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Correspondence 

Piecewise Uniform Vector Quantizers 

FEDERICO KUHLMANN MEMBER, IEEE, AND 
JAMES A. BUCKLEW, MEMBER, IEEE 

Absfracf --The companding model for quantizer design and analysis has 
been widely applied in the scalar quantization case. However, if the signal 
to be quantized is a vector, then the optimum companding system can be 
designed for only a limited number of distributions. On the other hand, 
multidimensional piecewise linear companders can be designed for any 
signal density, generating quantizers that are uniform on each region of the 
compander. These systems, while not optimal, can have asymptotic perfor- 
mance arbitrarily close to the optimum. Furthermore, their analysis and 
implementation can be simpler than those of optimal systems. Piecewise 
linear companders for asymptotic multidimensional quantization are ana- 
lyzed, and a method for their design is suggested. 

I. INTRODUCTION 
Digital processing of discrete-time signals has become a major 

research area, in spite of the fact that many information-bearing 
signals appear originally as waveforms which are continuous in 
time as well as in amplitude. Hence quantizers play an important 
role in the theory and practice of modem-day signal processing. 
Extensive results have been developed on scalar quantization 
and, more recently, on vector quantization. The advantage of 
vector (or multidimensional) quantization over scalar quantiza- 
tion is implicitly shown by the proofs of the rate-distortion 
theorems of information theory. Unfortunately, rate-distortion 
theory does not provide “constructive proofs” but results entirely 
of the “existence” nature. The benefits of multidimensional 
schemes (for a fixed finite dimension) were explicitly studied (for 
the asymptotic case of fine quantization) first by Zador [l], and 
subsequently by Gersho [2]. 

Although there is great promise inherent in the theory, the 
problem of how to design large dimensional quantizers for a 
variety of source distributions has proven to be the major stum- 
bling block in implementation. Designing an optimal vector 
quantizer is basically equivalent to finding a partition of the 
vector space and assigning a representative point to each parti- 
tion such that a predefined distortion measure between input and 
output is minimized. Unfortunately, the optimal partitions in 
higher dimensional spaces are unknown for even the simplest 
source distributions and the most common distortion measures. 
(The exception is that in two-dimensional space for fine quantiza- 
tion of a uniform distribution and a mean square error distortion 
measure, hexagons are the optimal partitions.) An important 
design algorithm is reported by Linde et al. [5], in which the 
resulting quantizer yields a local minimum for the distortion. 
This algorithm appears to be the method of choice among re- 
searchers for the design of low rate (small number of bits per 
sample) multidimensional quantizers. Other significant work has 
been done on quantizers for some specialized sources such as 
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multidimensional Gaussian [3] or Laplacian [4]. Our somewhat 
more general approach is presented as a design technique for 
high-rate multidimensional quantizers. 

We approach multidimensional quantizer design by formulat- 
ing the problem as a distortion minimization over an output 
point density function. This method is a generalization of Ben- 
nett’s results [6] in which he models a zero memory nonuniform 
quantizer by the cascade connection of a zero memory nonlinear- 
ity, a uniform scalar quantizer, and the inverse of the first 
nonlinearity. Such a scheme is termed “companding,” because 
the first nonlinearity is a compressor while the second performs 
an expander operation. In the scalar case any nonuniform qum- 
tizer can be modeled in this fashion. Furthermore, a fixed com- 
pressor/expander characteristic can yield the asymptotically op- 
timal rate of decay to zero of the error as the number of output 
levels goes to infinity. An expression for the minimum asymp- 
totic quantization noise attainable by any vector quantizer of a 
given dimension was derived by Gersho [2]. However, it is not 
always possible to represent an asymptotically optimal multidi- 
mensional quantizer with this block companding scheme. It is 
shown in [7] that the optimal compressor characteristic must be 
conformal almost everywhere, a condition which cannot always 
be met. The problem we address in this correspondence is the 
design of nearly optimal vector quantizers, using the block com- 
panding model but restricting the class of compressors to be 
piecewise linear. This class of compressor characteristics is also 
interesting in its own right, as it has some robustness properties 
(described in [SI). 

In Section I1 we define the problem and develop the main 
ideas to be used for its solution. The results concerning quantizer 
design with compressors for piecewise constant densities are 
developed in Section 111. Examples of optimum vector compan- 
der designs for two-dimensional quantizers are presented in Sec- 
tion IV, and Section V is devoted to a discussion of the robust- 
ness properties of these quantizers. 

11. STATEMENT OF THE PROBLEM 
Let the k-dimensional random vector x with probability den- 

sity function p (x )  be the input to the k-dimensional quantizer. 
The quantizer partitions Rk into N disjoint and exhaustive re- 
gions B,,  i =1,2;. ., N ,  and quantizes each input vector x by 
means of the following mapping: 

Q(x)  = y , ,  i f x E B ,  

where usually y, E B,. The number N represents the number of 
quantizer output levels. The performance of the quantizer is 
measured by the per-dimension (or per-sample) distortion 

where 1 1 . 1 1 2  denotes the Euclidean distance norm, x E Rk is the 
quantizer input, and Q(x) is the quantizer output. Let Qo(x) 
denote the optimum quantizer. Its asymptotic performance, as 
derived by Zador [l]  and Gersho [2], is given by 

where IIp(x)ll, = [ jp(x)”  d ~ ] ’ / ~ ,  and C(k, r )  is a constant which 
only depends on k and r (for example, C(1,2) is 1/12). 

Now let g( x) be a piecewise constant approximation to p (  x). 
Assume that p (  x)  has compact support S. If the support of p (  x) 
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is unbounded, one can choose a sufficiently large compact subset 
of the support and restrict p(x)  to that region, thus having, in 
addition to the quantizer noise, a truncation error. We will 
assume, however, that the truncation noise is smaller than a 
prescribed value and will thus be concerned in the following only 
with the so-called quantizer “granular” noise. For example, if a 
scalar zero-mean unit variance Gaussian random variable is 
truncated to f 4 or f 6, the ‘differences between the optimal 
quantizer performance for the untruncated and the truncated 
random variables is less than 0.2 and 0.006 dB, respectively (for 
values of N between 8 and 128) [9]. Let g ( x )  have the same 
compact support S as p (  x). The piecewise constant density g( x) 
is related to p (x )  by the following. Let g(x) have M segments 
and denote by C, the compact region over which g ( x )  has its ith 
value. Let m, be the measure of C,. The density g(x) is then 
given by 

(2) 
P, 
m, 

g(x )  =-)  X € C ,  i=1 ,2 ; . . ,M 

where p, = lC,p(x)  dx. It is easy to see that g ( x )  is a valid 
density function. 

Since g ( x )  has a constant value over each of the regions 
C,, I = 1,2,. . . , M ,  the optimal (asymptotic) quantizer for g( x) 
will be piecewise uniform, i.e., for each region Cl the quantizer is 
uniform and in each region the number of quantizer output levels 
depends upon the total number of levels N and the particular 
shape of g(x) (Le., the values of p ,  and m,).  Note that, by 
uniform, we mean here that the point density function of the 
quantizer is uniform and not that it is necessarily a rectangular 
lattice. The minimum asymptotic distortion resulting from quan- 
tizing the random variable y corresponding to g(x) with its 
optimal quantizer (call it Q,) is then given by 

1 
D, = i E {  IIY - Qg(Y) II;} C( k ,  r)N-r/kIIg(x) l l k / h + r .  (3) 

By definition, if we now try to quantize x with the quantizer Qg, 
we find that 

where Q, is the optimal N-level quantizer for the data. However, 
as M -+ co (under some mild technical assumptions such as the 
maximum probability of any cell approaches zero and the cell 
boundaries remain approximately proportional), it can be shown 
that 

Iim g( x) = p( x) a.e. - x 
M + m  

and 

Here and throughout this correspondence we require that M -+ ot) 

in a way such that the ratio of the sides of the regions remains 
constant. Two particular cases for the above ideas are the follow- 
ing. If p (x )  = l / m ,  x E S, with rn = JS dx, then obviously M = 1 
and g ( x )  = p(x),  x E S. This corresponds to an originally uni- 
formly distributed input. On the other hand, if p (  x) = l / m ,  for 
x E C,, then g(x) can also be identical to p(x)  for M finite 
(corresponding to an input random variable which is piecewise 
uniform). These ideas imply that a near optimum quantizer for 
p ( x )  can be designed by finding an optimum quantizer for an 
input vector with probability density g( x). As the approximation 
to p (x )  by g(x) becomes more accurate, the asymptotic distor- 
tion approaches its minimum value. In the next section we 
examine the design of optimum quantizers for these piecewise 
constant densities. 

111. COMPRESSORS FOR PIECEWISE CONSTANT DENSITIES 
Assuming that g(x) is known, the design of the optimum 

quantizer consists in finding the number of quantization levels 
that correspond to each of the M partitions. This is accomplished 
by rewriting llg(x)llk/k+r as follows: 

k + r / h  I ’  ( 4) 
M 

substituting (4) into Zador’s expression (3), 
k + r / L  M 

and rewriting (5) as 

which can be rearranged to form 

On the other hand, we can obtain the corresponding distortion 
bynotingthatforxEC,,  g,(x)=g(xlxEC,)=l /m, ,and g , ( x )  
= 0 if x 4 C,. Using (3) again yields 

D, = c( 9 r ,  N,-r/k llg, ( IIh / k  + r 

In the above, N, is the number of levels in C,, and we note that 
M 

(8) C N , I N .  
r = l  

The total distortion DT can be written as the expected value of 
the D, in (7) and thus 

Recall that D in (6) is the minimum quantization distortion. 
Thus, by setting DT = D ,  we can directly solve for the optimum 
assignment of the numbers of quantization levels. Since all the 
quantities involved are non-negative, it follows that (by a 
Lagrange multiplier type of minimization) 
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and therefore 

j = l  

We note that the N, must be integers, so we must round (10) up 
or down (subject to (8) being satisfied). For the special case 
where m, = m, we have 

If we do a uniform partition, i.e., p,  =l/M, then the optimum 
assignment is 

I -1  

Equations (11) and (12) can be used to get an estimate of the 
required number of regions M for the performance of Qg to be 
similar to Do. In the general case, substituting (11) in (9) we find 
that 

where V =  rnM = 1, dx. Substituting (12) in (9) we obtain 
k + r / k  M 1 

Do D, I C( k ,  r )  - M N - r / k  ( z, m ; / k + r )  

Equation (10) then suggests a method for designing near-opti- 
mum quantizers given p ( x ) :  first, partition the support S into M 
regions; then quantize each region using a multidimensional 
uniform quantizer with the number of quantization levels speci- 
fied by (10). Each region C, is mapped by a simple translation 
into the input space of the N-level optimum quantizer and the 
measure of each region is scaled appropriately so that the region 
is uniformly quantized with N, levels. After quantization, the 
inverse mapping is used to obtain the output for the near 
optimum quantizer. 

To this point we have not discussed a method of partitioning 
the input space. Given that we want to partition the support S 
into M regions, there are two important points to be considered. 
The first point involves the optimum quantization of each region. 
As stated before, each region is quantized with a uniform k-  
dimensional quantizer. However, because of distortion near the 
edges of regions we can calculate the performance only for a 
large number of quantization levels. For example, a region with 
only two levels may not be very well quantized. Therefore, the 
number of quantization levels N must be large relative to M so 
that all of the regions are finely quantized. 

Second, we observe that S can be partioned into M regions in 
an infinite number of ways. Thus the performance of the piece- 
wise compander is a function of the number of regions and their 
shapes. Ideally, we want to choose the partitioning method that 
results in the minimum distortion for the near-optimum quan- 
tizer. However, the shapes of the regions also determine the 
difficulty in implementing the piecewise compander. Therefore, a 
trade-off exists between the ease of implementation and the 
performance of the near-optimum quantizer. 

When N is large we can partition the input space into a large 
number of regions (subject to N / M  remaining large). In this 
situation the shapes of the individual regions have only a small 
effect on the quantizer performance. Thus we can partition the 

input space into hypercubes to simplify the implementation. By 
quantizing each component of the input vector with a one-dimen- 
sional quantizer, the hypercube that contains the input vector is 
easily determined. When N is small the number of regions must 
also be small. For this case an efficient partitioning of the input 
space may be necessary to obtain near-optimal performance. The 
piecewise compander is then implemented using a search to 
locate the regions corresponding to each input vector. 

At this point we want to recall that the piecewise linear 
compander will be used with the true input density p ( x ) .  One 
way to determine how well the optimum quantizer and the 
piecewise linear compressor used with the true density match is 
to compare, for each region C,, the distortion resulting from the 
optimum quantizer and from the piecewise linear one, when the 
input is the random vector with density p ( x ) .  

Following Gersho’s development [2], it can be shown that the 
optimum quantizer allocates N,* output levels to the ith region, 
where 

On the other hand, if p , ( x )  is the density of x, conditioned on 
x E C,, then on C, the average asymptotic minimum distortion is 

Ot* c( 9 4 * ) - ‘Ik IlP, ( x> l l k / A  + r ,  

Upon observing the difference D, - D,* , where 0, is given by (7), 
it can be determined which regions (if any) should be modified or 
further subdivided. 

IV. EXAMPLE 
We now present an example of the design and the performance 

analysis of a two-dimensional piecewise linear compressor. We 
consider x to be bivariate Gaussian, with covariance equal to the 
identity matrix and mean zero. Since the input support must be 
contained in the support of the pieceiwse linear compressor, and 
for a finite number of regions the latter is finite, we truncate the 
input to the circle with radius 3 6 .  The support of the piecewise 
linear compressor was chosen to be a regular hexagon with u = 6, 
as shown in Fig. l(a). The regions rn, were selected to be 
trapezoids with base parallel to the base of each component 
equivalent triangle as shown in Fig. l(b). The compressor was 
designed under the equal m, assumption, Le., rn = 6 a 2 6 / 4 M ,  
where M is the number of regions. The performance is measured 
in terms of mean-squared error. 

(b) 
Fig. 1. (a) Support of compressor. (b) Regions of compressor. 

The number N, of output levels per region was determined by 
means of ( l l ) ,  and these numbers were then used to determine 
the distortion D, (normalized by N ) .  The resulting distortions 
(“granular” quantization noise only) are presented in Table I (for 
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TABLE I 
PIECEWISE LINEAR COMPRESSOR PERFORMANCE 

M D N  
300 2.043 
180 2.050 
120 2.063 
90 2.081 
60 2.131 
30 2.397 
12 3.946 

reference, the minimum normalized distortion, calculated using 
(1) for an untruncated, bivariate Gaussian density with zero 
mean and the above covariance, is 2.015). 

It is noteworthy that even with a small number of regions there 
is a reasonable performance degradation. For example, with 
M = 30 (Le., only five regions per triangle) there is a loss of only 
0.75 dB, while two regions per triangle (M = 12) yields less than a 
3-dB loss. All dB comparisons are with reference to the asymptot- 
ically optimal error constant 2.015. 

The normalized distributions of levels ( N , / N )  for different 
values of M ,  and for a plane cutting the x- y plane at y = 0, are 
shown in Fig. 2. We observe in this figure that larger numbers of 
regions tend to modify N , / N  more drastically for those regions 
located close to the origin, Le., they try to improve the quantiza- 
tion procedure over the regions with a larger probability mass. To 
illustrate this point, we present in the numerical values of N , / N  
for the M = 12, 30, and 60 cases (Table 11). 

M=60 M=12 M=30 
7 - .- 

.12 

1 

. O B ;  

I 

.04 1 
I 

0 -  i 
.-- .J 

M.300 

1 2 3  10 19 20 region number 

Fig. 2. Level distributions for y = 0, x 5 0. 

TABLE I1 
N, / N  FOR DIFFERENT REGIONS 

M 1  2 3 4 5 6 7 8 9 10 

120.004 0.162 - - - - ~ - - - 
30 0.0004 0.0017 0.0069 0.0294 0.1283 - ~ - - - 

60 O.OOO1 0.0003 0.0005 0.0011 0.0028 0.0047 0.0096 0.0198 0.0414 0.0869 

It is convenient to point out that the larger the support of the 
piecewise linear compressor, the larger the distortion for a given 
number of regions. If the support of the true density is un- 
bounded, a good strategy is to choose the support of the piece- 
wise linear compressor as small as possible without introducing 
intolerable truncation errors. If, in our example, the support of 
the compressor is reduced so that a = 5, then the distortion 
(normalized) for M = 12 is reduced to 3.011, and an improvement 
of 1.17 dB with respect to the value given in Table I is achieved; 
this value is only 1.74 dB worse than the optimum value. For 
M = 60, the distortion is 2.059, or about 0.15 dB better than the 
value in Table I, and only 0.09 dB worse than the optimum. To 

quantize an input signal, one must first determine which region 
the particular realization falls into (say k ) ,  and then quantize it 
uniformly with the corresponding Nk levels. 

CONSTANT COMPRESSORS 
Optimum quantizer design is primarily based on exact knowl- 

edge of the statistical model for the data to be quantized. 
However, if the statistical model is not completely known, it is of 
practical interest to study the performance degradation of the 
quantizer designed for certain input statistics but used for a 
different set of statistics. The first important results in this 
direction were published by Morris and Vandelinde [lo] and Bath 
and Vandelinde [ll],  [12] for zero memory quantization. Swaszek 
and Thomas [13] analyzed the design problem when the input 
statistics are only known through a histogram, and Kazakos [8] 
analyzed the robustness problem for vector quantizers. To place 
our piecewise constant compressor in this context, recall from (3) 
that Dg = C ( k ,  r )N-r /k l lg (x) l lk ,k+r  and that, according to (4), 

v .  COMMENTS ON THE ROBUSTNESS OF PIECEWISE 

Thus it can be seen that the piecewise uniform quantizer distor- 
tion is a function of the true input density p(x)  only through the 
quantities p, and m, ,  i = 1,2; . . , M .  In other words, if Qg is used 
to quantize any random vector with probability density /( x)  such 
that jc,/( x) dx = p,, i = 1,2,. . . , M ,  then the distortion is given 
by (3). In [8], it is shown that a piecewise linear compressor does 
yield a solution to a minimax type of formulation when it is 
known that the inpout density f ( x )  is such that jc,,f(x) dx = p,, 
i.e., when /(x) is a member of the so-called p-point uncertainty 
class. 

These ideas lead to the following conclusion of practical inter- 
est. If a nonuniform quantizer is to be designed for a nominal 
density which is known only through its p, and m , ,  the piecewise 
linear compander design will yield good performance (if not 
optimal) and will allow the input density to change somewhat 
without modifying the distortion (unless the p, or the m, change). 

VI. DISCUSSION AND CONCLUSION 
We point out what has been accomplished and what remains to 

be done. We have presented a technique inspired by one-dimen- 
sional piecewise linear compander theory and tried to generalize 
it to several dimensions. One divides the support of the data 
probability distribution into regions (usually hypercubes) and 
then implements a multidimensional uniform quantizer in each 
region. 

The form of the optimal multidimensional uniform quantizer is 
not known (even for asymptotically large numbers of levels) for 
dimensions greater than two. Good multidimensional uniform 
quantizers are known, however, for certain dimensions (e.g., 
Sloane [14] has given a fast computational method for eight- 
dimensional quantizers). For correlated or dependent data, a 
general rule of thumb is that most of what is gained by going to 
multidimensional quantizers is attributable to the form of the 
compressors. Whether one uses a one-dimensional product lattice 
as the k-dimensional uniform or the “optimal k-dimensional 
uniform” (if it were known) only gives an asymptotic factor of 
improvement (as k + 00) of 2ae/12 = 1.42. 

The main contribution of this work is to point out a method of 
implementing vector quantizers on nonuniform data distributions 
in the fine quantization or high rate limit. The methodology is 
general in that we do not have to assume a particular kind of 
nonuniform distribution, e.g., Gaussian or Laplacian. The main 
drawback to our method is that we do not have a method for 
deciding how to change the regions in which to divide the 
support of an arbitrary data distribution. In our example of a 
two-dimensional Gaussian distribution, the method was ad hoc 
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and based on symmetry considerations. More should be done to 
correct this drawback in low-dimensional cases. However, for 
fine quantization, we feel that this method is the only viable 
alternative for arbitrary data distributions. 
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An Upper Bound on the Bit Error Probability of 
Combined Convolutional Coding and 

Continuous Phase Modulation 
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AND CARL-ERIK w. SUNDBERG, SENIOR MEMBER, IEEE 

Abstract -Continuous phase modulation (CPM) is a class of digital 
constant-amplitude modulations with good combined power and bandwidth 
efficiency. We study the bit error probability properties of signals consist- 
ing of convolutional coding combined with partial response multilevel 
CPM. It is assumed that the channel is an additive white Gaussian noise 
channel and that the receiver performs coherent maximum likelihood 
sequence detection by means of the Viterbi algorithm. An upper bound on 
the bit error probability is derived, using the average generating function 
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technique. The upper bound is evaluated numerically for a number of 
coded multilevel full-response CPM schemes. Simulation results are also 
presented. It is concluded that the free Euclidean distance is the best 
one-parameter description of the error probability for the considered class 
of signals for high signal-to-noise ratios. However, it is interesting to 
observe that the upper bound results show that the free distance alone 
yields pessimistic bit error probability behavior for some interesting cases. 

I. INTRODUCTION 
An abundance of constant-amplitude digital modulation 

schemes has been proposed and analyzed in the recent literature. 
Many of these schemes fit in as special cases of the continuous 
phase modulation (CPM) class [1]-[SI. Memory is introduced 
into the transmitted signal by means of continuous phase and 
also by means of partial-response smoothing (correlative encod- 
ing). Uncoded partial-response CPM yields good combined power 
and bandwidth efficiency [l]. Continuous phase frequency shift 
keying (CPFSK) is a special case of the CPM class [l]. 

Here we shall consider combined convolutional coding and 
multilevel CPM, which introduces more memory in the transmit- 
ted signal. See [6]-[14] for background information on combined 
coding and modulation. An exact constant amplitude is main- 
tained at all time instants in the coded CPM schemes, in contrast 
with the amplitude modulation and phase shift keying modula- 
tion considered in [6]. We will consider transmission over an 
additive white Gaussian noise channel only. Furthermore, it is 
assumed that the receiver is an ideal coherent maximum likeli- 
hood sequence detector (MLSD) using the Viterbi algorithm. 

The transfer function technique for evaluating upper bounds 
on the error probability of convolutional codes was introduced in 
[15] and is described in detail in [16]-[18]. It was first applied to 
conventional linear convolutional codes. This technique was later 
extended to the more general cases of, e.g., nonlinear trellis 
codes, in [19], [20]. Also, symbol error probability for uncoded 
continuous phase modulation is evaluated in [21]. In [22]-[24], a 
detailed performance evaluation is presented for some trellis 
coded AM and PSK systems. The work in [16]-[24] is all based 
on [15] and an average transfer function technique is used. 

In this correspondence we have applied the average transfer 
function technique to the case of coded continuous phase modu- 
lation [25], [26]. We have derived a general expression for an 
upper bound on the bit error probability for partial-response 
CPM with finite memory, a rational modulation index, an M a r y  
natural binary mapper, and a general convolutional code. An 
ideal Viterbi detector with infinite path memory is assumed. The 
upper bound is evaluated numerically for a number of interesting 
coded multilevel full-response CPFSK schemes. Simulation re- 
sults for a Viterbi detector with finite path memory are also 
presented. 

It is shown in [l] and [12] that CPM systems combined with 
convolutional codes are both more power and bandwidth effi- 
cient than uncoded CPM. The previous analysis is based on 
asymptotic error probability performance for high signal-to-noise 
ratios given by the minimum Euclidean distance. We shall show 
that these conclusions also hold for a range of signal-to-noise 
ratios when the upper bound on the bit error probability is used 
for performance evaluation. The gains given by calculations 
based on the free distance are actually sometimes pessimistic. An 
interesting result from the detailed numerical evaluation is that 
the minimum Euclidean distance error event for some coded 
CPM schemes only occurs for rather few transmitted signals. 
This follows from the fact that combined convolutional coding 
and CPM forms a nonlinear trellis code. 

In Section I1 we give a brief system description of coded CPM 
and in Section I11 we briefly give the upper bound. In Section IV 
the numerical evaluations of the upper bound on the bit error 
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