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ABSTRACT

Connectionist networks evolve in time according to a

prescribed rule. Typically, they are designed to be stablfz S0
that their temporal activity ceases after‘ a short transient
period. However, meaningful patterns in speech have 2:
temporal component: therefore it seems natural to }z:ttetmp_
to map the temporality of speech patterns onto the tem
porality of an unstable network.

We have begun some exploratory experiments to train ne:
works to recognise temporal patterns. We have demgne‘:1
fully connected networks that are trained to emulatte afn

classify sequences by regarding each temporal sta‘ e of a
network as a layer in a feed-forward network. Trgmm% is
then performed by a variant of the back—.propagatxoln a g}(l)-
rithm. We have conducted initial experiments using the
output of a peripheral auditory model.

INTRODUCTION

In the past few years there has been a resurgence of
interest in connectionist systems [1, 2] as pattern
recognisers, for tasks requiring parallel constraint satisfac-
tion and as cognitive models. However, the various learning
procedures that have been developed. such as back-
propagation of error by first-order gradient descent 1, 3, 4]
and procedures based around simulated annealing, such as
the Boltzmann Machine (5] are limited in that they are
methods for training static networks: that is the network
will undergo a short period of temporal instability before
settling into a stable, final state. Such a learning procedure
is clearly incompatible with the learning of time-dependent
sequences. Hence current connectionist network learning
procedures are severely limited to the stable, time-
invariant case.

One of the major problems to which connectionist tech-
niques have been applied is that of speech recognition
Several studies have been reported of tackling a speech
recognition problem using a connectionist system [6, 7, 8, 9.
10, 11]. However these studies are all characterised in that
they attempt short time base recognition; they all perform
the recognition of short speech patterns that may be
presented to the network as a single, static signal. It is
clearly essential that learning procedures be developed that
enable networks to learn to emulate and classify time-
varying signals.
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In this paper we present our first steps in tackling the prob-
lem of developing learning algorithms for unstable connec-
tionist networks. The basic learning procedure is "back-
propagation technology"”; however the back-propagation
occurs over time [4] and the actual network is fully con-
nected and assymmetric. This time-dependent back propa-
gation learning procedure attempts to train the network to
develop abstract time-dependent features which enable it to
predict the next time-frame, as these features are likely to
be relevant to the classification of the input patterns.

We have carried some initial, exploratory experiments
using this learning procedure in attempting to train a net-
work to recognise isolated digits, spoken by various speak-
ers, male and female. The temporal input to the network
was generated by a peripheral auditory model.

NETWORK ARCHITECTURE

We are studying fully connected connectionist network
models with no restrictions on the weight matrix, such as
the symmetry required by Boltzmann machines or the
feed-forward structure required by back-propagation.
Specifically, every node i outputs a real number Y, at
integral time ¢ according to the law of motion

Yoo = AW, Y, 0,
J
where:

and W, is a real number modelling the synaptic weight
from node j to node i. The function f causes the node value
Y, to lie between 0 and 1

The state of the network (the set of node values) varies in
time in a way governed by the weight matrix, and at least
to some extent the initial state. This law of motion may be
overruled for some nodes at certain times by clamping
nodes, by which is meant overwriting the node value pro-
duced by the law of motion with a prescribed value.

We designate some of the nodes as input nodes, some as
output nodes, and the rest as hidden nodes. We wish to
adjust the weight matrix so that when a temporal sequence
of auditory model output, derived from a spoken word is
clamped on the input nodes, the network will respond by
the time the word has been spoken by setting an output
node corresponding to that word to a value near 1, and the
other output nodes to 0.



The standard way to use back-propagation to train this nets
:work would be to train an equivalent feed-forward network
consisting of at least as many layers as there are time steps
in' the utterances of the words to be classified, back-
propagating errors from the output nodes. We have
‘modified this method by giving the network some extra
"clues" to assist its training. In order to distinguish words,
the network must learn to respond to temporal features in
the input which bear more directly than the raw, "time-
frozen" .input on the distinctions to be cast. We presume
- that 'some of these features may also be found amongst
_ features which can help to predict the future evolution of
the input signal itself. Therefore we train the network to
predict its next input as well as the overall classification of
the signal. The network is initialised in a standard state,
and trained to predict a return to this state after each
utterance, - thereby priming itself to respond to another
utterance.

LEARNING PROCEDURE

The learning procedure adopted was a variant of the back-
propagation of . error procedure, in which the time-
dependency was simulated by constructing the equivalent
strictly-layered, feed-forward network, with each layer
corresponding to a time-slice of the input signal.

Let T be defined as the total number of time slices in each
training sequence, / be the set of input nodes, H be the set
of ‘hidden nodes and O be the set of output nodes. If i ¢ I,
-:Sf,, I8 the training signal p on node i at time ¢ and if
i € O, then 8f,,, is the target value for signal p on node i,
~-except when ¢ = 1 and ¢ = T, at which times S, = &,
where % is a constant "idle value".

The element of the weight matrix representing the weight
from node j to node i is represented by W;. The weight
matrix of the corresponding feedforward network has addi-
tional subscripts, representing the timestep in question. So
the element of the weight matrix connecting element j at
time ¢, ‘to element i at time ¢t+1 is represented as
W st It should be emphasised that the values of the
weight ‘matrix for the feed-forward network do not depend
on't:

Wisriep = Wy

The network was iterated over the set of signals, p. The
t = 1 layer of the feed-forward network was initialised:

Yi, = Sh, ifiel
Yi, =4 if i e H(JO
That is, the hidden and target nodes are initialised to the

idle vglue.

The net is run for R —1 steps, where R<T is the lgvel
being trained to:

Y0, = AW, Yi_1p
J

f is the activation function for each node (its equation of
motion, in terms of a dynamical systems analysis), In this
- .work f was taken to be the semilinear sigmoid function, the
“most commonly used activation function:
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The derivative of f, with respect to x is given by:
flx) = flx) (1= fx))
The error is propogated using a modified version of the gen-

eralised delta rule: When training to a layer R, the value
for 3, the error signal for a node is given by:

8es = f'fh(Sfay = Yoy ifj e I(JO

The hidden nodes are only targetedy for this final layer, T;
in this case they are targeted to the idle value, %, as the
signal has finished:

8y = Flruth = Yo, ifjeH
When R<T:
8y =0 ifjeH

For the layers below. the cun‘eht level of training, R, the
error signal for each node is given by:

86 = FRpl 2 FlernSBery = Yfr1,00 W)
elJo ,

+ 28010 Werrioen) -
ieH

The error propagates normally through the hidden nodes,
but the input and output nodes are targeted to the signal
value and. classification - pattern for the time step
corresponding to that layer.

The change in the weight from node j to node i, AW, is
given by the average over ¢ of:

AWeiriey = 108010 YEy,
D)

The training schedule for such a network is simple. First a
two layer net is trained, for a few iterations, then a three
layer net, and so on until a'7 layer net, representing the
entire signal length, has undergone training for a few itera-
tions. This process of training each feed-forward network
for a few iterations is repeated until an error function, E,
defined below, reaches a suitable minimum.

1 Lz ‘
E = '2‘2(2 2 Sk -Yhp? + =YY
P t=2 jel{Jo 3 JeH

When training to level R < T -

1 R
E=222% 2 Sty-Yp,?

b t=2jeIJO

The modified delta rule used here is a first-order gradient
descent of this error' function. A "momentum" term was
also used; this function of the previous weight change is
added to the curreént weight change, and has the effect of
damping down oscillations. ‘Hence the expression for change
of weights (at the nth iteration) becomes:

AWt 100 () = 128841, Yh) + aAW;(n—1)
b N

Here, « is a constant between 0 and 1 specifying the
influence of the momentum term. Generally, « is large, in
the region of 0.9.

Changes were also made to the activation function, shifting
its output down by 0.5, thus changing its range from (0,1)
to (-0.5,0.5). This is done by redefining f as:

flx) L L

T l4e 2




EXPERIMENTAL

The network algorithm was simulated in C using a vector-
accelerated MassComp 5700 under the AUDLAB interac-
tive speech and signal processing package.

The input signals used to train the model were derived
from a band-pass non-linear (BPNL) peripheral auditory
model [9), in the form of quantised "auditory spectrograms".
These spectrograms are simulated neural firings plotted
against time, with frequency measured on the non-linear
Bark scale. Additional features representing high and low
frequency rms energy have also been used, as the simple
auditory spectrogram does not represent energy features
(such as the high frequency energy, characteristic of frica-
tion) very well. The speech patterns processed by the audi-
tory model were isolated utterances of the English digits
"zero" to "ten" spoken by two male and two female speakers
with varying accents and at varying rates. This same data
set had been previously used successfully in training a
static feed-forward network, using the standard back-
propagation technique

These exploratory experiments are in progress at the time
of writing: initial results are encouraging, although the
minimisation of the error function is slow and local minima
and fluctuations are encountered. Work is currently under-
way to improve the minimisation algorithm by incorporat-
ing some form of variable step-size and using second order
information.

DISCUSSION

It is apparent that connectionist models offer a promising
approach to the problem of automatic speech recognition.
However, most previous approaches have failed to map the
temporality of the speech signal onto the dynamics of the
connectionist network. Those approaches which have
attempted to impart temporality into a connectionist net-
work [10, 11] have done so by using specific restricted
architectures; in contrast, this work attempts to produce
temporal learning algorithms for unconstrained, fully-
connected networks.

It is reasonable to suppose that a lack of time-dependence
inhibits the possibility of continuous classification or emu-
lation of speech pattern sequences The work presented
here is a first suggestion for developing unstable connec-
tionist networks that can learn to classify and emulate tem-
poral signals. It is premature to say whether this approach
has the potential to perform this task; however it is clear
that such approaches should be investigated
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