
Computer Aided Implementation of Complex Algorithms
on DSP's Using Automatic Scaling

Korina KASSAPOGLOU*

* Ecole Polytechnique Federale de Lausanne
16, Chemin de Bellerive

CH-1007 Lausanne, Switzerland

Abstract. A methodology for transforming
complex floating-point algorithms into correct
fixed-point DSP programs is presented. In
particular, an automatic scaling scheme
leading to overflow-free programs is described.
Depending on the application, scaling
generated automatically may either perfectly
fit, or be modified in order to substantially
improve accuracy. Each case is illustrated by
an example (FFT and Recursive Least-Squares
algorithms).

1. Introduction

Most current digital signal processors (DSP's) use
fixed-point arithmetic, thus leading to scaling
and precision problems when implementing
complex algorithms. Therefore, development
methodologies are required in order to cope with
'the problems encountered [121.

A computer-aided implementatjon method is
briefly presented in this paper. Starting with a
floating-point complex-structured algorithm and
following a stepwise refinement approach, the
corresponding optimized DSP code is obtained.
Special attention is given to the scaling
assignment issue. A matrix expression tha t
controls evolution of the scaling throughout an
algorithm is first constructed. Then i t is used, in
order to determine scale factors automatically,
with respect to an overflow-free configuration.

The implementation method is briefly described
in Section 2. In Section 3, we show how to
control the scaling throughout an algorithm and
we then derive the automatic scaling scheme
Two different applications are described in
section 4: a FFT algorithm is successfully
transformed into assembler using the results of
section 3, while scaling obtained automatically is
modified in the case of a recursjve least-squares

and Martin VETTERLI**

* * Center for Telecommunications Research
Columbia University

New York City, NY 10027

algorithm (RLS) in order to increase its accuracy
(thus leading to potential overflow risks). Note
tha t t he FFT is an FIR algorithm, while the RLS
is an IIR one, where variables can vary
substantially.

2. The methodology

The proposed Computer Aided Implementation
method is a top-down step-wise refinement
approach to efficient implementation of complex
structured digital signal processing algorithms
into machine code for a signal processor. The
main steps are shown in Figure 1.

Starting with a floating-point program tha t
describes the algorithm, the first transformation
simplifies its structural complexity. Any recursion
is then removed, while external information
controls code linearization, which is introduced
for execution speed purposes. In order t o
structure computations in the way a processor
executes them, all arithmetic expressions are
decomposed into simple operations tha t involve
only two operands and assign the output to a
variable. The next and quite important step
performs the floating- t o fixed-point conversion,
according to the theoretical basis presented in
Section 3. The final step translates the
fixed-point Pascal code into the assembler of the
target processor, mapping the algorithm into a
series of macros, most of which have already
been optimized and are available in a library.

A t each stage of the methodology, the resulting
program is error-free and executable. Additional
external information required at each step must
be validated using crosschecks. Any input
program is required t o be compilable, so tha t
syntax tests are never needed. The whole
development is performed in high level language
(Pascal) and is processor-independent until the
last transformation.

3. The automatic scaling scheme

3.1 Notation
Let x be a real number. We adopt the following
representation:

x = x ZSf(X) (1)

where x is a signed number less than 1, and
ZSf(X) is the scale factor of x. Since fixed-point
arithmetic deals with integers, x is factored with
advantage as:

- X = x ~-[nb(X)- l l (2)

where nb(X) denotes the wordlength used and X
is an integer.

3.2 Scaling after an arithmetic operation
Before introducing the scaling mapping of an
algorithm, i t is imperative to clearly express the
scale exponents of any operation output.

'Truncation. If I least significant bits (LSB) and
m most significant bits (MSB) are truncated
from X , integer representation of x according to
(1)-(Z), this latter will be represented by:

x = y 2-[nb(Y)-ll ZsfV) (3)

Y = X / (Z l) , unless an overflow occured

nb(Y) = nb(X) - m - 1

sf(Y) = sf(X) - m (4)

u-i t h

Kote that rounding can always be expressed as
the addition of half the least significant bit,
follohed by a truncation.

Multiplication (c = ab). The product holds a
priori on nb(A)+nb(R)-1 bits. If I LSR and rn MSB
are truncated from it,

P = AB/(Z') (if no ovcrflow when truncating)

nb(P) = nb(A) + nb(3) - 1 - m - k

sf(P) = sf(A) + sf@) - n; (5)

Addition (/Subtraction) (c = a+b). When adding,
scale factors of operands must be equal. If this
is not the case, they must be adjusted using
shifts: the variable with smaller scale factor will
be shifted right, so that no overflow is caused.
Assuming that E has more bits than B, the sum
holds on nb(h)+l bits. According to the adopted
notation, operands are obviously left-aligned. If I
LSB and m MSB are truncated,

nb(C) = nb(A) + 1 - rn - 1

Let u = sf(A) - sf@)

sf(C) = sf@) + 1 - m
= sf(A)/Z + [sf(B)+u]/Z + 1 - rn (6a)

If u < 0,
c = (A 2u + I3 2[nb(A)-nb(B)1) / 21

sf(C) = sf(B) + 1 - m
= [sf(A)-u]/Z + sf(B)/Z + 1 - m (6b)

Division (c = a/b). Division is treated in a
slightly different way. First, the wordlength of a
division output depends on the desired accuracy
and thus on the algorithm used. Secondly, in
the case where A is always inferior to R, ;"i is
may be left-shifted, giving:

In general, the division output is given by:

and thus,

sf(C) = sf(.4) - sf(B) - m + nb(B) - 1 (9)

Equations (5), (6) and (9) give the scale exponent
of any operation output. In the rest of this
section, we assume that we are dealing with an
algorithm, thus with a set of operations. The
main idea is to group all such successive
equations within a single expression and get
each obtained scale exponent in terms of scale
exponents of input variables only.
3.3 Evolution of scaling throughout an
algorithm
We are given an algorithm having n input
variables xi and containing p operations. We
assume that each operation involves only two
variables and produces a new one. Let S be a
(n+p)-vector containing the scale exponents of all
n+p variables. These latter are ordered as
follows: first the n input variables, then the p
operation outputs jn the same order as they
appear in - A. The vector S is given by:

S - DIE SI = A [sf(Xi)] - B [mj] + C (10)

where
[sf(Xi)] contams the scale exponents of input

variablcs only,
. [mj] gives the number of MSB truncated

after each operation (and thus represents a kind
of overflow-risk index).

1028

A , B, C, D and E are matrices(/vectors) that
depend on the algorithmic structure only.
(Dimensions: (n+p)xn, (n+p)xp, (n+p)xl, (n+p)xp
and (p)x(n+p)). They are constructed using five
functions f , g, h , 1 and 0. Functions f , g, h and
1 map each of the n+p variables to, respectively,
an n-vector, a p-vector, a real and a p-vector.
Function o maps each of the p operation
outputs to a (n+p)-vector. Table 1 shows how
these functions are constructed using the rules
given in paragraph 3.2, and how matrices A, B,
C, I) and E are defined.

The right hand side of equation (10) contains
contributions of, respectively, scale exponents of
input variables, numbers (mj> of MSB truncated
(or lost) after each operation j and some
constants that depend on the kind of operations.
Correction DIE SI upon S on the left hand side
is non zero if and only if additions with scaling
incompatibility are encountered. When adjusting
scaling, no overflow may occur. Therefore, a
comparision of two scale exponents is needed to
indicate which of the two operands is t o be
shifted. 'This may create a dependence of E upon
S, which is avoided by using the absolute values.

I t is important to note that , by construction,
matrices B, D and E are lower triangular. In
addition, E has zeros along its diagonal.
Therefore, equation (10) is solved in a
straight-forward way, if one starts at line 1 and
proceeds line by line: correction DIE SI a t line k
uses the first k-1 elements of S only.

3.4 Automatically generated scaling
Scale exponents of S are actually parametrized
by the p integers mj, since matrices A, B, C, D
and E are completely known once equation (10)
is established and scale exponents of input
variables are specified.

I t is obvious tha t , if we wish a n overflow-free
configuration, none of the most significant bits
may be truncated. Thus, all mj's must be set to
zero:

mj = 0 for 1 c j c p (11)

This gives a solution So to equation (11). As
mentioned in the previous paragraph, this
solution is easily obtained if one proceeds line
by line.

In the case of algorithms where variables have
small dynamic ranges and provided that the
input variables are represented with maximum
accuracy, the solution So is quite satisfactory. I t
realizes a nice trade-off between two basic

requirements, namely good accuracy and correct
operation of the algorithm (no overflow, for
instance).

In the case of algorithms where dynamic ranges
of variables vary substantially, the solution
obtained with (11) may be too severe,
deteriorating the accuracy. If some statistics on
variable ranges are available, one may introduce
a limited number of low-probability overflows,
thus improving the accuracy. This means that
some values mj are modified. The new resulting
values of S can be obtained incrementally, using:

S - DIE SI = - [So - DIE Sol] - B [~ m ~] (12)

3.5 How t o use these results
When generating the Pascal program that
supports fixed-point computation simulations
according to Figure 1, all that is needed a t
operation j is mj and the jth line of ES. If this
is non zero, then a shift must precede this
operation. The value of will inform one
how to read the contents of the corresponding
memory cell. If decisions upon integers mj are
not satisfactory, one may change them and only
solve the last equation (12).

4. Applications

The automatic scaling scheme was applied
successfully to a 16-point FFT algorithm [3]. This
is a FIR algorithm, and thus there are no
constraints on output variable representations.
Assuming that the input signal is normalized,
the scale exponents of initial signal samples are
equal to zero. Since coefficients are less than 1,
their scale exponent is also zero. Solving
equation (10) using the automatic scaling scheme
(ll), we determined that each stage increased
the scale exponents of samples by 1. After the
four required stages, scale exponents of FFT
samples were equal to 4. The obtained FFT
operates correctly, with good accuracy. (Actually,
the accuracy can be improved by using a more
detailed analysis taking into account t ha t a DFT
is a multidimensional rotation.)

The automatic scaling scheme was also applied
to an IIR algorithm, namely a recursive
least-squares identification one. When updating
system parameters, one uses a covariance matrix
P, which is also updated recursively. In order to
get convergence, matrix P must be initialized to
a high value. We initialized i t to a value near
100 and fixed its input scale exponent a t 7.
After the scheme (11) was applied, the parameter
scale exponent increased by 16, while tha t of
matrix P raised by 18 after one recursion!

1029

However, we know that once convergence is
reached, parameter values do not vary much
and values of P decrease. This means that there
exists link equations between the variables and,
of course, they are not taken into account by
(lo)-(11). Based on elementary statistics upon
variable ranges, we assigned values greater than
zero to the mj and obtained the same scaling as
in [4]. Scale exponents of recursive variables
thus remain constant through recursions.
Fixed-point simulations confirmed that, in reality,
overflow probability is very small.

5. Conclusions

In this paper, we concentrated on the scaling
issue encountered when an algorithm is
implemented in fixed-point arithmetic. Equations
that express the scale factor of a variable, which
is the output of a simple operation, are
presented. They lead to a matrix expression tha t
controls the scaling throughout an algebraic
algorithm: scale exponents of all variables are
obtained in terms of scale exponents of input
variables only and the numbers of most
significant bits truncated (or lost) after every
operation. An automatic scaling scheme, with
respect to an overflow-free configuration is then
derived.

I t is obvious that direct manipulation of these

equations is quite tedious. On the contrary, the
context of a Computer Aided Implementation
method is greatly attractive. We are on the
process of developing programs to support this.

Finally, the automatic scaling scheme is applied
to two examples: an FIR algorithm (FFT) and an
IIR one (Recursive Least-Squares).

References

L.R Morris, “Automatic Generation of Time Efficient Digital
Signal Processing Software”, IEEE Trans. on Acoustics,
Speech and Signal Processing, Vol. ASSP-25, pp.74-78, Feb.
1977.
H Hanselmann. ”A Concept for Mostly Automatic
Implementation of Control Algorithms”, IEEE Computer
Aided Control System Design Symposium, Arlington,
Virginia, Sept. 1986.
M Vetterli, E.Debourse, M.Kardan, “Fast Fourier Transforms
on the TMS 320 Signal Processor”, Proceedings des
JournCes d’electronique 1985, Lausanne, Suisse. Oct. 1985.
K.Kassapoglou, P.Hulliger, “Implementation of Recursive
Least Squares Identification Algorithms on the TMS 320’,
Proceedings of the EUSIPCO-86 Conference, The Hague,
Sept. 1986.
K.Kassapoglou, “Control on Scaling throughout an
Algorithm Leading to an Automatic Scaling Scheme”,
Internal Report of the Laboratoire d’hformatique
Technique, Ecole Polytechnique FPderale de Lausanne,
Switzerland.

Figure 1.
Table 1. Construction of matrices A, B, C, D and E.

10 .. 01

‘an+; - eb,n+;

[O .. 01

where stands for transpose, and ek,n for the kth column of the n-dimensional unity matrix
* assuming that wordlengths are already decided.

24.4.4
1030

