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Abstract: In  this  paper, a scheme for perfect recon- 
struction in M channel,  maximally  decimated QMF 
banks is first  presented, for arbitrary M .  The solutions 
are such that  the analysis and synthesis  filters are FIR 
and of the  same length.  Based on  the theory, lattice 
structures for the two-channel case are derived, which 
offer an efficient design as well as implementation pro- 
cedure for two-channel perfect reconstruction systems. 
Such lattice implementations are  robust in the sense 
that  the perfect-reconstruction property is preserved in- 
spite of coefficient quantization. 

I. INTRODUCTION 
We consider the M channel quadrature mirror  filter 

bank shown  in Fig. 1. Here H ~ ( z )  are  the analysis 
filters,  which split  the incoming signal into M adja- 
cent frequency-bands. The  subband signals are maxi- 
mally decimated (i.e., decimated by M )  and  transmit- 
ted  (after  encoding).  The received signals are  interpo- 
lated (upgoing arrows),  and recombined after passing 
through  the  synthesis filters Fk(z) .  The  reconstructed 
signal ?(n) is related to  the  input signal z (n)  by the 
transform domain  relation 

M-1 M-1 
k(2) = X ( 2 w - l )  B&w-l)F,(z)/M. (1) 

l=O k=O 

The  terms in (1) corresponding to 1 # 0 represent 
the effects of aliasing. If aliasing-distortion is can- 
celed by appropriate choice of synthesis  filters, the re- 
sult is a time-invariant system  with transfer  function 
T ( z )  = X ( z ) / X ( z )  = xEilFk(z)Hk(z)/M which is 
called the  distortion  transfer function. If T ( z )  is allpass, 
there is no  amplitude  distortion; if T ( z )  is a linear-phase 
FIR  function,  there is no phase distortion. Finally, if 
T ( z )  = czPnO which is a pure delay, then all distortions 
are  absent,  and we have perfect  reconstruction feature 
(abbreviated PRF),  i.e., 

q n )  = ez(n - no). (2) 

For the M = 2 case,  alias-cancelation  techniques are 
well-known [1]-131, and for arbitrary M approximate 
(but very useful) techniques for alias-calcelation are 

known [7],[8]. Smith  and Barnwell have recently pre- 
sented [4] a perfect reconstruction technique  for the 
M = 2  case,  based on certain crucial properties of FIR 
half-band filters. 

Recently,,we outlined a  technique [ll] for perfect re- 
construction in M channel  maximally decimated  QMF 
banks, for arbitrary M .  Even though  the existence of 
perfect  reconstruction systems  has been known earlier 
[9], the  method in [ I l l  has  the following features:  all 
the analysis and synthesis  filters H ~ ( z )  and Fk(z) are 
FIR filters of the same length, and a very simple closed 
form expression is available for F k ( z )  in terms of H k ( z ) .  
Moreover, arbitrary  stopband  attenuations for H k ( z )  
can  be achieved. In addition,  our  methods reduce to 
the Smith-Barnwell technique [4] for M = 2. No in- 
version of transfer  matrices is required  anywhere in the 
process. 

Since this  paper is an  application of a result in 
[ll], we summarize this result here: first, note  that 
any  transfer  function H k ( z )  can always be  uniquely ex- 
pressed as H k ( z )  = z-'Ekl(zM) which is called 
the polyphase  decomposition [2], and Ekl(z) are  the 
polyphase components. If we express each analysis fil- 
ter H ~ ( z )  in this  form, we can define an M x M ma- 
trix E(z) = [Ekl(z)] of polyphase components.  In a 
similar manner, each  synthesis filter can be  expressed 
as Fk(z)  = CfO1 z-(M'l- ')Rlk(zM), thereby defining 
the M X M matrix R(z). Accordingly, Fig. 2(a) is an 
equivalent structure for  Fig. 1. The  decimators  and 
interpolators can  be  relocated  based on  standard iden- 
tities [2], to  obtain Fig. 2(b). 

If E(z) and R(z) satisfy R(z)E(z) = czPnlI where 
nl is an  arbitrary integer, then it is easily verified that 
(2) holds with no = M - 1 + nlM. This requires that 
R(z) be of the form ~ z - ~ l E - l ( z ) .  If H k ( z )  are  FIR 
then Ekl(z )  are  FIR,  but in general  has IIR en- 
tries of high order, which may even represent unstable 
filters. Such matrix inversion and  the associated prob- 
lems can be avoided if E(z) is unitary  on  the  unit circle. 
This  property means that Et(ej")E(ej") = PI for all w 
(where P is an  arbitrary  scalar  constant ). Moreover by 
analytic  continuation,  this implies 

E ~ ( . - ~ ) E ( . )  = PI, for a11 z (3) 



Any transfer matrix satisfying ( 3 )  is called parauni- 
tary  or lossless [6],[11],[13],[14].  Under  this  condition, 
if we choose R(z) = zP1ET(z-l)  then it is clear that 
perfect-reconstruction property (2) is satisfied. With 
this choice of R(z) it is easily verified that  the synthesis 
filters are given by 

F k ( z )  = dz-"QHk(z- l )  (4) 

where d is a  constant  and no is a positive  integer. 
Clearly Fk(z )  are  FIR filters of the  same  length as the 
FIR filters H k ( z ) .  

Paraunitariness of E(z) is not a necessary condition 
for obtaining perfect reconstruction  structures. How- 
ever, such matrices offer a simple means of achieving 
perfect reconstruction. 

One way to constrain E ( z )  to  be  paraunitary is to 
obtain it as a cascade K L - ~ A L - ~ ( ~ ) K L - ~ A L - ~ ( z )  ... 
KzAl(z)K1 where K, are  orthogonal  matrices  and A,(z) 
are diagonal matrices of delays (which are hence parau- 
nitary). Each M X M orthogonal  matrix K, is com- 
pletely parameterized by a sequence of M ( M  - 1)/2 
planar  rotation angles (151. If these angles are  opti- 
mized such that  the analysis filters H k ( z )  have good 
stopbands,  then these filters can  be used in QMF  banks 
which will have perfect reconstruction  property. Numer- 
ical design examples, and  further  theoretical  results  per- 
taining to necessary and sufficient conditions for PRF 
can be found in [Ill. 
THE TWO-BAND QMF  LATTICE WITH PERFECT 

RECONSTRUCTION  PROPERTY 

The Smith-Barnwell  result [4] can be summarized 
as follows: let G ( z )  be a linear-phase FIR filter of 
order 2(N - 1) with frequency response G(ej") = 
e- jw(N-l)Go(ejw) where Go(ej") is the  amplitude re- 
sponse, which is a  real  and positive-valued quantity. AS- 
sume  that G ( z )  is a 'half-band' filter [ll], so that  the 
response exhibits a symmetry  with respect to w/2 .  Such 
symmetry implies, Go(&) + GO(ej(W+r)) = constant 
for all w.  In  other words, G ( z )  + ( - l ) N - l G ( - ~ )  = 
kz-("-l) where k is a  constant. (We can assume  with- 
out loss of generality [ 111, that N - 1 is odd). If  we  now 
define the analysis filter Ho(z )  to be any spectral  factor 
of G ( z ) ,  and  take  the remaining  filters in the 2 channel 
QMF bank to be 

Po(.) = z-(N-1)Ho(z-1),F1(.) = z - ( N - l ) H l ( z - l )  
(56) 

then  the  QMF bank  exhibits  perfect  reconstruction 
property  (PRF). In particular, we can verify that 

Ho(z-')Ho(z) + H l ( z - l ) H l ( z )  = constant  (6a) 

The pair iHo(z ) ,H l ( z ) j  will be called a perfect recon- 
struction pair (PRP for convenience). 

Property  (6a) implies that  the FIR transfer func- 
tions Ho(z)  and H l ( z )  are power-complementary, Le., 
the magnitude-squares add  up to a  constant: 

IHo(ej")12 + /Hl(eiw)12 = constant (6b) 

It  has recently  been  established [e] that any pair of 
power complementary FIR  transfer functions  can be 
synthesized in the  form of a cascaded lattice  structure as 
shown in Fig. 3 (after normalizing the constant in (6b) 
to  unity). If the  further restriction in (5a) is imposed 
we can show that,  the even numbered lattice coefficients 
satisfy k2, = 1. This in turn means that,  the  lattice 
structure can  be  redrawn in the form of the analysis 
bank in Fig. 2(a). Since each criss-cross in Fig. 3 has 
the  transfer  matrix 

it is orthogonal, hence the resulting E(z) is parauni- 
tary. In other words, we can state  the following result: 
if H o ( z ) ,  H1 (x) are  the analysis filters in the 2 channel 
Smith-Barnwell QMF  bank,  then  the polyphase compo- 
nent matrix E(z) is necessarily paraunitary. Moreover, 
we can always implement the analysis bank in the  form 
of a lattice  structure.  It can  be verified that  the synthe- 
sis filters given in (5b) can  be realized by transposing 
the analysis lattice.  These  lattice  structures  are shown 
in Fig. 4,  which is clearly a special case of Fig. 2, for 
M = 2. In Fig. 4, each lattice section has 2 multipliers 
unlike Fig. 3. This is because, we have divided through 
by k ,  in each section. Such denormalization does not 
affect  any of the significant properites of our  interest. 

As a converse of the above result, we can show that, 
the  transfer functions H o ( z ) ,  H , ( z ) ,  Fo(z),  Fl(z) gener- 
ated by the  lattice always satisfy (5) and ( 6 ) ,  regardless 
of the values of f f k .  Accordingly, Fig. 4 represent a 
structurally perfect reconstruction system. In particu- 
lar,  the transfer  function No(.) generated by the  lattice 
is necessarily a  spectral  factor of an  appropriate linear- 
phase  FIR halfband filter with positive-valued ampli- 
tude response, and  this  statement holds for  any values 
of "k. 

If H o ( z ) , H l ( z ) , F o ( z ) , F l ( z )  are implemented  in  di- 
rect form,  then  due to coefficient quantization,  the re- 
lation (6) does not hold exactly, and hence the recon- 
struction is not really perfect. On  the  other  hand, if 
lattice  structures are used for the  actual implementaion 
of the  QMF  bank,  (6) holds inspite of quantization of 
"k 

111. OPTIMIZATION BASED ON THE  LATTICE 

Another advantage of the  lattice-structre  interpreta- 
tion of the Smith-Barnwell result is in the design of the 
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transfer function Ho(z) .  One design procedure would 
be to compute a spectral  factor of an  appropriate  FIR 
halfband filter G ( z ) ,  which in turn can be designed us- 
ing a standard  method (such as  the  equiripple  algorithm 
[4]).  But  the  stopband  attenuation of the  halfband filter 
is about two times  that of Ho(z) ,  and for  large N - 1 
there  are several zeros of G(z)  on  the  unit circle. Ac- 
cordingly, spectral-factorization  can  be  time consuming 
and/or ill-conditioned. 

A  second design procedure, based on  the  lattice 
structure of Fig. 4(a), relies on  the  fact  that,  the  lattice 
transfer  functions satisfy properties  (5),(6)  automati- 
cally. Accordingly, if  we optimize the coefficients a k  so 
as  to minimize the  stopband energy of H o ( z ) ,  the re- 
sulting  transfer  functions  are  ready for use in the  QMF 
bank. A suitable objective function  to minimize is 

Since (5a) holds, the  stopband of W,(z)  is an image of 
the  stopband of Ho(z) .  So minimizing (8) results in 
‘good’ stopbands for both Ho(z) and Hl(z ) .  Since (6b) 
also holds,  the passband of Ho(z) stays close to a fixed 
nonzero constant. In summary, minimizing  (8)  ensures 
good pass and  stopbands for Ho(z) and hence for H I  ( z ) .  

Any pair of transfer  functions P,(z), Q,(z) in Fig. 
4a is a PRP. When we optimize the coefficients ir, to 
minimize ( 8 ) ,  the  stopband  attenuation of P,(z) in- 
creases as m increases. In  other words, in the opti- 
mized lattice,  the  purpose of each lattice section is to 
generate a better  PRP [P,+z(z), Qm+2(z)] from agiven 
PRP [Pm(z),Qm(z)]. As we progress towards  the  right 
in Fig. 4(a), we get better  and  better  PRP’s  (and am 
gets smaller and smaller  for  large m). This is an impor- 
tant hierarchial or nesting property of the  lattice: if  we 
delete  the  rightmost  lattice section, we do not  destroy 
the perfect reconstruction  property,  but we decrease the 
available stop  band  attenuation of Ho(z).  Such a nesting 
property is  of course not displayed by the direct form 
structure of a PRP. 

As a design example, we designed a perfect recon- 
struction  pair iWo(z), H l ( z ) ]  of order N - 1 = 49, with 
ws = 0 . 6 ~ .   T h e  resulting  frequency  response magni- 
tudes  are shown  in  Fig. 5(a). Note that B o ( z )  has 25 
zeros on  the  unit circle, which is the maximum permis- 
sible for a spectral  factor of any halfband filter of order 
2(N - 1). This  feature was observed in all the examples 
we designed. Moreover, the minimum stopband  atten- 
uation of Ho(z)  was always very close to  the equiripple 
designs obtainable by spectral factorization [4].  The 
peak attenuation is monotone decreasing rather  than 
constant,  and  this is sometimes  desirable [2]. Fig. 5(b) 
shows the  magnitude response lT(ei”) 1 of the  distortion 
function T ( z )  = X ( z ) / X ( z ) .  If the direct-form coeffi- 

cients i.e., the impulse response of the  resulting Ho(z) 
is quantizied, T ( z )  is not a delay any more; the result- 
ing amplitude  distortion is shown by the solid curve of 
the figure. For the  lattice  structure  (broken lines), since 
T ( z )  is a delay inspite of quantization, IT(ej”)l  contin- 
ues to be  flat. This encourages us to  think of imple- 
menting Fig. 4 with power of 2 coefficients, which can 
be optimized to minimize (8), while at  the  same  time 
preserving PRF. 
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Fig. 1. The M-channel, maximally decimated 
Quadrature  Mirror  Filter bank. 

nl 

Fig. 2. Redrawing Fig. 1 in terms of the 
polyphase  components. 

(a) Analysis bank implementation 

(b) Synthesis bank implementation 

= x, 
Fig. 4 .  Lattice  structures for the QMF bank. 
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m n =49. i N-l=order 

Fig. 3. Lattice  structure for power-complementary 
FIR filters.Here Pv l(z)=Ho(z),Q,-,(z)=H,(z). 
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Fig. 5. Lattice based design example. 
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