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Abstruct-A new technique for two-dimensional (2-D) spectral estima- 
tion of a stationary random field (SRF) is investigated in this paper. This 
is based on the  extension of the Radon transform theory to stationary 
random fields (SRF’s), proposed by Jain and Ansari [19]. Using the 
Radon transform, the 2-D estimation problem is reduced to a set of one- 
dimensional (1-D) independent problems, which could then be solved 
using 1-D linear prediction (LP) or  by any other high-resolution 
estimation procedure. This is unlike previous methods which obtain  the 
2-D power  spectral density (PSD) estimate by using 1-D high-resolution 
techniques in the spirit of a separable estimator [2]. Examples are 
provided to illustrate the performance of the new technique. Various 
features of this approach are highlighted. 

I 
I. INTRODUCTION 

N many applications of  two-dimensional  (2-D)  signal 
processing  such as sonar, radar, geophysics, and radio 

astronomy,  the  problem  of estimation of the power spectral 
density  (PSD)  of  a  sampled stationary random field (SRF) 
from  a finite set of observations is often encountered. The 
classical  method  of estimation of  PSD  using the periodogram 
results in poor resolution. A recent approach to obtain  a high- 
resolution estimate is to postulate a finte parametric  model for 
the PSD.  The observations are used to obtain the model 
parameters  by an appropriate  estimate  procedure. In one 
dimension, the modeling techniques employing  linear  prediction 
(LP) theory  have  been  widely  investigated  and are successfully 
being  used to obtain the PSD  estimate  especially  at  a  high 
signal-to-noise  ratio (SNR) [l]. An extension  to  the  2-D case is 
the  use  of  one-dimensional  (1-D) LP models  along  each  of  the 
dimensions. A class of  2-D  PSD estimators, known as the 
separable spectral estimators, employs  1-D  estimation  tech- 
niques sequentially along  each  of the dimensions  [2]-[7]. 
Since it is crucial that the phase  not  be discarded at the 
intermediate step, in  [3]  and  [4] discrete Fourier  transform 
(DFT) is used  along  the first dimension  and  a  high-resolution 
1-D autoregressive (AR) spectral estimator along the other 
dimension.  The resolution obtained  along the first dimension 
is restricted by the DFT.  Higher resolution along the first 
dimension is obtained  by artificially extending the data while 
preserving the phase as well. The techniques used for 
generating additional data include the use of 1-D AR models 
[5], [6] and  band-limited extrapolation [7].  The techniques 
used  in  [3]-[7], the 2-D  high-resolution  PSD  was  obtained  by 
a separable operation, i.e., row-by-row operation followed  by 
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column-by-column operation. In the presence  of noise, as is 
the case in  all applications, this separable class of estimation is 
not justified [7]-[9]. Further, separable estimation ignores the 
correlation between  rows  and  columns. The interdimensional 
correlation is exploited by  modeling the 2-D  sequence  using 
2-D  LP  models  [8]-[14].  However,  in  2-D  modeling, the 
choice of  the  model  and the associated predictor filter mask, 
the appropriate order for the model, the order  of  computation 
of  the  model  parameters,  and the resulting characteristics of 
the spectral estimate are the major issues [2],  [13]-[ 161. For  a 
review  of various other classes of  multidimensional spectral 
estimators, the reader is referred to [2]. 

This paper presents a  novel  approach for the 2-D  PSD 
estimation  from  a finite set of  observations  of  a  2-D SRF using 
the  Radon  transform  approach. The  basic  2-D  estimation  problem 
is converted  into  a  set  of  1-D  independent  problems  using  the 
central-slice  theorem  for  stationary  random  fields [ 191. The 
central-slice theorem relates the PSD  of  1-D projections of an 
SRF and its 2-D  PSD.  The projections of SRF are estimated 
from available observations and the theorem  is  then  applied to 
obtain the 2-D  PSD. 

The organization of the paper is as follows. Section 11 
briefly  reviews the theory of  Radon  transform of stationary 
random fields. Section III outlines the procedure for obtaining 
the. 2-D  PSD  of  an SRF from the observations, and also 
highlights the various features of this approach.  Simulation 
results are presented, along  with  comments, illustrating the 
performance  of the proposed  technique in Section IV. Section 
V concludes the paper. 

II. RADON TRANSFORM OF RANDOM FIELDS 
The  Radon  transform is the mathematical basis of Computer 

Tomography [ 1 7 ,  [ 181. Here, the basic data are a set of  1-D 
projections  of  a  2-D object obtained by integrating the object 
function  along  a set of lines. The projection process is called 
the 2-D  Radon transforms. For a  2-D deterministic function 
f ( x ,  y )  the Radon  transform 6i is defined as 

PdO = = S,,f(x, u) ds 

= (J AX, y ~ x  cos e +y sin e - t )  dx ay (1) 
- m  

where ds is  the  elemental distance on the line AB represented 
by  the  equation x cos 0 + Y sin 0 = t ,  see Fig. 1. It is to be 
noted thatpdt), the projection of the  2-D  functionf(x, y )  at  an 
angle e is a  1-D function in t. 
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in polar coordinates, then 

I / 

Fig. 1 .  The central-slice theorem for stationary random fields. 

Central-Slice  Theorem 
A fundamental result, on  which  various  techniques for 

reconstructing  multidimensional  signals  from their projections 
rely, is the central-slice theorem or the  projection-slice 
theorem [18]. It states  that  the (N - 1)-dimensional Fourier 
transform of a projection is a slice  through  the  N-dimensional 
Fourier  transform of the  original  function itself. For the sake 
of  simplicity,  consider the 2-D case. 

Let S(q, wZ) be  the 2-D Fourier transform of the  function 
f ( x ,  y ) ,  in Cartesian  coordinates: 

m 

Let P&) denote  the l-D Fourier transform of the  projection 
Po ( 0 :  

m 
Po(w) = 1 p&) exp (-j27rut) dt. (3) 

If S(W, 0) denotes  the  value of the Fourier transform off(x, y )  

- m  

S ( W ,  8 ) = P , ( w ) .  (4) 

As a direct  consequence of this theorem, it is possible to fill up 
the complete Fourier plane by taking  the Fourier transform of 
projections at various  angles. 

As the line integral of an SRF does not  exist in the  mean- 
square  sense,  the 6l operator is replaced by a modified 
operator a which  is  the  Radon  transform 6t followed  by a 1-D 
convolution  operator N whose  frequency  response is I w I  
[ 191. The resulting  function Po(t) is given  by 

and  using (4), we  obtain 

Po@) = J m  I w I 1/2S(~, 6 )  exp (+j27r~t)  dW. (5) 
-m 

Let the 1-D  PSD of@&) be denoted by S&o, e). According to 
the  modified  central-slice  theorem, the l-D PSD of@&) of  an 
SRF f ( x ,  y )  is the central-slice at an  angle 8 of the 2-D PSD 
S(q, ~2)  off(x, y). In otherwords: 

S(W COS 8, w sin O)=S&, e). (6) 

See Fig. 1 .  
In applications  wherein  projections of an SRF are available 

directly, the  computation of the 2-D PSD is rather straightfor- 
ward. In cases  where  only the observations are available 
instead  of the projections,  the  need of estimating the projec- 
tions  from  these  observations arises. S w i n g  from the 
observation set, the procedure of estimating the 2-D PSD and 
the  various features of this approach are dealt  with  in  the  next 
section. 

III. TWO-DIMENSIONAL SPECTRAL ESTIMATION 

The  basic  idea  here is to  use the Radon  transform to reduce 
the 2-D sequence to a set  of l-D sequences. The 1-D problem 
can  then  be  solved  by  using 1-D LP theory  or by  any other 
estimation procedure. 

We assume  the discrete observationsf(nl, nz) where nl = 
l , 2 ,  - - - , N 1 a n d n 2  = l , 2 ,  *.*,Nzareobtainedbysampling 
the  continuous SRF at  the  Nyquist rate. Due to the  discreteness 
of the  available data, it is not  possible  to  obtain  the  projections 
directly  using (1). Without taking recourse to the discrete 
Radon  transform  which  invariably  involves  interpolation  of 
the 2-D observations, an alternative approach of approximat- 
ing the integral  in (1) is made by making  the  following 
assumptions.  The  value  of  each  data  point is assumed to be a 
constant  over a square element  of  unit area. This is analogous 
to the “pixel” assumption  in  digital  image  processing. 
Further, the integral in (1) is replaced by a summation 
operator. 

Let poi(tj) denote  the integral (summation  in  the discrete 
case)  of f(nl, n2) along the line parameterized by the discrete 
variables 8, and t j .  For the sake of simplicity, we retain  only 
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Fig. 2. Computation of w's for obtaining projection p ( j )  from the 
geometry. 

the indices i and j in  subsequent discussions: 

N1 Nz 

pi(j)= 2 wg(nl, nz)f(nl,  n2) (7) 
n l = l  q = l  

where w&l, n2) is  a  weighting factor determined  by  some 
geometrical considerations [20]. For  example, wii(nl, n2) can 
be made proportional to the length of intersection of thejth ray 
in the ith projection with the square  element (n,, n2) ,  see Fig. 
2. A simpler  scheme  is to use wg(nl, n2) = 0 or 1 according 
to whether the ray  on the square  element (nl, n2) intersects a 
circle of  a  given radius that  is  centered  on  the ( n l ,  n2) element. 
For small values  of Nl and N2, wg(nl, n2)'s can  be 
precomputed  and stored, so that the evaluation of pi( j )'s will 
become faster. For large values of Nl and NZ some  symmetry 
conditions offered by the equispaced  sampling  along the two 
dimensions  can be exploited for faster computation  of wu's. 
Thus pi( j ) is equal to the weighted  sum  of  the observations 
associated  with the respective ray. Each discrete projection 
pi ( - )  is now filtered by  a 1-D filter whose  frequency  response 
is IwI l12. The fast convolution  method  can  be  made  use  of for 
this purpose.  The resultant sequence pi( e) is  now  used to 
compute  an estimate of S(wt,  ei) which  is  the discrete 
counterpart of S(w, e)., For example, pi(.) is modeled  with 
l-D AR or autoregressive moving  average ( M A )  models. 
The  corresponding slices of S(ok, Oi) is.  approximated  by 
$(ak, 0;) which can be  computed from the model parameters. 
This procedure is repeated for various other angles. By 
making  use of the property 

P s ( t ) = P s + T ( - t )  (8) 

only projections spanning the range of [OD ¶ 180") need to  be 
computed.  The  procedure for obtaining the 2-D PSD from the 
observations can  be  summarized  in the following steps. 

1) Obtain the discrete projection pi(-) from the observa- 
tions f(nl, n2) at a particular angle Bi using (7). 

2) Filter the projection pi(.) by  a l-D filter whose 
frequency  response  is 101 112 to obtain pi( .). 

3) Model  the filtered projection by an appropriate l-D 
linear prediction model  and  compute the corresponding 
1-D LP spectrum  from the model parameters. Alterna- 
tively¶ any other l-D high-resolution spectral estimation 
technique  can  be used. The resulting l-D PSD forms  a 
slice of the 2-D PSD along 8;. 

4) Repeat steps 1 to 3 for various angles [O", 180") to 
obtain the complete 2-D PSD estimate. 

Since  each  of the slices of the 2-D PSD are computed 
independently  by l-D modeling techniques it  is possible to 
tailor the 2-D PSD by choosing different models for different 
slices. This feature allows the user to approximate the various 
slices at different accuracy. Another interesting feature in this 
approach is that it is possible to obtain the estimate over  any 
angular region of the 2-D PSD. By obtaining projections at 
evenly  spaced angles spanning [0" , 180") and  using the same 
distance between  any two consecutive rays in a projection, the 
2-D PSD is  obtained  on  a polar grid (Fig. 3). It should  be 
noted  that the resulting polar raster has  a greater number  of 
samples  near  the origin than farther away. Thus the PSD 
estimate obtained in this  method  has  a  nonuniform resolution. 
If  any area of the PSD is required at a  higher resolution, 
complex  demodulation of signals can  be  used to steer the 
region  of interest towards the origin. 
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Fig. 3. Slices of the 2-D PSD on a polar raster. 

The present trend in real-time signal  processing is to devise 
algorithms for implementation  on parallel machines. As this 
approach  reduces the 2-D problem  into  a set of 1-D indepen- 
dent  problems  which  can  be  processed concurrently, it is 
highly  amenable for parallel processing. 

IV. SIMULATION RESULTS 

As  an  application  of the proposed technique, we  consider 
the problem  of  resolving  two sinusoids in white  noise.  We 
present  two  examples  where the 2-D sequence f(nl, n2) is 
composed of two  equiamplitude 2-D sinusoids and  Gaussian 
white  noise  sequence g(nl ,  n2) of zero  mean  and  variance ui.  

A .  Example I 

f(n1,  COS (0 .4688~nl)  COS (0.5313~n2) 

+ C O S  (0 .5938~nl)  COS (0.6563~n2) 

+g(n1, n2) 

for 

and 

Nl=NZ=32 

u2 = 0.025 

sNR=o dB. 
g 

Note:  This  example  is the same as that  studied  in [ 1 11 and [ 121 
although  the  SNR is 10 dB in [12]. 

B. Example 2 

f (nl ,  n2)=sin (0.1464an1+0.2249~n2) 

+sin (0 .2889~n1+0 .0778~~~2)  

+g(n1, n2) 

for 

1 ~ n l ~ N 1  

1 5 n 2 5 N 2  

and 

N1=N2=8 

U: = 0.8 

sNR=o dB. 
In both  examples, 90 equispaced projections from 0 = 0" to f3 
= 90" are taken. The projections are filtered by  using  a 1-D 
FIR filter whose  frequency  response is I w I 1'2 [20]. The length 
of the filter chosen is equal to the  length of the data. In the first 
example, for each  of the filtered projections a 1-D AR model 
of order 6 is  used. An AR model  of  order 4 is used in the 
second  example.  The  Burg  algorithm [21] is  employed to 
obtain  the AR parameters. The resulting estimate on the polar 
raster is converted into a Cartesian raster using  a 2-D first- 
order interpolation. This is  done for our  convenience  in 
plotting the results. The resulting 2-D power spectral estimates 
are shown in Figs. 4(a) and 5(a). The 2-D periodogram 
spectral estimates  obtained  by the same  data are shown  in Figs. 
4(b) and 501). Contour  plots of only  the  first  quadrant of the 
PSD estimate are presented in these figures. 
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Fig. 4. Two-dimensional  power  spectral  estimates  for  Example 1. In all 
figures ‘‘ X ” indicates the m e  peak location of the signal sinusoids.  The 
contour levels represent  the  decibels  relative  to  the maximum value of the 

4@) and - 10 dB apart in 4(b) and 5(b). (a)  Result of PSD  estimate using 
estimated spectrum. The  contour levels are  spaced - 3 dB apart in 4(a) and 

AR(6) for 90 equispaced projections. (b) Result of the periodogram 
estimate. 

It is evident from the contour  plots  that  the PSD estimates between the two desired  frequency pairs is about 10 dB. This 
obtained by the proposed  technique  have  excellent  frequency result, which is obtained  by using a 1-D AR model,  is superior 
resolution  capability. In the first example,  the  spectral to  that obtained in [l l] ,  where 2-D quarter-plane AR models 
estimates  have peaks at  the  desired  frequencies  and a smooth are used, in spite of the approximations  made. The several 
spectrum for most other frequencies. The  power  level  midway false  peaks  which are very  much  evident in the results in [ 1 11 
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Fig. 5 .  Two-dimensional  PSD  estimates  for  Example 2. (a)  Result of PSD 
estimate using AR(4) for 90 equispaced  projections. (b) Result of the 
periodogram estimate. 

are completely absent in Fig. 4(a). Also  this result is in no  way 
inferior to those estimates obtained  using  2-D quarter-plane 
M A  models  in [ 113 and the 2-D  noncausal AR spectral 
estimate in [ 121. In the second  example  where the observations 
are known only at (8 X 8) points, the plot  shows  that there are 
a  few false peaks. Some  of the reasons that could be attributed 
to this are the use  of  1-D AR models  and the error due to the 
interpolation  from the polar to Cartesian coordinates. The  use 
of 1-D ARMA models  in this case may  yield  a better estimate. 
The error  due to polar-to-Cartesian conversion  can be com- 
pletely  avoided by displaying the results directly in polar form. 
The  periodogram estimates give  very  broad  peaks  in the first 
example  and are not able to resolve the two peaks  in  the 
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second.  The  well-known  random fluctuation behavior  which  is 
a  typical characteristic of the  periodogram  can also be seen. 
These  examples  demonstrate the performance  of the new 
approach. 

C. Comments 

The approach  chosen in this  paper in approximating the 
continuous  Radon  transform  by the “pixel”  assumption  and 
the summation operator generally results in attenuation of 
high-frequency  components. The pixel  assumption  is  a funda- 
mental  assumption  in digital image processing. 

An alternative approach is to use the discrete Radon 
transform  (DRT). A major  problem  in  using the DRT is that 
while deriving the projections, estimation of additional sam- 
ples by an interpolation process is unavoidable (e.g., see [22]). 
As the generation of additional data by an interpolation 
process is equivalent to low-pass filtering of the signal [23], 
this approach will also result in high-frequency attenuation. 

The results obtained in polar coordinates have  been dis- 
played  in Cartesian coordinates for the  sake  of our conven- 
ience. The  error involved in the polar-to-Cartesian conversion 
need  not be considered, as the result can  be displayed directly 
in polar coordinates as well. 

V. CONCLUSION 

A novel  approach for the  PSD estimation from  a finite set of 
observations of  a  2-D  SRF  has  been presented. The  2-D 
observations are reduced to a set of  1-D  sequences  by  Radon 
transform. The 1-D  sequences are then  independently  modeled 
by 1 -D LP techniques to obtain slices of  2-D  PSD . The various 
features of this approach  have  been highlighted. The effective- 
ness of this technique  in resolving two closely spaced sinusoids 
from  noisy  measurements is shown  through  simulation  exam- 
ples. The  approximations  while  handling discrete data have 
been  mentioned  and the effect of this on the performance  of the 
method  needs to be  studied further. Work  on the application of 
this  technique to the bearing estimation problem  in  sonar is 
currently being  undertaken. 

An interesting issue arises. It is well  known  that  in the 1-D 
case the AR spectral estimate is equivalent to the maximum 
entropy estimate. Since the 1-D AR spectral estimate of  each 
of  the filtered projections of the 2-D stationary random field 
form different slices of the 2-D spectra, it may  be interesting 
to study  the duality in the 2-D case along this direction. 
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