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ABSTRACT

The split-radix algorithm for the discrete Fourier
transform of length-2™ is by now fairly popular. First, we
give the reason why the split-radix algorithm is better than
any single-radix algorithm on length-2™ DFT’s. Then, the
split-radix approach is generalized to length-p™ DFT’s. It
is shown that whenever a radix-p? outperforms a radix-p
algorithm, then a radix-p/p? algorithm will outperform both
of them. As an example, a radix-3/9 algorithm is developed
for length-3™ DFT’s.

I Introduction

The calculation of the discrete Fourier transform (DFT)
via a fast algorithm depends on the length of the sequence on
which the transform has to be evaluated. When the length N
is the product of coprime factors one uses generally Good’s
mapping to obtain a multidimensional transform that can
then be evaluated with the Winograd or the prime factor
algorithm. When the factors of the length are not coprime
(typically when N is a power of a small prime number p),
then the Cooley-Tukey mapping [1] must be used and leads
to a radix-r algorithm {r being equal to p or one of its
powers). Examples are radix-2 or radix-4 algorithms for
the length-2™ DFT.

In this paper, we will be concerned with the second
case (that is, N = p™) and discuss so-called split-radix
algorithms. Note that these cannot be obtained via the
classical Cooley-Tukey mapping and that this might be
the reason why they were discovered only recently. Split-
radix algorithms for length-2™ DFT’s were introduced
simultaneously by several authors in 1984 [3,6,8] and lead
to the lowest known number of operations (multiplications
and additions) for DFT’s on these lengths.

The idea behind the division in frequency (DIF) split-
radix algorithm for length-2™ DFT’s is to start with a radix-~
2 decomposition on the even indexed outputs of the DFT
while using a radix-4 decomposition on the odd indexed
part. This approach takes the best of both radix-2 and
radix-4 algorithms. In the following, we call the “split-
radix” algorithm described in the literature a “radix-2/4”
algorithm since it represents only one among many possible
splittings of the problem as will be shown. The more
fundamental idea behind the split-radix algorithm is that
different decompositions can be used for different parts of
an algorithm, an idea that can be more generally applied
than just for length-2™ DFT’s once it is understood why it
works.

First, we will investigate the case of length-2™ DFT’s.

The radix-2/4 algorithm is first motivated as a compromise
between a radix-2 and a radix-4 algorithm, and then shown
to be best among various ways to split a length-2™ DFT.
Then, we consider the case of DFT’s of length-p™, p > 2.
It is shown that whenever there exists an algorithm for
the length-p? DFT that is more efficient than the radix-p
algorithm, then the radix-p/p? algorithm will outperform
both the radix-p and the radix-p?. Then, we apply the
general method to derive an efficient radix-3/9 algorithm
for length-3™ DFT’s. Note that all DFT’s are assumed
to have complex inputs, that the number of operations is
given in terms of real operations and that we use the 3
multiplication/addition algorithm for complex products.

IT Split-radix algorithms for length-2™ DFT’s
Consider the DFT of length N = 2™ defined by:

N-1
Xp= Y 2o WEF, Wy=e¢7% k=0..N-1 (1)

n=0

We will consider division in frequency (DIF} algorithms
only (division in time algorithms are dual%. The idea is to
divide the set of output values {Xx},k=0.. N -1, into
subsets whose union forms the complete set of output values.
Each of the subsets is then computed with an adequate
algorithm. For example, the radix-2 DIF algorithm performs
the following division:

{Xk}radiz—2 = {Xok, } U {Xak, 41}, k1 =0.Nf2-1. (2)

The evaluation of each of the subsets, when chosen properly,
is done through a DFT of the size of the subset and some
auxiliary operations (twiddle factors).

Now, the division of the output set into r sets of size
N/r each is only one of many possible divisions. Obviously,
as long as the following equality holds:

XeJUXe)U o UK} = () (8)

that is, that the subdivision is complete, then we have a
valid algorithm for computing the DFT of the input sequence
{zo},n = 0..N — 1. In order to derive a best possible
algorithm for length-2™ DFT’s, we look first at the subset
{Xz2k, } in (2), that is, from {1):

A1
. N
Xok, = ) (n + Znpnje) WEEL by =0.. F-1
n=0

Thus, the set of outputs {Xzx,} is exactly the output of a
length N/2 DFT, without any multiplicative cost. If we are
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trying to develop the best possible algorithm for the length-
2™ DFT, then we must use that algorithm for the half size
DFT as well. Actually, the division in (4) is exactly what is
done in optimal algorithms for length-2™ DFT’s [4,5]. But
now, there is no a priori reason to consider all odd indexed
terms at once, as it is done in a radix-2 approach. One
possibility is to use a radix-2' decomposition for the odd
indexed terms, that is:

2172
32’k1+2j+1}7l = 1..m, A’]_ = 0..?‘—1
5)

Such a decomposition will require, if the subsets are chosen
properly:

- N/2! DFT’s of size 2' where only the odd indexed

outputs are needed {“input” stage).
- approximately N/2 — 2! twiddle factors (some of them
being trivial)

- 2=1 DFT’s of size N/2' (“output” stage).
These numbers can be easely checked out on an example.
Now, the crucial compromise for a good choice of [ in
a radix2/2' algorithm is as follows. As the radix (r =
2') increases, the size and complexity of the final DFT’s
decreases. However, the number of operations for the input
DFT’s is raised, while the number of twiddle factors remains
approximately constant. Therefore, an optimal trade-off has
to be found, and this can be done by trial and error. It
turns out by inspection that the radix-2/4 algorithm is the
best among the radix-2/2’ algorithms, probably due to the
fact that the length-4 DFT is the largest multiplication free
DFT {the input stage requires no multiplications). Figure
1 depicts schematically a comparison between the radix-
2, radix-4 and radix-2/4 algorithms for a length-16 DFT,
showing how the radix-2/4 is actually a compromise between
the two other algorithms.

The only way to improve this algorithm, at least as far
as multiplications are concerned, is to use a better length-
32 DFT algorithm like the one proposed by Heideman and
Burrus [5] which uses 64 instead of 68 multiplications (at the
cost of 116 additions). In that case, the length-1024 DFT
requires 6988 multiplications (using a radix-2/32 approach
in all parts of the algorithm). This is better than a radix-
2/4 algorithm {using also the improved 32-point DFT) which
takes 7088 multiplications. Of course, these algorithms are
too costly in terms of additions in order to be practical, but
this is not our point here. The results of this section can be
summarized in the following two remarks.

pli=1)_y

{Xary41} = {Ujzo

Remark 1: The best algorithm for the computation of the
length-2™ DFT will be a radix-2/2¥ algorithm, k remaining
to be found.

For example, the optimal algorithm [4,5] (in terms of
multiplications) for the length-2™ DFT is a radix-2/2m~1
algorithm. The computation of the odd part of size 2!
leads however to an unpractical number of additions, and
thus, smaller radices are chosen in practice.

Remark 2: As soon as there is a length-2' algorithm that is
better than the radix-2/4 algorithm for the length-2* DFT,
then the radix-2/ 2! putperforms the radix-2 /4 algorithm.

It seems therefore that the radix-2/4 algorithm is the
best among a rather general class of practical algorithins
that map length-2™ DFT’s into smaller DFT’s and twiddle

factors, due to its low number of additions and its regular
structure. Additional improvements seem only possible by
using more efficient small DFT’s. As a side result, it was
shown that many efficient mappings are possible besides the
classical Cooley-Tukey mapping. The understanding of the
radix-2/4 algorithm will now be used to develop split-radix
algorithms for length-p™ DFT’s, p > 2.

III Split-radix algorithms for length-p™ DFT’s

The situation in the case p > 2 is somewhat simpler,
because there are no trivial twiddle factors (except the
zero-th power of the roots of unity of course). We will
concentrate our attention on radix-p/p? algorithms since,
on the one hand, we know from the case p = 2 that they
are interesting, and on the other hand, there are not many
improved practical algorithms available for p3, p > 2. Thus,
we consider the following division of the outputs of a length-
p™ DFT:

{Xe} = { Xk }U{Uj {Xprk453, B =0.N/p—1,

ky =0.N/p? =1, j=0.p%—1, and (j)Mod{p) #0 (6)

That is, the output terms with indexes multiple of p
are considered in a radix-p fashion, while the others are
considered in a radix-p® fashion. We are going to show that
whenever the radix-p? algorithm is more efficient than the
radix-p algorithm (that means there is a better algorithm
for the length-p? DFT than the radix-p solution), then the
radix-p/p? algorithm is better than both of them.

Consider first the multiplicative complexity of a radix-p
algorithm for computing length-p™ DFT’s. The first stage
uses p™~1 DFT’s of length-p. The output stage uses p
DFT’s of length-p™~!. In between are p™ twiddle factors
but p™~! + p — 1 of them are trivial. Denoting by N, and
N; the number of multiplications of a length-p DFT and
of a twiddle factor respectively, and by Oy(m) the number
of multiplications of the length-p™ DFT (the subscript p
denoting the radix-p), we get the following recursion:

Op(m) = P'Op(m‘l)"‘?m_l 'Np+(2’m—1(7"' 1)—l’+1).1¥t

The initial conditions of this recursion are O,(0) = 0,
0,(1) = N, and 0,(2) = 2pN, + Ni(p — 1)%. A general
solution of (7) is of the form:

Op(m)=0a, -m-p" +az-p" +as (8)

Solving (8) to meet the initial conditions gives the following
leading term aq:

ay = (N; + Ne(p - 1)) /p (9)

Assume now that m is even, and that we compute the
DFT in a radix-p? fashion. The number of multiplications
for the length-p? DFT, denoted by Ny, is equal to:

Npp = 2pNp + Ne(p~ 1)* — (10)

that is, it is equivalent to the radix-p version of the length-
p? DFT, minus a gain &. We can now use Ny, and p? in
place of N, and p in (9} in order to get the complexity of
the radix-p? algorithm. The new leading term, &}, equals:

al = (2pNp + Ne(p — 1)2 + Ny(p® - 1) - a)/p? {11)
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The complexity of the radix-p? algorithm, denoted by
Op3(m}, has to be compared with the complexity of the
radix-p algorithm at 2m, that is, Oy(2m). Comparing the
leading terms of the recursion, it is clear that for m large
enough:

Op2(m) < Oy(2m) <> a} < 2a, (12)

Now, the ratio o) /a; can be rewritten as:
ay/ays =2~ af(p(Ne(p — 1) + N;)) {13)

Clearly, the radix-p? algorithm outperforms the radix-p
algorithm as soon as a is greater than zero (see (10)), which
is an expected result of course. We now turn our attention to
the radix-p/p? algorithm for length-p™ DFT’s. The splitting
is done according to (6) and leads to the following expression:

(N/p)-1 p=1
Xok, = Z lVI'\l’};l ' TnytnaNfps K1 = 0.(N/p)-1
ny=0 n2=0
(14a)
(N/p®)-1 p’-1
Xpikgtks = D Wik Witke. S " Wizkeo, foongp
ny=0 nz=0

kz = 0..p2 — 1 and (k2)Mod(p) #0, ks = 0..(N/p2)(— 1
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The above equations can be verified by deriving a radix}
p algorithm for X, in (14a) and a radix-p? algorithm
for X,2.4k, in (14b). Considering the computational
complexity of the above equations, we note that equation
(14a) corresponds to a DFT of length-p™~1. The right sum
in {14b) corresponds to N/p? DFT’s of size-p?, but where
outputs with indexes multiple of p are not required. By
extension, we call this an “0dd-DFT” of size-p?. The left
sum in (14b) amounts to p? — p DFT’s of size-p™~2 (the
minus p comes from the excluded values of k;). Finally,
there are pZ —p groups of twiddle factors, each with N/p?~1
non-trivial ones.

Note that the “odd-DFT” of size-p® requires the
multiplicative complexity of a size-p? DFT minus the one of
a size-p DF'T, since the outputs with indexes multiple of p are
not required. The complexities can be subtracted because
the two computations are independent. Also, the gain o of
the size-p? DFT (see {10)) carries over completely to the
“0dd-DFT” of size-p? as well. The above numbers lead
to the following recursion for the multiplicative complexity
Oy/p2(m) of the radix-p/p? algorithm:

Op/pz (m) =0p,pz (m - 1) + p(p - 1) - Op/pz (771 - 2)

+ 0™ (Npp = Ny +p(p = 1)Ne) = p(p - 1) Ny
(15a)
The general solution of (15a) is of the form [9):

Opjpr(m) =ay-m-p™ +ag-p™ +as-(1-p)™ +aq (15t)

The terms in p™ and (1 — p}™ correspond to the homo-
geneous solution of the second order recursive difference
equation (p and 1— p being the eigenvalues of the transition
matrix) while a; - m - p™ and a4 are related to the
inhomogeneous part. With the appropriate initial conditions
one is lead to 4 equations for the unknowns a;,a,,as and

a4. The solution can be found in [9] from where we take the
leading term that we rename o} for clarity:

o = Nt'pg"Nt'p'l'Nﬂp_NP
h p(2p—1)

(16)

Similarly to (12), we can state that, for large enough m:
Op/p2(2m) < Op2(m) <= 207 < a} (7
Now, one can verify that 2¢!/a} is of the form:

QL;.’_ f(vatszaa)

18
ey flp,NeyNp,o)+a (18)

Therefore, whenever « is greater than zero, then the ratio
in (18) is smaller than one, which means that the radix-
p/p? approach performs better than the radix-p? algorithm.
Recall that o is the gain or improvement of a length-p? DFT
algorithm over an equivalent radix-p version. Therefore,
with (13) and (18), we have proven that for large m and
a > 0 the following relation holds:

Opyp2(2m) < Opa(m) < O, (2m) (19)

which is the central result of this section. An interpretation
of this result seems appropriate at this point. The radix-p/p®
algorithm takes the best of both the radix-p and the radix-
p? algorithm. First, from the radix-p algorithm, it takes the
multiplication free mapping into a size-N/p problem for the
outputs with indexes multiple of p. Then, from the radix-
p? algorithm, it takes the more efficient computation of the
“0dd” part of the size-p? DFT. Further improvements seem
only possible by using more efficient DFT’s of size-p', [ > 2.
Obviously, these results are parallel to the ones derived in
the previous section for length-2™ DFT’s.

IV An example

In this section, we discuss a radix-3/9 algorithm that is
more efficient than the straight radix-3 or radix-9 algorithms
for length-3™ DFT’s. A length-3 DFT takes 4 real multiplies
while an improved length-9 DFT uses 20 real multiplies.
Thus, there is an improvement factor ¢ equal to 16. Now,
the “odd-DFT” of length-9, that is, a DFT of length-9 where
o, £s and z¢ are not used, requires 16 multiplies as can be
seen by stripping the length-9 DFT algorithm. Using these
various complexities, one can verify that [9]:

Os(m) = 3 -m 3" ~3-3" +3 (200)

Og(m) = 5--m-9™ ~3.9™ +3 (208)

59 _,, 16 m

% 3 % {(-2)" +38 (20c)
Table I lists the number of multiplications for the various
length-3™ DFT’s. The asymptotic gain (18) of the radix-
3/9 over the radix-9 algorithm is equal to 0.92727. Both the
radix-3 and the radix-9 algorithms can be improved by using
so-called small DFT’s with scaled output in which case the
asymptotic gain is not as good (this is to be expected since
the gain « is smaller than in the non-scaled version).

34
Os/o(m) = ig'm‘3m -
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Several other algorithms achieving low arithmetic
complexity have been proposed for the length-3* DFT
2,6,7]. Two of them [2,6] makes use of the (1,4} plane
#® = 1] in order to reduce the number of multiplications.
When compared with the algorithms making use of the (1, 1)
plane [2,6], the radix-3/9 algorithm has both a lower number
of multiplications and additions (if the conversion from and
to the ordinary (1, 7) plane is counted), while it achieves less
multiplications than the scheme in [7]. The improvements
are not substantial, but they open new possibilities for
efficient algorithms of length-2* . 3¢ DF'T"s.

V Conclusion

First, the split-radix algorithm for length-2™ DFT’s
has been reviewed. It was shown that the radix-2/4 is the
best algorithm among a general class of possible split-radix
algorithms, and that improvements can only be achieved by
going to more efficient small DFT algorithms (leading to a
better radix-2/32 algorithm for ex.). Then the split-radix
idea was generalized to length-p™ DFT’s, p > 2. It was
proven that whenever there exists an improved length-p?
DFT algorithm, then the radix-p/p? will outperform both
the radix-p and the radix-p? algorithm. As an example,
a radix-3/9 algorithm was developed which achieves better
performance than the radix-3 or the radix-9 algorithm. In
short, it was shown that the split-radix idea gives a rather
general method to devise efficient algorithms for length-p™
DFT’s.
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Figure 1: Schematic comparison of radix-2 (a), radix-4 (b)
and radix-2/4 (c) algorithms for the length-16 DFT.
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m 3m O3(m) Og(m) O3/ (m)
1 3 4 4 4
2 9 36 20 20
3 27 192 144 128
4 81 840 552 536
5 243 3324 2460 2204
6 729 12396 8508 8156
7 12187 44472 32808 29624

Table I: Number of multiplications for the length-3™ DFT.
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