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Abstract. A methodology  for  transforming 
complex  floating-point  algorithms  into  correct 
fixed-point DSP programs  is  presented.  In 
particular,   an  automatic  scaling  scheme 
leading  to  overflow-free  programs is described. 
Depending  on  the  application,  scaling 
generated  automatically  may  either  perfectly 
fit, or  be  modified  in  order  to  substantially 
improve  accuracy.  Each  case  is  illustrated by 
an  example (FFT and  Recursive  Least-Squares 
algorithms). 

1. Introduction 

Most current digital  signal  processors (DSP's) use 
fixed-point arithmetic,  thus leading to  scaling 
and precision problems  when  implementing 
complex algorithms.  Therefore,  development 
methodologies are  required  in  order  to cope with 
'the problems  encountered [ 121. 

A computer-aided  implementatjon  method  is 
briefly presented  in  this  paper.  Starting  with  a 
floating-point  complex-structured  algorithm  and 
following a  stepwise refinement  approach,  the 
corresponding  optimized DSP code is  obtained. 
Special attention is given to   the  scaling 
assignment  issue. A matrix expression tha t  
controls  evolution of the scaling throughout  an 
algorithm  is  first  constructed. Then i t  is used,  in 
order  to  determine  scale  factors  automatically, 
with  respect to   an overflow-free configuration. 

The implementation  method  is briefly described 
in  Section 2. In Section 3, we show  how to 
control  the  scaling  throughout  an  algorithm  and 
we then derive the  automatic scaling scheme 
Two different  applications are described in 
section 4: a FFT algorithm  is successfully 
transformed  into  assembler using the  results of 
section 3, while  scaling obtained  automatically  is 
modified in the case of a  recursjve  least-squares 
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algorithm (RLS) in  order  to  increase its accuracy 
(thus leading to  potential overflow risks). Note 
tha t  t he  FFT is an FIR algorithm, while the RLS 
is an IIR one,  where  variables  can  vary 
substantially. 

2. The  methodology 

The proposed Computer Aided Implementation 
method  is a  top-down step-wise refinement 
approach  to efficient implementation of complex 
structured digital  signal  processing algorithms 
into  machine code for  a  signal  processor.  The 
main  steps  are shown in Figure 1. 

Starting  with a floating-point  program tha t  
describes the  algorithm,  the  first  transformation 
simplifies its  structural complexity. Any recursion 
is then  removed, while external  information 
controls code linearization,  which  is  introduced 
for  execution speed purposes. In order t o  
structure  computations  in  the way a  processor 
executes  them, all arithmetic expressions are  
decomposed into simple  operations tha t  involve 
only two operands  and assign the  output  to a 
variable.  The next  and  quite  important  step 
performs  the floating- t o  fixed-point  conversion, 
according to  the  theoretical basis  presented  in 
Section 3. The final  step  translates  the 
fixed-point Pascal code into  the  assembler of the 
target processor,  mapping the  algorithm  into a 
series of macros,  most of which  have  already 
been  optimized and  are available in a  library. 

A t  each  stage of the methodology, the  resulting 
program  is  error-free  and  executable.  Additional 
external  information  required  at  each  step  must 
be validated  using  crosschecks. Any input 
program  is  required t o  be  compilable, so tha t  
syntax  tests  are  never  needed. The whole 
development  is  performed  in  high level language 
(Pascal) and is processor-independent  until the  
last  transformation. 



3. The  automatic  scaling scheme 

3.1 Notation 
Let x be a  real  number. We adopt  the following 
representation: 

x = x ZSf(X) ( 1) 

where x is a signed number less than  1, and 
ZSf(X) is the scale factor of x. Since  fixed-point 
arithmetic deals  with  integers, x is factored  with 
advantage  as: 

- X = x ~-[nb(X)- l l  (2) 

where nb(X) denotes  the  wordlength  used  and X 
is an  integer. 

3.2 Scaling after an arithmetic  operation 
Before introducing  the scaling mapping of an  
algorithm, i t  is  imperative to  clearly  express the 
scale  exponents of any  operation  output. 

'Truncation. If I least  significant  bits (LSB) and 
m  most  significant  bits (MSB) are  truncated 
from X ,  integer  representation of x according to  
(1)-(Z), this  latter will be represented by: 

x = y 2-[nb(Y)-ll ZsfV) (3) 

Y = X / ( Z l )  , unless  an overflow occured 

nb(Y) = nb(X) - m - 1 

sf(Y) = sf(X) - m (4) 

u-i t h 

Kote that  rounding  can always  be  expressed as 
the  addition of half the  least significant bit, 
follohed by a  truncation. 

Multiplication (c = ab). The product  holds  a 
priori on nb(A)+nb(R)-1 bits. If I LSR and rn MSB 
are  truncated  from  it, 

P = AB/(Z') (if no ovcrflow when truncating) 

nb(P)  = nb(A) + nb(3) - 1 - m - k 

sf(P) = sf(A) + sf@) - n; (5) 

Addition (/Subtraction)  (c = a+b). When adding, 
scale  factors of operands  must be equal. If this 
is not  the  case,  they  must be adjusted  using 
shifts:  the  variable  with  smaller  scale  factor will 
be  shifted right, so that  no overflow is  caused. 
Assuming that  E has  more  bits  than B, the  sum 
holds  on  nb(h)+l  bits. According to  the  adopted 
notation,  operands  are obviously left-aligned. If I 
LSB and m MSB are  truncated, 

nb(C) = nb(A) + 1 - rn - 1 

Let u = sf(A) - sf@) 

sf(C) = sf@) + 1 - m 
= sf(A)/Z + [sf(B)+u]/Z + 1 - rn (6a) 

If u < 0, 
c = (A 2u + I3 2[nb(A)-nb(B)1) / 21 

sf(C) = sf(B) + 1 - m 
= [sf(A)-u]/Z + sf(B)/Z + 1 - m (6b) 

Division (c = a/b). Division is  treated  in  a 
slightly  different  way.  First, the wordlength of a 
division output  depends  on  the desired accuracy 
and  thus  on  the  algorithm used.  Secondly, in 
the case  where A is  always  inferior to  R, ;"i is 
may be  left-shifted, giving: 

In general,  the division output is given by: 

and  thus, 

sf(C) = sf(.4) - sf(B) - m + nb(B) - 1 (9) 

Equations (5), (6) and (9) give the scale  exponent 
of any  operation  output. In the  rest of this 
section, we assume  that we are dealing  with an  
algorithm,  thus  with  a  set of operations. The 
main  idea  is to  group all such successive 
equations  within  a single expression and get 
each  obtained  scale  exponent  in  terms of scale 
exponents of input  variables only. 
3.3 Evolution of scaling throughout an 
algorithm 
We are given an  algorithm  having  n  input 
variables  xi  and  containing  p  operations. We 
assume  that  each  operation involves only two 
variables  and  produces  a new one. Let S be a 
(n+p)-vector  containing  the scale exponents of all 
n+p variables. These latter  are ordered as 
follows: first  the  n  input variables, then  the p 
operation  outputs jn the  same  order  as  they 
appear  in - A. The vector S is given by: 

S - DIE SI = A [sf(Xi)] - B [mj] + C ( 10) 

where 
[sf(Xi)] contams  the scale  exponents of input 

variablcs  only, 
. [mj] gives the  number of MSB truncated 

after  each  operation  (and  thus  represents  a  kind 
of overflow-risk index). 
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A ,  B, C, D and E are  matrices(/vectors)  that 
depend  on the  algorithmic  structure only. 
(Dimensions: (n+p)xn,  (n+p)xp,  (n+p)xl,  (n+p)xp 
and (p)x(n+p)). They are  constructed using five 
functions f ,  g, h ,  1 and 0. Functions f ,  g,  h and 
1 map  each of the  n+p  variables  to, respectively, 
an  n-vector, a  p-vector,  a real  and a  p-vector. 
Function o maps  each of the p  operation 
outputs  to a  (n+p)-vector. Table 1 shows how 
these  functions  are  constructed using the  rules 
given in  paragraph  3.2,  and how matrices A, B, 
C, I) and E are  defined. 

The right  hand  side of equation (10) contains 
contributions of,  respectively,  scale  exponents of 
input  variables,  numbers (mj> of MSB truncated 
(or  lost)  after  each  operation j and  some 
constants  that depend on  the kind of operations. 
Correction DIE SI upon S on  the left hand side 
is non zero if and only if additions  with scaling 
incompatibility are  encountered. When adjusting 
scaling, no overflow may  occur.  Therefore,  a 
comparision of two  scale  exponents is needed to  
indicate which of the two  operands  is t o  be 
shifted. 'This may  create a  dependence of E upon 
S,  which  is  avoided by using  the  absolute  values. 

I t  is   important  to  note  that ,  by construction, 
matrices B, D and E are lower triangular. In 
addition, E has zeros  along its diagonal. 
Therefore,  equation (10) is solved in a 
straight-forward  way, if one  starts  at line  1 and 
proceeds  line by line: correction DIE SI a t  line k 
uses  the  first k-1 elements of S only. 

3.4 Automatically  generated  scaling 
Scale exponents of S are  actually  parametrized 
by the p  integers  mj,  since  matrices A, B, C, D 
and E are completely  known  once  equation (10) 
is  established  and  scale  exponents of input 
variables  are specified. 

I t  is  obvious tha t ,  if  we wish a n  overflow-free 
configuration,  none of the  most  significant  bits 
may be truncated.  Thus, all  mj's must  be  set  to 
zero: 

mj = 0 for 1 c  j c  p (11) 

This gives a  solution So to  equation (11).  As 
mentioned  in  the previous  paragraph,  this 
solution  is easily obtained if one  proceeds  line 
by line. 

In the case of algorithms  where  variables  have 
small  dynamic  ranges  and provided that   the  
input  variables  are  represented  with  maximum 
accuracy,  the  solution So is  quite  satisfactory. I t  
realizes  a  nice  trade-off  between  two  basic 

requirements,  namely good accuracy  and  correct 
operation of the  algorithm  (no overflow, for 
instance). 

In the  case of algorithms  where  dynamic  ranges 
of variables  vary  substantially,  the  solution 
obtained  with (11) may  be  too severe, 
deteriorating  the  accuracy. If some  statistics  on 
variable  ranges  are  available,  one  may  introduce 
a  limited  number of low-probability overflows, 
thus improving the  accuracy. This means  that  
some  values mj are modified. The new resulting 
values of S can be obtained  incrementally,  using: 

S - DIE SI = - [So - DIE Sol] - B [ ~ m ~ ]  (12) 

3.5 How t o  use these results 
When generating  the Pascal  program  that 
supports  fixed-point  computation  simulations 
according to  Figure 1, all that   is  needed a t  
operation j is mj  and  the  jth  line of ES. If this 
is  non zero, then a  shift must  precede this 
operation. The value of will inform  one 
how to  read  the  contents of the corresponding 
memory cell. If decisions  upon  integers mj are 
not  satisfactory,  one  may  change  them  and only 
solve the  last  equation (12). 

4. Applications 

The automatic scaling  scheme was  applied 
successfully to  a 16-point FFT algorithm [3]. This 
is  a FIR algorithm,  and  thus  there  are  no 
constraints  on  output  variable  representations. 
Assuming that  the  input signal  is normalized, 
the scale  exponents of initial signal samples  are 
equal  to zero.  Since  coefficients are less than 1, 
their scale  exponent  is  also zero. Solving 
equation (10) using the  automatic scaling  scheme 
(ll), we determined  that  each  stage  increased 
the scale  exponents of samples by 1. After the 
four  required  stages,  scale  exponents of  FFT 
samples were equal  to 4. The obtained FFT 
operates  correctly,  with good accuracy.  (Actually, 
the  accuracy  can be  improved by using  a more 
detailed  analysis  taking  into  account t ha t  a DFT 
is  a  multidimensional  rotation.) 

The automatic scaling scheme  was  also applied 
to   an IIR algorithm,  namely  a  recursive 
least-squares  identification  one. When updating 
system  parameters,  one  uses  a  covariance  matrix 
P, which is also  updated  recursively. In order  to 
get  convergence, matrix P must  be initialized to  
a  high value. We initialized i t   to  a  value  near 
100 and fixed its input scale  exponent a t  7. 
After the  scheme (11) was  applied, the  parameter 
scale  exponent  increased by  16, while tha t  of 
matrix P raised by 18 after  one  recursion! 
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However, we know that  once  convergence  is 
reached,  parameter  values do not  vary  much 
and  values of P decrease. This means  that  there 
exists  link  equations between the variables and, 
of course,  they  are  not  taken  into  account by 
(lo)-( 11). Based on  elementary  statistics  upon 
variable  ranges, we assigned values  greater  than 
zero to  the  mj  and  obtained  the  same scaling as  
in [4]. Scale exponents of recursive  variables 
thus  remain  constant  through  recursions. 
Fixed-point simulations  confirmed  that,  in  reality, 
overflow probability  is  very  small. 

5. Conclusions 

In this  paper, we concentrated on the scaling 
issue  encountered  when  an  algorithm  is 
implemented  in  fixed-point  arithmetic.  Equations 
that  express the scale  factor of a  variable, which 
is the  output of a simple  operation, are  
presented. They lead to  a matrix expression tha t  
controls  the scaling throughout  an algebraic 
algorithm:  scale  exponents of all variables are 
obtained  in  terms of scale  exponents of input 
variables only and  the  numbers of most 
significant  bits  truncated (or lost)  after every 
operation. An automatic scaling scheme,  with 
respect  to  an overflow-free configuration  is  then 
derived. 

I t  is obvious that  direct  manipulation of these 

equations is quite  tedious. On the  contrary,  the 
context of a  Computer Aided Implementation 
method  is  greatly  attractive. We are on the 
process of developing programs  to  support  this. 

Finally, the  automatic scaling scheme  is applied 
to  two  examples: an FIR algorithm (FFT) and  an 
IIR one (Recursive  Least-Squares). 
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Figure 1. 
Table 1. Construction of matrices A, B, C, D and E. 

10 .. 01 

‘an+; - eb,n+; 

[O .. 01 

where  stands  for  transpose,  and  ek,n  for  the  kth  column of the n-dimensional  unity  matrix 
* assuming that wordlengths are already  decided. 
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