipliers (because the transition band
of 11(z) is now wider) and the advantage of requiring
only well-conditioned coefficients in H1(z).

In order to suppress the unwanted passband at
w = w without affecting the flatness at w = 0, we
employ a new class of interpolators for G2(z), called
the umaximallyflat interpolators. An FIR lowpass
frequency response magnitude with degree of tangency
2K—i at w = and 2L— 1 at w =0 is given by [9],[10],

L—1

I1K,L(e")l=cos21' d(n)sin2 (8)
n=O

d(n) =
(K—i+ n)!

(9)

Notice that d(n) are integers, and for small K and L,
IK,L(z) can be implemented very efficiently with few ad-
ditions and no multiplications [11,12]. 11 G2(z) is chosen
to be Ijc,(z) with L =M/2 where (M—1) is the degree

of tangency of IGi(e") at w = 0, then the order of tan-
gency of Gl(z2)02(z) is equal toM— 1, at w = 0. Fur-
thermore, the flatness of IIK,L(e"')l at w = w ensures
that the unwanted passband of C1 (z2) is satisfactorily
suppressed. For example, consider once again the nar-
rowband specifications of Example 2.2. Let us stretch"
the specified Wp and w, and obtain the new specifica-
tions as follows: w, = (0. 2)2w , = (0 . 28)2w;
Ni = 44, M— 1 = 7, 52 = O•2 Sj. The transfer
function Gj(z) meeting the modified specifications can
be designed as Gj(z) = (_z)—N/2 — '(—z) where

8
#(z)=Hj(z)H2(z) 112(Z) = ( 2 ) (10)

and fl'1(z) is designed as described in Section 2. Finally,
the desired original specifications are met by designing
G(z) as G(z) = Gj(z2) 14,4(z).

The impulse response coefficients A1(n) of the filter
H1(z) have much smaller magnitudes than those in Ex-
ample 2.2, even though the dynamic range is about the
same. Consequently, the passband sensitivity of H(z)
and hence the stopband sensitivity of G(z) are much
better than in Example 2.2. (We have verified these
claims by a formal sensitivity study and simultation ex-
amples. Details are omitted here for sake of brevity.)
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Figure 7 shows the response IG(e)l and also the
response of a direct equiripple design of order 44, with
same 61 and 2• The new design has a much sharper
transition band, and in general, "overmeets" the speci-
fications everywhere. This is primarily because, in view
of the IFIR approach, Hi(z) needs to have an order of
only 22 rather than the actually employed 44. (An order
of 22 was actually found to be sufficient, by explicitly
plotting out the responses.)

4. CONCLUDING REMARKS

The methods introduced in this paper do not require
any optimization program other than the McClellan-
Parks algorithm. The passbands are "fiat" to a pre-
scribed degree, but not monotone. A restriction of our
method is that the order N of the overall filter should
be even, so that Eqn. (6) is physically realizable.
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