
ROBUST COMMUNICATION IN A TIME-VARYING NOISY ENVIRONMENT 

by 

John Michael Wilson 

Thesis submitted to the Faculty of the 

Virginia Polytechnic Institute and State University 

in partial fulfillment of the requirements for the degree of 

Master of Science 

m 

Electrical Engineering 

APPROVED: 

A. A. (Louis) Beex, Chairman 

/ z,z;v • H. 'F. VanLa;><ringh~~ 

November 1987 

Blacksburg, Virginia 

K-B. Yu 



ROBUST COMMUNICATION IN A TIME-VARYING NOISY ENVIRONMENT 

by 

John Michael Wilson 

A. A. (Louis) Bcex, Chairman 

Electrical Engineering 

(ABSTRACT) 

Matched filter detectors are used to detect known signal waveforms transmitted 

under noisy conditions. Moving-average matched filters (MAM F's) are a class of digital 

filters whose performance is measured in terms of Signal to Noise Ratio (SNR). The 

overall performance of a MAMF is described by the SNR Improvement (SNRI) which 

is the ratio of Output SNR (OSNR) to Input SNR (ISNR). The OSNR and ISNR arc 

the SNR at the output and input of the MA~IF respectively. SNRI is maximized by 

maximizing OSNR since ISNR is fixed for a received signal and noise. The OSNR of a 

MAM F is a function of the noise autocorrelation sequence and the transmitted signal 

vector. The maximum OSNR of a MAM F is produced when the signal vector is the 

eigenvector associated with the smallest eigenvalue of the Toeplitz matrix formed from 

the noise autocorrelation sequence. If the noise autocorrelation is not known in advance 

of transmission, or not stationary, then it must be estimated at the receiver. Since 

autocorrelation estimators derive their estimates from noise samples, i.e. a random 

process, the estimates are probabilistic. In a practical implementation wherein the signal 

vector is fixed, the noise is stationary over short periods of time, and the noise 

autocorrelation sequence is estimated, the SNRI or performance of the MA:\IF varies 

and can even become less than unity if either the estimates are poor or the noise 

characteristics differ from those expected when the signal vectors were selected. A SNRI 

less than unity is highly undesireable as processing, which is done with the objective of 



obtaining higher OSNR than ISNR, i.e. a SNRI greater than unity, has become 

counterproductive. 

This thesis proposes a variation to the classical MAM F communication system and 

investigates the performance of the resulting MAM F. In the classical MAM F 

communication system the N-dimensional signal vector is treated as a single vector. In 

the proposed MAM F communication system, the N-dimensional signal vector is 

composed of two or more linearly independent basis vectors spanning a signal vector 

subspace of dimension M. By combining the linearly independent basis vectors in the 

receiver, one can effectively change the transmitted signal vector to any signal vector in 

the signal vector subspace to maximize OSNR. The OSNR of a MAM F is a function 

of the autocorrelation of the noise as well as the signal vector. The autocorrelation of 

the noise is estimated in both the classical and proposed systems. For relatively few 

noise samples, the estimated autocorrelation of the noise deviates from the actual 

autocorrelation. The proposed system is formed from the classical system by prcceeding 

the MAM F with a processor that extracts the received linearly independent basis vectors 

with additive colored Gaussian noise from the received transmission and combines them 

to yield maximum OSNR assuming the estimated autocorrelation of the noise is exact. 

Since the autocorrelation of the noise is estimated from the random noise process, the 

autocorrelations themselves are probabilistic and hence the maximum OSNR is too. 

As the estimated noise autocorrelation approaches the actual noise autocorrelation, the 

OSNR approaches the absolute maximum OSNR for the M-dimensional system. The 

theoretical aspects of both the classical and proposed MAM F communication systems 

are developed in this thesis. 

The performance of the proposed MAM F communication system is investigated 

for a practical implementation wherein the signal vector is composed of two linearly 

independent basis vectors and the noise characteristics vary over time. The performance 



of the proposed system is first compared to that of the classical system with both 

systems using various signal vectors, over various noise colors, and with the exact noise 

autocorrelation given. The performance comparison between the classical and proposed 

systems is then repeated with the noise autocorrelation, as in a practical implementation, 

estimated using either the classical biased or Burg estimator. The performance is 

measured by SNRI and the results are tabulated and graphed. 

Finally, the proposed system is implemented and its performance measured by bit 

error rates as a function of ISNR. This will show whether SNRI performance is a good 

prediction of bit error rate performance. The color of the stationary Gaussian noise is 

kept constant during transmission of a particular bit. The color of the stationary 

Gaussian noise is changed between bit transmissions to observe the robustness of the 

system under different colored noise conditions while maintaining the same signal 

vectors, or signal subspace. The results are again tabulated and graphed. 
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1.0 INTRODUCTION 

All signals transmitted through a channel or medium, such as free space or 

transmission wires, are subject to additive colored noise. The processing of signals with 

additive colored noise is thus of considerable interest in communication systems. This 

thesis investigates a matched filter communication system wherein a matched filter 

receiving system processes known signals with additive colored noise. The matched filter 

receiving system is designed and developed to maximize detection and discrimination of 

the transmitted signals. The element central to the matched filter receiving system is the 

Moving-Average Matched Filter (MAMF). 

The MAMF considered herein is a subset of the class of matched filters. 

Specifically, the MAMF in the context of this thesis is a class of FIR digital matched 

filters which performs a weighted sum over finite portions of data at a time, hence MA, 

and where the filter coefficients are chosen to maximize the probability of detection and 

discrimination of known signals with additive colored noise, hence MF. There are 

several reasons for selecting a MAMF. MAM F's can be designed efficiently, they are 

easy to implement, and are guaranteed to be stable. 
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The performance of a MAM F system is measured in terms of Signal to Noise Ratio 

(SNR). SNR is the ratio of signal energy to noise energy. The SNR at the input of the 

MAMF receiving system shall be referred to as Input SNR (ISNR), and the SNR at the 

output of the MAMF shall be referred to as Output SNR (OSNR). The improvement 

to the SNR afforded by the MAMF shall be referred to as SNR Improvement (SNRI) 

and is the ratio of OSNR to ISNR. In order to design a MAMF, two pieces of 

information are required: the array of signals that is used to encode the data to be 

communicated and the autocorrelation of the additive colored noise. For the case where 

the noise autocorrelation is not known or the noise is not stationary over the entire 

transmission time, the noise autocorrelation must be estimated. The effect on 

performance of estimating the noise autocorrelation in classical MAMF receiving 

systems has been investigated [KABJ. Several other authors have determined a signal 

vector for a particular noise color which maximizes OSNR of the MAM F system 

[ADW][JAC)[JMK][MBT]. This thesis continues both of these investigations on a 

variation of the classical MAMF communication system wherein the transmitted signal 

vector is treated as a single N-dimensional vector while the noise autocorrelation is 

estimated. The performance of the proposed variation or proposed MAMF 

communication system is compared to that of the classical MAM F communication 

system and expressed in terms of SNRI. 

The general structure of the classical MAM F communication system is depicted in 

Figure 1 on page 3. The data to be communicated, .12, is first encoded in the transmitter. 

Each portion or bit of data is encoded into a fixed N-dimensional signal vector, J.;· The 

signal vector is then transmitted through the channel where it is subject to additive 

colored noise, w with a Gaussian distribution. The ISNR of the received signal, I. which 

consists of the signal vector with additive colored noise, is measured at the input to the 

MAMF receiving system. Noise samples, 11:2 , are taken from gaps between the 
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transmitted signal vectors and used to estimate the autocorrelation sequence of the 

colored noise. The estimated colored noise autocorrelation sequence, B. .... , and the set 

of all signal vectors, {JI! J2, ... , JK} , used to encode the transmitted data are used to 

form the MAMF(s). The received signal, J;1 + ~11 , J,1 + ~12 , ... , J;K + ~iK , is then 

processed by either a single MAMF or a bank of MAM F's depending upon the number 

of signal vectors and the detection scheme. The OSN R is measured at the output of the 

MAM F(s) and prior to the detector. The detector determines which signal vector was 

most probably transmitted and hence what data was most probably encoded. The 

output of the classical MAMF receiving system is the data that was most probably 

encoded, J)_. Thus in the classical MAM F communication system, the N-dimensional 

signal vectors are fixed to represent given sets of data and are not changed to difTcrcnt 

ones during the entire transmission. One problem which could arise in the 

aforementioned situation wherein the noise is stationary for only part of the entire 

transmission is that the fixed signal vectors, if optimized originally to maximize OSNR, 

will not be optimal if the characteristics of the noise vary. For such cases, it has been 

and will be shown that the OSNR of a MAMF receiving system could actually be less 

than the ISNR [KAB], hence a SNRI less than unity. This is highly undesireable since 

it indicates that the MAM F receiving system degrades the performance of the 

communication system, rather than improving it. 

This thesis investigates an approach wherein the N-dimensional signal vector is 

composed of a number of M-dimcnsional linearly independent basis vectors. By 

combining the linearly independent basis vectors, a high OSNR is attempted to be 

obtained for a given ISNR. These vectors form a basis for a subspace of an 

M-dimensional space. By linearly combining the linearly independent basis vectors any 

vector in the subspace can be created, hence in essence a signal vector subspace is 

transmitted rather than a single signal vector. Each set of basis vectors, i.e. each signal 
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vector subspace, is used to represent or encode the data to be transmitted. Upon 

reception, the linearly independent basis vectors of each signal vector subspace are 

linearly combined with weighting coefficients to maximize OSNR assuming that the 

estimated noise autocorrelation is the actual noise autocorrelation. Whether the OSNR 

is the absolute maximum for the M- dimensional system is dependent upon the accuracy 

of the noise autocorrelation estimate. The received signal vectors with additive colored 

Gaussian noise are then combined with the aforementioned weighting coefficients of 

each signal vector subspace and operated on by the associated matched filter. The basis 

vectors associated with the filter which has the greatest output signal energy are chosen 

as the ones most probably transmitted, and hence the data associated with those 

particular basis vectors is selected. 

The general structure of the proposed MAM F communication system is depicted 

in Figure 2 on page 6. As with the classical MAMF communication system, the data 

to be communicated, 12, is encoded in the transmitter. Instead of being encoded by a 

single N-dimensional signal vector, each portion or bit of data is encoded by a set of 

M-dimensional linearly independent basis vectors - {.,~}i, fa} 2, ... , {J} p· Each of the p sets 

is composed of K linearly independent basis vectors of length M each. One set, {J} ,, is 

selected to make up the transmitted signal, s_, and is transmitted through a channel. The 

transmitted signal is subject to additive colored noise, 11!, with a Gaussian distribution. 

The ISNR of the received signal, I, which consists of the transmitted signal with additive 

colored noise, is measured at the input to the MAMF receiving system. Noise samples 

are taken from a gap between the transmission of each set of linearly independent basis 

vectors and used to estimate the autocorrelation sequence of the colored noise, R,.,.. The 

signal energy at the output of the MAM F is maximized in order to attempt to maximize 

OSNR. OSNR would indeed be maximized if the estimated autocorrelation were the 

actual. The OSNR is maximized in this fashion for each set of linearly independent basis 
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vectors to determine the coefficients, { c;}, used to linearly combine the linearly 

independent basis vectors. The estimated colored noise autocorrelation sequence, Bww ; 

the sets of linearly independent basis vectors, {..~}i. {,.s:} 2, ... , {J} K; and the coefficients 

used to linearly combine the linearly independent basis vectors, { c;}, are used to form the 

MAMF(s). The received signal consisting of the transmitted linearly independent basis 

vectors with additive colored noise, ,,s,1 + .!1::'.11 .s.,2 + .!1::'.2, ... , J;K + .!1::'.g, is then processed by 

either a single MAMF or a bank of MAM F's depending on the number of sets of basis 

vectors and the detection scheme. The OSNR is measured at the output of the 

MAMF(s) and prior to the detector. The detector determines which set of linearly 

independent basis vectors was most probably transmitted and hence what data was most 

probably encoded. The output of the proposed MAMF communication system is the 

data that was most probably encoded, 12. Thus in the proposed MAMF communication 

system the use of a set of M-dimensional signal vectors to encode each portion or bit 

of data to be transmitted is intended to produce relatively high and/or consistent OSNR 

greater than ISNR, i.e. SNRI greater than unity. 

The theoretical aspects of the classical and proposed MAM F communication 

systems are developed and summarized in Chapter 2. Correlation estimators, 

autocorrelation matrices, and the range of the coefficients used to combine the linearly 

independent basis vectors are discussed and developed in particular. In Chapter 3 

several computer analyses are presented which investigate the performance of the 

classical and proposed MAMF systems under different colored noise conditions with 

different signal vectors and signal vector subspaces, with the noise autocorrelation either 

known or estimated. The colored additive noise has a Gaussian distribution. The 

performance of the classical and proposed MAMF systems is measured in SNRI. The 

analyses wherein the noise autocorrelation is known provide an upper limit for SNRI, 

while the analyses wherein the noise autocorrelation is not known yield the SNRI 
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statistics for a practical implementation. In Chapter 4, the proposed system 

implementation is simulated on a computer and its performance given in terms of bit 

error rates as a function of ISNR. All results are tabulated. Conclusions drawn are 

stated in Chapter 5. 
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2.0 THEORETICAL DEVELOPMENT 

This chapter is concerned with the theoretical development of those portions of the 

proposed MAM F corrununication system critical to its design. The chapter begins with 

a look at the properties of syrrunetric Toeplitz matrices which play a central role in 

MAMF design. The properties and choice of correlation estimators are then discussed, 

followed by investigating the structure and selection of the transmitted signal vector, the 

structure of the received signal, and the effects of linearly combining the received signal. 

Finally the general properties and performance of the traditional and proposed MAM F 

receiver systems are discussed and developed. 

2.1 Sy1n1netric Toeplitz Matrices 

The syrrunetric Toeplitz matrices used in a MAMF communication system are 

formed from the autocorrelation sequence of a colored noise process. The 

autocorrelation sequence has only real components and so the associated symmetric 
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Toeplitz matrix, <I>, is real and Hermitian. Note that a symmetric Toeplitz matrix is also 

doubly symmetric, i.e. it is symmetric about its main and secondary diagonals. Thus the 

proper.ties of both real Hermitian and doubly symmetric matrices apply to the symmetric 

Toeplitz matrix formed from the autocorrelation sequence of a colored noise process. 

Let <I> be an n x n real symmetric Toeplitz matrix as described above, the properties of 

<I> which are of particular importance in the context of this thesis are as follows: 

1. <I> = <I> r (conjugate transpose of <I>) = <I> r by definition of real Hermitian matrices. 

2. <1>- 1 is doubly symmetric but not necessarily Toeplitz [JM K]. 

3. ( <1>- 1 y = <1>- 1 since <1>- 1 is doubly symmetric. 

4. <I> = U A u- 1 = U A ur, where U is the modal matrix whose columns contain 

the eigenvectors of<I> and A is the Jordan canonical form of <I> [WLB, p.175]. 

5. <I> has n orthonormal eigenvectors. To show this one must consider two cases. 

Either all the eigenvalues of <I> are distinct, or at least one of the eigenvalues is a 

multiple root of the characteristic equation. If all the eigenvalues of <I> are distinct, 

then <I> has a full set of n linearly independent eigenvectors. If an eigenvalue of <I> 

is a multiple root of the characteristic equation, that is it has an algebraic 

multiplicity greater than one, then <I> is fully degenerate and has a full set of n 

linearly independent eigenvectors [WLB, p.176]. The full set of n linearly 

independent eigenvectors can be made orthonormal by the Gram-Schmidt 

orthogonalization process [WLB, p.102]. Thus <I> has n orthonormal eigenvectors. 
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6. If <I> has distinct eigenvalues, then it also has (n + 1)/2 symmetric and n/2 skew 

symmetric eigenvectors [JMK]. 

7. If an eigenvalue of <I> has algebraic multiplicity greater than one, then the 

eigenvectors are not unique and not necessarily symmetric; however, they may be 

chosen to be symmetric or skew symmetric [JMK]. 

8. <I> is NND [PAP, p. 179], thus the principal minors and the eigenvalues are greater 

than or equal to zero [WLB, p.184]. 

The above properties will be useful in developing the performance of a MAM F receiver 

and the selection of the transmitted signal vector. 

2.2 Correlation Estilnators 

The work in this thesis is concerned with the practical situation wherein the colored 

noise is wide-sense stationary for at least the transmission of one signal vector and a 

short finite period afterwards. For such a situation, the autocorrelation is not known a 

priori for an entire transmission and must therefore be estimated for each tr:insmitted 

signal vector. This section first investigates the general properties of two classes of 

correlation estimators, and then discusses in detail the one selected to be implemented 

from each class. 
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2.2.1 Properties 

The following definitions describe essential properties for the estimators and their 

estimates used in this thesis. 

A consistent correlation estimator produces estimates that approach the actual 

correlation as the length of the data sequence used to generate the estimates approaches 

infinity. A matrix <1> is Non-Negative Definite (NND) iff ~r <I> ;s. :::o: 0 for all ;s.. A 

(Un)Biased correlation estimator has an expected value (not) equal to the actual 

correlation. 

The importance of an consistent estimator is that its estimates tend toward the 

actual correlation for each additional bit of data introduced. The estimated correlation 

thus has less variance about the actual correlation. The advantage of a consistent 

estimator is that it gives. one control over the variance of the estimates provided one can 

increase the length of the data sequence used to generate the estimates. The Toeplitz 

matrix formed from the estimated autocorrelation sequence must be NND. If the 

Toeplitz correlation matrix is not NND, then the sequence would not necessarily be 

wide-sense stationary [KAB, p.12] and would thus be a function of time and time origin.; 

moreover, the eigenvalues and the principal minors of the Toeplitz correlation matrix 

would not necessarily be greater than or equal to zero, hence computed noise energy and 

SNRI could be negative, which is physically impossible. Since the correlation estimates. 

are functions of a random process, the estimates themselves are probabilistic and may 

thus produce estimates that yield a Toeplitz correlation matrix that is not NND [KAB, 

p.53). The importance of a biased correlation estimator is that it can bias the estimates 

so that the Toeplitz correlation matrix is NND. 
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2.2.2 !\'loving-Average Estimators 

The moving-average estimator generates estimates directly from finite lengths of 

data samples. The moving-average estimator chosen for the analyses in this thesis is the 

Classical Biased (CB) estimator. The CB estimator has the smallest standard deviation 

of the unbiased, diagonal, triangular, exponential and minimum norm moving-average 

estimators under white, lowpass and bandpass noise as simulated in the work by K.A. 

Becker [KAB, p.83). The autocorrelation sequence derived from the CB estimator is 

given by 

N-1-1 
L w, W1+1 

l=O 

N 
(2.1) 

where N is the length of the data sequence and 0 ~ I ~ N - 1. The CB estimator 

requires relatively few numerical calculations (approx. N log (N)), is consistent, and 

produces a correlation sequence whose corresponding Toeplitz correlation matrix is 

NND [KAB, p.17). 

2.2.3 Autoregressive Estimators 

An autoregressive {AR) estimator is one that models sampled stochastic data as the 

output of an AR filter with white noise as input. Given a realization or sample sequence 

from a stochastic process, the AR estimator generates the coefficients for an AR filter, 

H(z), of order m, i.e. 
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H(z) = G 
A(z) 

(2.2) 

,,, 
where A(z) = l: ak z-k. Once the coefficients, akt have been determined, the 

k-0 

correlation estimates can be easily generated [DBS]. 

The AR estimator chosen for the analyses in this thesis is the maximum entropy 

method (MEM) or Burg estimator. The Burg estimator has a smaller standard deviation 

than the ltakura AR estimator under white, lowpass and bandpass noise as simulated 

in the work by K.A. Becker [KAB, p.83]. The Burg estimator is consistent and produces 

a correlation sequence whose corresponding real symmetric Toeplitz correlation matrix 

is NND [KAB, pp.28-30]. 

2.3 Transmitted and Received Signals 

The MAMF communication system proposed in this thesis is different than the 

traditional MAMF communication system. The traditional MAMF communication 

system encodes a bit or specific piece of data with a fixed N-dimensional signal vector 

as depicted in Figure I on page 3. The proposed system encodes each bit or specific 

piece of data with a fixed N-dimensional signal vector composed of a set of K 

M-dimensional linearly independent basis vectors as depicted in Figure 2 on page 6. 

The signal vector for the proposed system is represented as follows: 

(2.3) 
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The K vectors are linearly independent basis vectors which span a K-dimensional signal 

vector sub-space of the M-dimensional space, hence in effect a signal vector sub-space 

is transmitted rather than a single vector. The purpose of transmitting a signal 

sub-space is that as the noise varies, the signal vector can be changed by linearly 

combining the basis vectors to produce or maintain a high probability of detection and 

discrimination of the particular transmitted signal vector. 

The signal vector which maximizes the probability of discrimination and detection 

is an eigenvector of the Toeplitz autocorrelation matrix as will be developed in Section 

2.5. It has been determined that the eigenvectors of the Toeplitz autocorrelation matrix, 

which is also doubly symmetric, are or can be chosen to be either symmetric or 

antisymmetric [ACB][APB][JMK]. This facilitates the selection of linearly independent 

basis vectors by selecting only those that are symmetric or antisymmetric. Up to this 

point, the only restriction placed upon the basis vectors is that they be linearly 

independent in each set. The purpose of the MAMF receiver is to distinguish as well 

as detect one transmitted signal vector from another or in this case one set of basis 

vectors from another. If the signal vector sub-spaces were not parallel to one another, 

then there would exist an infinite number of vectors along the intersection of the 

sub-spaces that could not be distinguished. Thus the existence of an infinite number of 

vectors belonging to at least two different sub-spaces makes the task of determining to 

which sub-space the signal vectors belongs to impossible and hence the chance for error 

is increased. If the basis vectors of each set of basis vectors is orthogonal to the basis 

vectors of all the other sets of basis vectors, then the sub-spaces associated with each set 

would be parallel and there would exist no vectors belonging to more than one sub-space 

and hence the increased chance for error would be eliminated. The number and length 

of the orthornormal basis vectors making up the transmitted signal vector is dependent 

upon the number of different pieces of information to be encoded. For each piece of 

2.0 THEORETICAL DEVELOPMENT 15 



information, K ~ 2 linearly independent basis vectors are required so that a minimal 

sub-space of dimension 2 is spanned. Given p different pieces of information, the 

minimum length of each basis vector is K x p to insure p parallel sub-spaces. The 

linearly independent basis vectors should thus be chosen either symmetric or 

antisymmetric, normal to the basis vectors of all other sets of basis vectors, and their 

number and length dependent upon the number of bits or pieces of information to be 

encoded. 

The colored noise shall be assumed stationary over at least one transmission of a 

set of one N-dimensional signal vector, hence the colored noise characteristics must be 

estimated for each N-dimensional signal vector. Samples of the colored noise arc 

required to estimate its characteristics, thus each transmission of a N-dimensional signal 

vector shall be preceeded by a gap wherein no signal information is transmitted. The 

information content of the gap will consist of the colored channel noise. The colored 

noise vector used to estimate the colored noise autocorrelation sequence shall be 

composed of samples taken from the gap between the transmission of each 

N-dimensional signal vector. 

From Figure l on page 3 and Figure 2 on page 6, the transmitted signal vector is 

subject to additive colored noise in the channel so that the received signal vector, I. is 

composed of the transmitted signal vector, ~. and the additive colored noise, w. The 

received transmission thus consists of the colored noise vector, 1:!4i followed by the 

received signal vector, I. The received transmissions for the traditional and proposed 

communication systems are represented as follows: 

(2.4a) 
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where the colored noise vector, .ll!;, is the noise associated with i-th basis vector, and the 

second order characteristics are assumed to be the same for i e [O,K]. The noise is thus 

assumed wide-sense stationary for each received transmission as given in equations 

(2.4a) and (2.4b). 

2.4 Lineal" Co111bi11atio11 

The principal feature of the proposed MAMF communication system that 

differentiates it from the traditional MAM F communication system is that the 

transmitted signal vector is composed of K M-dimensional linearly independent basis 

vectors instead of a single N-dimensional signal vector. By linearly combining the K 

linearly independent basis vectors, any vector in the sub-space K can be formed. Thus 

instead of transmitting a single vector in a N-dimensional space as in the traditional 

MAMF communication system, a K-dimensional signal vector sub-space of an 

M-dimensional space is effectively transmitted. From equation (2.4b) note that not only 

are the linearly independent basis vectors, ~. of the received signal being linearly 

combined, but so are their associated additive noise vectors, .ll!;· The restrictions and 

effects of linearly combining the received signal and noise vectors are investigated in the 

following sections. 

2.0 THEORETICAL DEVELOPMENT 17 



2.4.1 Linearly Independent Basis Vectors 

The linearly independent basis vectors, ,s1 , ,s2 , ••• , ~ , ... , and JK are combined 

lineary to achieve any vector in the sub-space K. The linear combination of linearly 

independent basis vectors is written as follows: 

(2.5) 

CK 

= C1J1+c2..s2+ .. ·+C1JJ+ .. ·+cK,sK 

where the c/s are real coefficients and the ~'s are linearly independent of each other. 

The only restrictions on the coefficients is that one is dependent while the remaining 

K - I are independent. The task of maximizing signal energy out of the MAM F 

becomes quite formidable if there exist no restrictions on the ranges of the coefficients. 

The coefficients are thus restricted so that the energy of the linearly combined signal 

vector, E-, is equal to the energy of the transmitted signal vector, £,: , 
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E- = <.s.,.s.> s 
K K T = L L c, CJJi .S.J 

l= IJ= I 
K 2 K 

= l: c1 <Ji,~> + L c, CJ < :S.j, .S.J > 
i=l IJ= I 

l#J 
= Es (2.6) 

= <.s.,.s.> 
K K T = l: l: Ji .S.J t=IJ=I 
K K 

= l: <Ji, .S.; > + l: < :S.[, .S.J > 
l= I lJ= I 

l#J 

Thus the coefficients used to linearly combine the linearly independent basis vectors and 

their associated noise vectors are constrained by 

K 2 K 
L c, < ~ • .S.1 > + L c, CJ < :S.j, .S.J > 

i=I IJ=I 
= 

K K r < :S.[, :S.i > + r < :S.i· .s.1 > 
i=l iJ=I 

(2.7) 

l#J i#J 

Equation (2. 7) is simplified if the linearly independent basis vectors are chosen such that 

each basis vector within a particular set is orthonormal to the others, i.e. 

< :S.[, .S.J> = 0 for i * j and 
= I fori=j 

The energy of the transmitted signal vector simplifies to 

K K 
Es = r < :S.[, Ji> 

I= I 
+ r < iS.[,.s.1 > 

iJ= I 
l#J 

= K 
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where K is the number of basis vectors in the N- dimensional transmitted signal vector. 

The energy of the linearly combined signal vector simplifies to 

K 2 K 
E· = L Ct < Ji, Ji > + L Ct CJ < Ji, J.1 > s t= I tJ= I 

t~j (2.10) 
K 2 = L Ct 

t= I 

Thus the constraint expressed in equation (2. 7) simplifies to 

(2.11) 

where K is the number of orthonormal basis vectors in the N-dimensional signal vector. 

2.4.2 Additive Colored Noise 

Linearly combining the received set of K signal vectors combines not only the 

linearly independent basis vectors, but also the additive colored noise vector associated 

with each one. The colored noise after linearly combining the .H( s, represented by .!:!!., 

is defined as 

~v = (2.12) 

Before developing the autocorrelation for the resulting noise, .!:!!., some relationships 

essential to the development are introduced first. 
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1. Since the noise is assumed stationary over the duration of the noise vector plus the 

K vectors forming the received signal vector, the autocorrelation sequence of the i-th 

noise vector, J14, is equal to the autocorrelation sequence of the noise process w, i.e. 

E [~(n + /).!!:'j(n)] = Rww(/) for 0 ~ i ~ K (2.13) 

2. Since the transmitted signal vector is composed of concatenated linearly independent 

basis vectors, 

~(n)11!1 (n) = ~(n) .!!:'j( n + (j - i) M) 

= ~(n+(i-j)M)11!1 (n) 

where M is the length of a basis vector. 

3. From the property of reflection invariance 

where Ru (k) is the autocorrelation sequence of x at lag k. 
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The autocorrelation sequence for .!f., R. (/ ), is developed as follows: 

Rv(l) = E [.!fv(n + /)!fv(n)] 

E [.f. cilfi(n + t) .r cjl'!!j(n)] 
1= I 1= 1 

K K r .rc1 cJE[lf1(n+/)lfj(n)] 
/= lj= 1 

K K 
= L L c1 cJ E [Y!!J(n +I+ ( i - j) M) }!!J(n)] 

I= I)= I 

K K 
L L c, cJ Rww ( I + ( i - j ) M ) 

/= 1J= I 
K K 

= L L Ct CJ Rww ( (j - i ) M - I ) 
/= IJ= I 

The summation over j can be split into three cases as follows: 

K K 
= L L Ct CJ Rww ( (j - i ) M - I ) 

i= IJ=l 

J<I 

K 2 + L Ci Rww( I) 
/=I 

K K 
+ L L Ci CJ Rww ( (j - i ) M - I ) 

/= 1J= I 

j>i 

(2.16) 

(2.17) 

Interchanging i andj in the first term and using the property of reflection invariance 

expressed in equation (2.15) on the first term of equation (2.17) yields 

j>/ 
K 2 + L Ct Rww ( /) 

i= I 

K K 
+ r r c, cJ Rww ( (j - i ) M - I ) 

l= lj= I 

j>l 
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The summations of the first and last terms may be combined and rewritten as follows: 

K 2 l:: c1 Rww ( I ) 
t= l 

K-1 K 
+ L L c, CJ [ Rww ( (j - i) M + I) + Rww ( (j - i ) M - I) J 

t=lj=l+I 

(2.19) 

Thus the effects of linearly combining the colored noise produces a linear relationship 

between R. (I) and R .... (I). Note however that the relationships between the colored 

noise sequences !!!; and .H!. and their associated autocorrelation sequences R.,., (I) and 

R. (I) respectively are highly non-linear. 

2.5 Moving Ave111age Matched Filter 

The element central to the MAMF receiver or detector and the MAMF 

communication system is the MAMF itself. Block diagrams of the traditional and 

proposed MAMF receivers are provided in Figure 3 on page 24 and Figure 4 on page 

25 respectively. The role of a MAMF is to maximize OS?\R with respect to a given 

ISNR at some particular time n0• Note that ISNR, OSNR and SNRI arc all functions 

of the signal and noise vectors which are functions of time, thus ISNR, OSNR and 

SNRI are functions of time. OSNR and SNRI shall henceforth be defined at the time 

n0 unless specified otherwise. The time, n0, sh:ill be equal to N-1, where N is the length 

of the impulse response of the MAM F. ISNR shall be defined at the time prior to n0 

when I was received which brings about the associated OSNR and hence SNRI. 

Creating an OSNR greater than the ISNR, i.e. a SNRI greater than unity, improves the 

probability of detection and discrimination of a known signal in additive colored noise. 

2.0 THEORETICAL DEVELOPMENT 23 



[l!!o I I] l!-0 CORR. ... ... 
/ / / 

EST. 

I= s. +~ 

<fl estimate 

IS:'\R - - \/ 

\1A\1F 
... 
/ 

h 

YN-1 

OSNR- -
\ I 

-
D. .... DETECTOR / 

Figure 3. TRADITIONAL MAMF RECEIVER BLOCK DIAGRAM 
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Figure 4. PROPOSED MAMF RECEIVER BLOCK DIAGRAM 
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By doing so, the MAMF improves the performance of the receiver and hence the 

communication system. However, if the SNRI is less than unity, the MAMF degrades 

the performance of the receiver and the communication system. 

2.5.1 Characteristics 

From Figure 3 on page 24, I is the received signal which is corrupted by the 

additive colored noise and h is the impulse response of the filter. The output of the 

MAMF at time N-1 is 

N-1 
YN-1 = L tN-1-1h1 

l=O 

= ITh 

where 

T I = [ t N- 1 t N- 2 • • • to l 

and 

= (sN-1+wN-1 SN-2+wN-2 ... so+Wor 

= i +~ 

(2.20) 

(2.21) 

(2.22) 

Since the filter is of finite length, N, and so operates on a finite portion of the input 

alone, the filter is a stable FIR filter. As will be shown later, the design of a MAMF 

requires the signal vector and the autocorrelation of the noise. With the Levinson 

algorithm, a MAMF can be designed efficiently once the necessary information is given 

and/or determined. The structure of a MAMF as depicted in Figure 5 on page 28 is a 

2.0 THEORETICAL DEVELOPMENT 26 



series of multiply and add sections. Such as structure is easy to implement in software 

and hardware - including custom and semi-custom VLSI. Thus a MAMF is guaranteed 

to be stable, can be designed efficiently, and is easy to implement. 

2.5.2 Performance 

As previously mentioned, the performance of a MAMF receiver is measured by its 

SNRI which is the ratio of OSNR to ISNR. From Figure 3 on page 24 and Figure 4 

on page 25, ISNR is measured at the input of the MAMF receiver and is the ratio of the 

signal energy to the noise energy in the received transmission, I . The energy in the 

received transmission, En is given by 

Er = <I,I> (2.23) 

where I = s. + l1! as depicted in Figure 3 on page 24 and equations (2.4a) and (2.4b ). 

Since the colored noise, 11!, is additive, superposition can be used to derive ISNR. 

The signal energy at the input of the MAMF receiver, E, input, is equal to the energy 

at the input of the MAM F when no noise is present, and is given by 

E1 input = < J,, J. > 

= J.T J. 
(2.24) 

The noise energy at the input of the MAMF receiver, Ew input, is equal to the energy at 

the input of the MAMF when no signal is present. Since the colored noise is a 

wide-sense stationary stochastic process, £.input, is equal to its autocorrelation at zero 

lag and is given by 

2.0 THEORETICAL DEVELOPMENT 27 



l.v-1 

J''.v-1 
to 

Figure 5. MAMF STRUCTURE 
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Ew input = E [ w;2 J for - W ~ i ~ W 

= Rww(O) 

where E [ wf ] is the mean of wf and R... (I) is the autocorrelation of w; at lag l. 

Hence from equations (2.24) and (2.25) and the definition of ISNR, 

ISNR = 
S.T S. 

Rww(O) 

(2.25) 

(2.26) 

By the principle of superposition, the signal energy at the output of the MAM F, 

E, output, at time N-1 is equal to the energy at the output of the MAM F when no noise 

is present. From equation (2.20), E, output is given by 

Es output 2 
= YN-1 

(2.27) 

The noise energy at the output of the MAMF, E., output, at time N-1 is equal to the 

energy at the output of the MAM F when no signal is present and is given by 

~output = E [Y1-1] 
[ N-1 ] = E ( l: WN-1-1h;)2 

l=O 

[ N-1 N-1 ] = E l: l: h1wN-1-1h1wN-1-J 
l=O j=O (2.28) 

N-1 N-1 
= l: l: h, h, E [ w N - I - I w N - I - J ] 

l=O j=O 
N-1 N-1 

= l: l: h; h, ~1-j 
l=O J=O 

= hT <l> h 
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where <pk are the autocorrelations of the colored noise at lag k and <I> is the NxN real 

symmetric Toeplitz matrix formed from the colored noise autocorrelation sequence with 

first row [ <l>o <1>1 ... <p N-1 ]. 

Hence from equations (2.27) and (2.28) and the definition of OSNR, 

OSNR (2.29) 

The general performance of a MAMF receiver is thus described by ISNR, equation 

(2.26); OSNR, equation (2.29); and SNRI, the ratio of OSNR to ISNR. 

2.5.3 Optimal Performance 

For a given signal vector energy and colored noise, ISNR is fixed, and so 

maximizing OSNR maximizes SNRI. OSNR is maximized using the Lagrangian 

·multiplier technique where E. output is constrained to be equal to an arbitrary constant 

K and the root of E, input is maximized. The Lagrangian equation is 

(2.30) 

where A. is a Lagrangian multiplier. 

Taking the partial derivative of equation (2.30) with respect to h and setting the result 

equal to zero yields 

oJ(h) = ~-2A.<l>h = Q oh 

Providing <I> is not singular, solving for h produces 
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h = (2.32) 

Note that multiplying h by an arbitrary constant, c, does not change OSNR. 

( S.T Ch )2 
= 

C2 ( 3.T h )2 

chr<l>ch c2 hT <I> h 
( S.T h )2 (2.33) 

= 
hT <I> h 

= OSNR 

Thus making the Lagrangian multiplier, A., equal to 0.5 in equation (2.32) yields the 

impulse response of the MAMF which maximizes OSNR for a given <I> ands.. This 
-impulse response, h, is given by 

(2.34) 

Substituting equation (2.34) into equation (2.29) yields the optimum OSNR, OSNR0,,, 

OSNRopt = 
(.sr h )2 
- -
hT <I> h 
(.tT<l>-1.t)2 (2.35) 

= 
S.T <l>-1 <l><l>-1 S. 

= .ST <I> -1 J. 

Note that OSNR0,, is a function of <I> and _s. From Section 2.1 and [CTC][KAB][WLB], 

<I> is NND, has real components, and so may be factored as follows 

(2.36) 

where A is the canonical Jordan form diagonal matrix defined by 
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J\. = (2.37) 

0 AN-I 

and U is the modal matrix defined by 

u = [Mo I Mt I ... I MN- I J (2.38) 

The eigenvectors JJo, M1, ... , MN-i are real since <I> is real and the i-th orthonormal 

eigenvector, Mo is associated with the i-th eigenvalue, I..;. The eigenvalues are furthermore 

ordered as follows: 

(2.39) 

Letting J equal MN-i and substituting this into equations (2.34) and (2.35) yields the 

maximum value of OSNR0P, , OSNRmax, for a given colored noise. OSNRmax is derived 

as follows: 
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-
OSNRmax = ~Th 

= u~- 1 u A -l ur uN-1 

= -:11~-1 [Mo I 111 I ... I llN-1 J A -l 

0 

= [ 0 ... 01] A -t 
0 

1 
~i---

= 
AN-1 

T 
!J.N-1 

(2.40) 

Therefore the maximum value for OSNR.,,, OSNR.r.u., is equal to the inverse of the 

smallest eigenvalue of <I>. The signal vector which yields OSN Rmu. shall be called the 

optimal signal vector, Jo,,, and is equal to the eigenvector associated with the smallest 

eigenvalue. The impulse response for the MAMF which produces OSNRmu.' ft,,,, is 

defined 

ho pt 
-1 - I 

= <I> 1opt = <I> llN - 1 (2.41) 

Letting J equal !lo in equations (2.34) and (2.35) and proceeding as in equation (2.40) 

above produces the minimum value for OSNR, OSN Rmin = *" which is the inverse 

of the largest eigenvalue of <I> • 
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2.5.4 Practical Performance 

The developments of the preceeding section all assume that the noise 

autocorrelation, and hence the noise autocorrelation matrix <I> is known. For the 

practical case considered herein, the colored noise autocorrelation, <I>, is estimated and 

designated by <r> •• ttmat•' When <I> is estimated, his not optimal and is given by, 

.. 
-1 h. = <I> estimate J (2.42) 

Note furthermore that since the signal vectors are fixed prior to transmission, J. is chosen 

either arbitrarily or on the basis of an expected colored noise. In either case, J may not 

be optimal. The OSNR for the practical implementation, OSNR,mttcai , wherein the 

autocorrelation of the colored noise is estimated and not known a priori and the signal 

vector is not optimal is derived by substituting equation (2.41) into equation (2.37) 

OSNRpractlcal = 
(2.43) 

= T -1 -1 
J <I> estimate <I> <I> estimate J 

Therefore since J and h are not necessarily equal to ~P' and h,,,, respectively, 

An interesting characteristic of equation (2.43) is that the scaling of <I> .. ttmar. scales 

h. It was shown in equation (2.33) that scaling the impulse response of the MAMF does 

not change the OSNR. Thus <I>.,,,.mat• can be scaled without affecting OSNR,,acticai· One 

advantage of this is that the estimated autocorrelation can be scaled to lessen the effects 

of rounding and truncation in an actual implementation. 
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Finally, the most crucial aspect of estimating the autocorrelation of the colored 

noise is that OSNRmu can occur when <1>.,11mat• * <I> while J. = J,,pt' To show this, first 

rewrite h,,P, as a function of AN-1 and !JN- 1: 

hopt 
-1 = <I> Y.N-1 

-1 T = u A u llN-1 

yJ" 
T 

.U1 (2.44) 

= [ !Jo I M1 I I MN - 1 ] A - 1 MN-1 ... 
T 

YN-1 

l = 
XN-1 llN-1 

Let <I>' be an estimated autocorrelation matrix for which MN-i is an eigenvector and AN-i 

is not an eigenvalue, to insure <I>' -:I= <I>, then 

h' = (<l>')- 1 MN-1 

= U'(A')- 1 U'T liN-1 

= [u'o I M'1 I ... I M'N-2 I liN-l] (A') -l 

l = 
A'N-1 

MN-1 

= c 1 
XN-1 !JN-I 

= cflopt 
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where c is a non-zero constant and l .. 'N-i is not prime. From equation (2.33), multiplying 

h by an arbitrary constant does not change the value of OSNR, thus <I>' i= <I> produces 

a OSNR = OSNRmax· One must now prove the existence of <I>'. 

There exist an infinite number of real symmetric Toeplitz matrices, <I>', that satisfy 

equation (2.45) provided N > 2. To prove this recall from Section 2. l that the 

eigenvectors for a real symmetric Toeplitz matrix are or can be chosen to be either 

symmetric 

(2.46) 

or skew-symmetric 

(2.47) 

Consider the case where the eigenvector, MN- I• is symmetric. The skew-symmetric case 

is similar. The eigenvalue and eigenvector relationship for <I>' and A.' N- i i= A.N- i is written 

<l>'M,v-1 = f...'N-tMN-1, 

<i>o <i>1 ... <j>,v-1 "o "o 

<i>t <Po "' <i>N-2 Ul U1 

A.',v-1 
(2.48) 

= 

<i>N-2 <i>N-3 "' <i>1 U1 U1 

<i>N- l <i>N-2 "' <i>o "o Uo 

From the symmetry of <I>' and MN-I• equation (2.48) can be rewritten as follows: 
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"o U1 ... U1 "o q>o "o 

U1 "o + U2 ..• llo 0 q>l U1 

.... = ')..'N-1 (2.49) 

U1 "o + "2 ••• Z'o 0 q>N-2 U1 

"o U1 ... U1 "o q>N-1 "o 

Equation (2.49) can be written in matrix notation as 

(2.50) 

Note that for N even, U will have ~ identical rows, and for N odd, U will have 

(N; l) identical rows provided N > 2. The identical rows in U make the linear system 

of equations in (2.50) underdetermined, and hence there exist an infinite number of 

solutions for $R_'. Therefore there are an infinite number of real synunetric Toeplitz 

matrices, <I>', that satisfy equation (2.45) provided N > 2. 

The critical importance of OSN Rnsu occurring at points where <I> nrimor. =!= <I> is that 

the correlation estimator can produce an erronous estimate of the actual 

autocorrelation, with the MAMF receiver still producing an OSNR= OSNRmax. Given 

that <l>.,lim•• is a function of the correlation estimator, <1>.,",,,11,. could posses the eigenvector 

MN-i and hence OSNR,_"""' could equal OSNRmax provided the transmitted signal vector 

J is equal to MN-i· In the traditional MAMF conununication system wherein the signal 

vector is fixed, OSNR.,11m•t• = OSNRmax only when the selected signal vector happens to 

equal MN- i and MN- I is an eigenvector of <I> .,1111111,.. Since the signal vector transmitted by 

the proposed MAMF communication system is composed of orthornormal basis vectors 

which span a sub-space K, OSNRulim•• = OSNRmax when MN-I is in the sub-space K and 

IJ.N- i is an eigenvector of <I> nlim•t•' Hence, as the color of the noise and the eigenvector 
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associated with the smallest eigenvalue changes, the OSNR of the traditional MAMF 

receiver will not and cannot equal OSNR.nax while the OSNR of the proposed system 

could equal OSNR.nax· This is one advantage of the proposed MAMF communication 

system over the traditional MAMF communication system. 

A second advantage of the proposed system is that OSNR,,00,;001 and hence SNRI 

can be maximized for the combined estimated autocorrelation matrix <1>,.,,;11101• and the 

signal vector sub-space K by proper choice of the linear combination coefficients c,. In 

order to calculate the noise energy at the output of the MAM F one must know the 

actual combined autocorrelation matrix, <I>,, thus OSNR,,00,;001 cannot be maximized 

directly. The signal energy at the output of the MAMF can be computed, so one can 

attempt to maximize OSNR for the sub-space K by maximizing the signal energy out 

of the MAMF. Since the relationship between the c, and the OSNR,,0• 11001 is highly 

non-linear due to the dependence of OSNR,,,,.11ca1 on the autocorrelation matrix <1>,..,1,,,01, · 

and its eigenvectors, the signal energy out of the MAM F shall be maximized in order to 

maximize OSNR,,0011ca1 for the sub-space K. 
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3.0 Simulation and Results 

The effects on performance of signal vector choice, different colored noise spectra, 

and estimation of the colored noise autocorrelation for both the proposed and 

traditional MAMF communication systems are investigated in this chapter. The 

investigation consists of performance comparisons between the proposed and traditional 

MAM F communication systems. Several cases are considered for each comparison and 

each case is presented graphically for ease of comparison. The general aspects of the 

systems and their simulations are discussed in the following sections. 

3.1 Colored Noise 

The additive colored Gaussian noise of the channel is produced by taking a 

Gaussian white noise process with a variance of 1.0 and coloring it with an Infinite 

Impulse Response (IIR) digital filter as depicted in Figure 6 on page 41. The Gaussian 

white noise process is generated using the IMSL routine GGNPM. The digital filter is 
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a narrowband digital filter with two dominant poles. The transfer function of the filter 

is 

H(z) = 

= 

1 - 2 p cos(0) z - 1 + p2 z - 2 

b1 z2 
(3.1) 

where p = 0.95 and b1 is defined such that the peak magnitude response is normalized 

to 1, i.e. b1 = (1 - p) I e/ 8 - p e-1 9 I. Thus H(z) has two non-contributing zeros at 

z = 0 and two dominant poles at z = p e±1 9 • From the z-plane pole-zero diagram of 

Figure 6 on page 41, p is the distance of the poles from the origin and so controls the 

bandwidth of the colored noise. Since p = 0.95 the noise is narrowband. The angle 0 

determines where the narrowband noise is centered. By changing the angle 0 from 

0 to 7t, the center frequency is swept from D.C. to one-half times the sampling 

frequency. The magnitude responses of the filter at 0 = 0 and ~ are given in Figure 7 

on page 42. Since the filter has an infinite impulse response, the first 2000 samples out 

of the noise coloring filter are discarded to avoid transient affects from influencing the 

colored noise samples and hence the autocorrelation estimates. The noise samples after 

the first 2000 are used to form the additive colored noise vectors. 

Some of the cases discussed in this chapter use the actual autocorrelation of the 

colored noise for reasons to be discussed later. The actual autocorrelation of the colored 

noise is derived directly from the coefficients of the transfer function given in equation 

(3.1) using the method proposed by J.P. Dugre, A.A. Beex, and L.L. Scharf[DBS]. 
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3.2 System Descriptions 

3.2.1 Proposed System 

The objective of a MAMF communication system is to maximize the probability 

of detection and discrimination of known signal waveforms corrupted with colored noise. 

This is acomplished by maximizing the SNRI or performance. The signal vector for the 

proposed system was chosen to be of minimum length for binary data to emphasize the 

differences in performance between the proposed and traditional MAM F 

communication systems. From Section 2.3, the minimum number of linearly 

independent basis vectors required to span a sub-space is K = 2 and the minimum length 

of each basis vector for binary data, p = 2, is K x p = M = 4. The M-dimensional 

linearly independent basis vectors selected are orthonormal and either symmetric or 

skew-symmetric. The transmitted signal vector is formed from the concatenation of the 

two orthonormal basis vectors and given by 

J = [ !~ J (3.2) 

The length of the transmitted signal vector is thus K x M = N = 8 The length of the 

signal vector for the traditional system shall also be of length N = 8 to make the 

comparison between the two systems fair. The length of the autocorrelation is N = 8, 

and so at least 8 noise samples are required to estimate the autocorrelation. The number 

of samples chosen to estimate the autocorrelation, i.e. the length of the vector containing 

the noise samples, is 16. The received signal, I, composed of the transmitted signal of 

equation (3.2) and the additive colored noise, is given by 
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(3.3) 

The length of I is 8 samples. 

The advantage of the proposed system is that two orthonormal basis vectors are 

transmitted and by linearly combining them in the receiver, any signal vector in the 

2-dimensional space can be constructed and used to maximize performance. Since 

K = 2 for the proposed system simulated herein, only two coefficients are needed to 

linearly combine the orthonormal basis vectors; furthermore, the signal energy of the 

transmitted signal for both systems is E, = 2. From equation (2.11) the two coefficients, 

c1 and c2, must satisfy the following relationship: 

K 2 
l: Ct 

t= I 
E =2 s (3.4) 

Note that the points (cit c2 ) lie along a circle of radius ,fi on the c1 c2 plane. From 

equation (2.5), the signal vector resulting from the linear combination of the two 

orthonormal basis vectors is given by 

(3.5) 

From equations (2.19) and (3.4), the noise autocorrelation resulting from the linear 

combination of the colored noise vectors associated with the orthonormal basis vectors 

is given by 

Rv(l) = (ct +c;)Rww(l) + c1 c2(Rww(4 +/) + Rww(4-l)) 

= 2 RwwU ) + CI C2 ( Rww ( 4 + I ) + Rww ( 4 - I ) ) 
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When the actual autocorrelation is known, the MAM F impulse response derived 

from equation (2.34) is 

-1 -h = <l>v ~ (3.7) 

The coefficients c1 and c2 are chosen to maximize OSNR. Since SNRI is maximized 

when OSNR is maximized, c1 and c2 are chosen to maximize OSNR. OSNR for the 

proposed system considered herein is derived from equation (2.23) as follows: 

OSNR 
Grh)2 

= - -
hT <l>vh 

(~T <1>; 1 ~)2 (3.8) 
= -r -1 -1 -

J. <l>v <l>v <l>v J 
-T -1 -= J. <I> v J. 

The coefficients c1 and c2 which maximize equation (3.8) are henceforth referred to as the 

optimum coefficients c10,, and c20,, respectively. 

When the noise autocorrelation is not known and must be estimated, the estimated 

autocorrelation matrix, <1> .. ,;.,0 ,,, is not necessarily equal to the actual autocorrelation 

matrix, <I>; furthermore, the autocorrelation matrix of the combined noise formed from 

<I> nt1mot• and designated by <1>, .. ,;.,0 ,,, is not necessarily equal to the autocorrelation of the 

combined noise formed from the actual autocorrelation matrix <I>, • The impulse 

response of the MAMF is derived from equation (2.37) to be 

_, 
h = <l>v estimate J. (3.9) 

The OSNR of the proposed system is derived from equation (2.38) as follows: 
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OSNR = 

= 

T -1 h h <l>v estimate 

( -r -1 -)2 
J <l>v estimate J. 

·r -1 -1 -
1 <l> v estimate <l> v <l> v estimate J. 

(3.10) 

Note that when the noise characteristics are estimated and not known, the noise energy 

at the output of the MAMF cannot be computed. Thus OSNR and SNRI cannot be 

maximized directly to obtain c 1 opt and c 2 opt' Since the signal energy at the output of the 

MAMF can be computed with the estimated noise autocorrelation, OSNR and SNRI 

shall be maximized by maximizing the signal energy at the output of the MAM F which 

is derived from equation (2.27) as follows: 

E; = (~Th)2 
= ( ·r -1 · )2 1 <l> v estimate 1 

(3.11) 

The coefficients which maximize equation (3.11) shall henceforth be referred to as c'IDpt 

and c'20,t. Note that as <1> ... t1,,,0 ,. approaches <l>,, c'1opt and c'2 opt approach c 10,, and c 20P, and 

E- approaches OSNR2, thus the accuracy of the maximization is a function of the 
I 

estimator. The maximization of equation (3.11) was performed using a brute force 

approach wherein c1 was varied from - J2 to J2 by increments of (2 J2)/1000 and 

C2 Was Calculated from C1 by C2 = J 2 - Cf • 

3.2.2 Traditional System 

In order to keep the comparisons between the proposed and traditional MAMF 

communication systems fair, the transmitted signal vector of the traditional system, ,s, 
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has length N = 8 . The received transmission, I, composed of the transmitted signal 

vector with additive colored noise is represented as follows: 

I= [..s+.!i!] (3.12) 

where the length of I is 16. 

The OSNR for the traditional system is given by equation (2.29) and repeated here: 

OSNR = (3.13) 

where his the impulse response of the MAMF. When the colored noise autocorrelation 

is known, h is given by equation (2.34) to be 

and the OSNR is optimum, OSN R0P,, and given by equation (2.29) to be 

T -1 OSNRopt = J <I> J 

(3.14) 

(3.15) 

When the colored noise autocorrelation is estimated, h, is given by equation (2.37) to 

be 

" h -1 
= <I> estimate J (3.16) 

and OSNR is representative of the practical situation considered herein, OSNRprocncal• and 

given by equation (2.38) to be 

OSNRpractlcal = 
( r<l>-1 )2 J. estimate J. 

(3.17) T -I -1 
J. <I> estimate <I> <I> estimate ..S 
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3.3 Comparison Descriptions 

The first comparison investigates the maximum SNRI for both the traditional and 

proposed MAMF communication systems. The normalized center frequency of the 

narrowband colored noise is swept from 0 = 0 to 7t at the discrete points 

0 = n_.2!._, where n = 0, 1, ... , 100, and the maximum performance, in terms ofSNRI, 
100 

is computed in decibels (dB) at each point. Since SNRI is maximum for maximum 

OSNR, maximum OSNR is computed at each point. From equation (2.40), the 

maximum OSNR, OSNRmu, is equal to the inverse of the smallest eigenvalue of the real 

symmetric Toeplitz colored noise autocorrelation matrix. The noise autocorrelation 

sequence, R.,.,, is computed rather than estimated at each of the discrete colored noise 

points. The maximum SNRI for the traditional system is computed by taking the 

inverse of the minimum eigenvalue of the 8 x 8 noise autocorrelation matrix, <I>, formed 

from R.,.,. The 4 x 4 noise autocorrelation matrix for the proposed system, <I>., is a 

function of R.,.,, which is fixed for a given colored noise, and the coefficients c1 and ~· 

The OSNRmu for the proposed system occurs when the smallest eigenvalue of <I>. is 

minimized. The coefficients c1 and c1 are varied in accordance with equation (3.4) to 

minizize the smallest eigenvalue of <I>, and produce OSNRmu and maximum SNRI. The 

results are graphically presented in Figure 8 on page 53. 

The second comparison is between the traditional system optimized to produce the 

maximum OSNR, OSNRmu, for the colored noise at specific center frequencies, 0's, and 

the proposed system which used both symmetric and anti-symmetric orthonormal basis 

vectors. The traditional system was optimized in the first two cases for colored noise 

with normalized center frequency 0 = 0 and in the second two cases 0 = ; . The signal 

vector of the traditional system was thus fixed in each case to be the eigenvector 
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associated with the minimum eigenvalue of the colored noise autocorrelation matrix at 

each of the normalized center frequencies. The orthonormal basis vectors used to 

compose the signal vector for the proposed system were fixed in the first and third cases 

to be symmetric 

~1 = [ J22 0 0 J22 ] 

J'.2 = [ 0 J22 J22 0] 

and in the second and fourth cases to be skew-symmetric 

~1 = [ J22 0 0 - J22 ] 

~2 = [ 0 J22 - '{2 0] 

(3.18) 

(3.19) 

The transmitted signal energy for the traditional system was equal to the transmitted 

signal energy of the proposed system which is equal to 2 to keep the comparisions fair. 

The normalized center frequency of the narrowband colored noise was swept from 

0 = 0 to 1t at discrete points as in the first comparison. The colored noise 

autocorrelation at each of the discrete points is calculated rather than estimated. In 

using the actual autocorrelation, one can observe the behavior of the traditional system 

as the noise varies under ideal conditions from the optimized noise center frequencies. 

From the conclusions of Section 2.5, the performance of either of the systems can reach 

a maximum for other actual autocorrelations. Thus the use of the actual autocorrelaion 

shall also provide insight into the performance of both systems for the case where the 

estimators are 100% accurate and can be used to contrast the performance of both 

systems when the autocorrelation is estimated. The performance, in terms of SNRI, was 

computed in decibels (dB) for both systems at each of the discrete colored noise points. 
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The results of each of the four cases are graphically presented in Figure 9 on page 54, 

Figure 10 on page 55, Figure 11 on page 56, and Figure 12 on page 57. 

In the third comparison, the traditional system is not optimized for any particular 

colored noise. The signal vector of the traditional system was fixed in the first case to 

be the synunetric vector 

(3.20a) 

in the second case it was fixed to be the skew-synunetric vector 

(3.20b) 

in the third case it was fixed to be the synunetric vector 

(3.2la) 

and in the fourth case it was fixed to be the skew-synunetric vector 

(3.2lb) 

The signal vector for the proposed system was fixed to be in the first and third cases 

synunetric and in the second and fourth cases skew-symmetric as given in equations 

(3.18) and (3.19) respectively. Note that again the transmitted signal energy of the 

traditional system is equal to the transmitted signal energy of the proposed system to 

keep the comparisons fair. The actual colored noise autocorrelation was again used for 

reasons previously discussed. The center frequency of the colored noise was swept swept 

from 0 = 0 to 0 = n as in the first comparison. The performance, in terms of SNRI 

(dB), was computed for both systems at each of the discrete colored noise points. The 
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results of each of the four cases are graphically presented in Figure 13 on page 58, 

Figure 14 on page 59, Figure 15 on page 60, and Figure 16 on page 61. 

In the fourth and last comparison, the colored noise autocorrelation was estimated. 

In the first two cases the autocorrelation was estimated with the classical biased 

estimator and in the second two cases by the Burg estimator. The signal vectors for the 

traditional and proposed systems were fixed in the first and third cases to be symmetric 

as given in equations (3.20a) and (3.18) respectively and in the second and fourth cases 

fixed to be skew-symmetric as given in equations (3.20b) and (3.19) respectively. Since 

the autocorrelation was estimated, the estimated autocorrelations were stochastic and 

hence so was the performance for both systems. The center frequency of the 

narrowband colored noise was changed to seven discrete frequencies, 9 = n ; , where 

n = 0, 1, ... , 7. The autocorrelation was estimated and the SNRI (dB) computed one 

thousand times at each of the seven discrete colored noise points. The maximum SNRI 

(rounded to the nearest integer value), average SNRI, and average SNRI minus the 

standard deviation were computed for each system at each of the seven colored noises. 

The results of all four cases are graphically represented in Figure 17 on page 62, 

Figure 18 on page 63, Figure 19 on page 64 and Figure 20 on page 65. 

3.4 Comparison Data 

The following figures were generated on the Versatec plotter using the software 

package Nagplot at VPI & SU. 
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Figure 19. COMPARISON 4, CASE 3: TRADITIONAL and PROPOSED SYSTEM SIGNAL 
VECTORS are SYMMETRIC; BURG ESTIMATOR w/ 16 SAMPLES and 1000 
ITERATIONS 

3.0 Simulation and Results 63 



-a:: z 
Ul 

I-z 
UJ :z: 
UJ 
> 
0 a:: 
Q. :z: -a:: z 
Ul 

BURG OR MEM ESTIMATOR: 16 SAMPLES. 1000 ITER. 

40 

30 

20 

10 

0 

TRf=CJITI~ S = .7071 .0 .7071 .0 .0 -.7071 .0 -.7171 
51 = .7071 .0 .0 -.7071. 52 = .0 .7071 -.7071 .0 

I ~ 
~ ):!( 

¢ ~ (T\ 
¢ ._; x 
(!) ):!( 

I ~ 
.6. x 

-10 -+-~~~~~~~..--~~--....-~~--~~~--~~~..J-
0.000 o. 524 1 . 047 1 . 57 J 2. oss 2. s 1 e 3.142 

COLORED NOISE CENTER FREQUENCY, THETA 
(!) (!) (!) TRROITIONRL SYSTEM RVERRGE SNRI 
0 0 0 TRROITIONRL SYSTEM ROUNDED MRX SNR~ 
):!( J!f.. ']$ TPP.D! TIQt--;P'..,. SYSTEM R"/G S~~R I - STD SEV 
.6. 6. ~PROPOSED SYSTEM RVERRGE SNRI 
~ ~ ¢PROPOSED SYSTEM ROL.JN~ED MRX S~.R I 
x x Z PRCPOSED SrSTEM AVG sr·;R I - STD OE'/ 
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Table 1. Tabulated Statistical SNRI Data for Figure 17 

Traditional System, CB Estimator, Symmetric Signal Vectors 

SNRI Theta 
Stats. 0.000 0.524 1.047 1.571 2.095 2.618 3.142 

Maximum 37.0 19.0 13.0 11. 0 13.0 19.0 39.0 
Average 23. 720 16.910 11. 656 10.117 12.133 16.689 30.445 
Std Dev 4.294 2.207 1. 614 0.852 1. 027 2.734 2.113 

Proposed System, CB Estimator, Symmetric Signal Vectors 

SNRI Theta 
Stats. o.ooo 0.524 1.047 1.571 2.095 2.618 3.142 
Maximum 32.0 12.0 6.0 7.0 12.0 19. 0 40.0 
Average 27.512 11. 088 3.841 6.554 11.410 17. 971 35.877 
Std Dev 2.259 1.470 1.547 1.131 1.137 1.684 1.463 

Table 2. Tabulated Statistical SNRI Data for Figure 18 

Traditional System, CB Estimator, Skew-symmetric Signal Vectors 

SNRI Theta 
Stats. 0.000 0.524 1.047 1.571 2.095 2.618 3.142 
Maximum 39.0 19.0 13.0 11. 0 13.0 19.0 36.0 
Average 30.603 16.675 12.020 10.115 11. 696 16.953 23.525 
Std Dev 2.132 2.518 1.291 0.875 1.564 2.145 4.362 

Proposed System, CB Estimator, Skew-symmetric Signal Vectors 

SNRI Theta 
Stats. 0.000 0.524 1.047 1.571 2.095 2.618 3.142 
Maximum 40.0 19.0 12.0 7.0 6.0 13.0 28.0 
Average 38.860 18.581 11.867 6.373 4.659 12.455 25.530 
Std Dev 0.398 0.886 0.563 1.406 1. 031 1.324 3.648 
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Table 3. Tabulated Statistical SNRI Data for Figure 19 

Traditional System, Burg Estimator, Symmetric Signal Vectors 

SNRI Theta 
Stats. 0.000 0.524 1.047 1.571 2.095 2.618 3.142 

Maximum 39.0 19.0 13.0 11. 0 13.0 19.0 39.0 
Average 37.560 17.333 11. 493 9.447 11. 560 17.665 38.015 
Std Dev 3.247 2.019 1. 867 1.360 1.583 1.666 1.824 

Proposed System, Burg Estimator, Symmetric Signal Vectors 

SNRI Theta 
Stats. 0.000 0.524 1.047 1.571 2.095 2.618 3.142 
Maximum 33.0 12.0 6.0 7.0 12.0 19.0 40.0 
Average 31. 715 11. 046 4.100 6.152 11.445 18.459 39.078 
Std Dev 2.319 1.573 1.448 1.537 1.201 1.193 1.288 

Table 4. Tabulated Statistical SNRI Data for Figure 20 

Traditional System, Burg Estimator, Skew-symmetric Signal Vectors 

SNRI Theta 
Stats. 0.000 0.524 1.047 1.571 2.095 2.618 3.142 
Maximum 39.0 19.0 13.0 11. 0 13.0 19.0 39.0 
Average 38.004 17. 677 11. 356 9.387 11. 519 17.856 37.627 
Std Dev 1.698 1.634 1.890 1.401 1. 831 1. 770 3.136 

Proposed System, Burg Estimator, Skew-symmetric Signal Vectors 

SNRI Theta 
Stats. 0.000 0.524 1.047 1.571 2.095 2. 618 3.142 
Maximum 40.0 19.0 12.0 7.0 6.0 13.0 33.0 
Average 39.304 18.598 11. 587 6.205 4.183 12.221 30.502 
Std Dev 1. 012 0.995 0.912 1. 606 1. 301 1.505 4.508 
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4.0 Bit Error Rate Performance 

Up to this point, the performance of both the traditional and the proposed MAMF 

communication systems has been measured in terms of SNRI. SNRI assists one in 

determining, on a relative basis, the likelihood of detection and descrimination of signals 

in noise. The definitive measure of performance in digital communication systems is Bit 

Error Rate (BER). BER is a statistical measure of the rate at which bit errors occur for 

a number of bits transmitted. BER is thus more definitive than SNRI since it measures 

the number of errors and hence the number of successes in communicating a bit stream 

rather than measuring energy ratios which are related to the probability of detection and 

discrimination. This chapter investigates the performance of both systems in terms of 

BER measurements, and makes observations regarding the relationship between BER 

and SNRI performance measures. BER is dependent upon the ISNR, and so BER as a 

function of ISNR is computed for both systems. Both systems are designed to 

communicate binary data in additive narrow-band colored noise conditions. In the first 

section of this chapter, the systems are described in detail. In the second section, the 

particular experiments conducted are discussed. In the third section, the results are 

presented. 
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4.1 System Descriptiolls 

The general structure of the traditional and proposed MAM F communication 

systems is the same as discussed previously and depicted in Figure I on page 3 and 

Figure 2 on page 6. The binary data to be communicated is random. The IMSL routine 

GGNPM is used to generate random numbers with unit variance. If the random 

number is greater than or equal to zero, then a "I" is chosen as the bit to be 

communicated; a "O" is chosen otherwise. The signal vectors of both the traditional and 

proposed systems used to encode the binary data are of length 8 each. The signal 

vectors of the proposed system are composed of 2 orthogonal basis vectors of equal 

energy and length 4 each. The energy in the transmitted signal vectors for both systems 

is equal, and adjusted to obtain the desired ISNR for a particular colored noise. The 

energy of a transmitted signal vector, E,, is determined as follows: 

(4.1) 

The signal vector energy is normalized to E, prior to transmission. 

The transmission is simulated by adding colored noise samples to the transmitted 

signal vectors. The colored noise samples are generated in the same fashion as discussed 

in Chapter 3 and depicted in Figure 6 on page 41. The colored noise system generates 

2032 colored noise samples. Since the colored noise filter which is used to generate the 

colored noise samples has an infinite impulse response, the first 2000 samples out of the 

noise coloring filter are discarded to avoid transient affects from influencing the colored 

noise samples and hence the autocorrelation estimates. The first 2000 noise samples are 

discarded to minimize the impulse response effects of the IIR digital filter in the colored 

noise system on the colored noise samples used in the simulation. Of the remaining 32 

4.0 Bit Error Rate Performance 68 



colored noise samples, the first 16 are used to form the colored noise vector used to 

estimate the colored noise autocorrelation in both systems. The following 8 are added 

to the transmitted signal vector of the traditional system, and the last 8 are added to the 

transmitted signal vector of the proposed system. 

In the receiver, the autocorrelation of the colored noise used to form the MAM F's 

is either the actual or an estimated autocorrelation. The CB estimator discussed in 

Section 2.2.2 and formulated in equation (2.1 ), is used to estimate the autocorrelation 

of the colored noise. The purpose of using the actual autocorrelation is to observe the 

BER performance of both systems under ideal conditions and is expected to produce the 

upper limit of BER performance for both systems, as previously done in Chapter 3 for 

SNRI. The use of the actual colored noise autocorrelation shall furthermore reveal any 

fundamental relationships between SNRI and BER. The purpose of estimating the 

colored noise autocorrelation is to observe the performance of both systems in a more 

practical situation and to note any influence the estimator may have on the BER 

performance. After the colored noise autocorrelation is determined in the proposed 

system, the two coefficients which maximize the signal energy out of the i-th MAMF 

of the proposed system, c'10,r1 and c'loprn are determined. The two coefficients for the 

i-th OSNR maximizer, c11 and c21t used to determine the optimum coefficients are 

constrained to maintain constant signal energy as indicated in the development in 

Section 2.4.1. Since the basis vectors chosen to represent each bit are orthogonal, the 

coefficients c11 and c;, are subject to the constraint 

(4.2) 

The basis vectors used to represent each bit, the estimated colored noise autocorrelation 

and the received signal are all processed to detect the i-th bit as follows: 
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[ c' t optl] ~, = [ £1 , I ~11 ] , 
C 2 optl 

(4.3) 

(4.4) 

[ c' t optl] :L = [ 11 , + n1 I J2, + n2 ] , 
C 2 optl 

(4.5) 

The MAM F for each bit in the traditional system is determined from the 

autocorrelation matrix and the signal vector used to encode the particular bit. The 

MAM F impulse responses are found as follows: 

f1o TRAD. = <I> - l .i' 0 (4.6) 

ht TRAD. = <I> - l .i' t (4.7) 

where <I> is the Toeplitz autocorrelation matrix formed from either the actual or 

estimated autocorrelation sequence R,..,, and £' 0, and J' 1 are the time reversed signal 

vectors used to encode a "O" and a "l" respectively. The MAM F for each bit in the 

proposed system is determined from the combined autocorrelation matrix and the signal 

vector used to encode the particular bit. The MAMF impulse responses are found as 

follows: 

floPROP. 

ht PROP. 

-1 - , = <l>vo !.o 

""'-1 -, 
= "'v 1 :!..1 

(4.8) 

(4.9) 

where <I>. is the autocorrelation matrix formed from the combined actual or estimated 

autocorrelation sequence, R,, (I), as defined in equation (4.4); and s'0 and s'1 are the time 
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reversed combined signal vectors, ~ and ~1 respectively. Once the MAMF impulse 

responses are found, the output of the i-th MAMF, YN-i i' is determined by convolving 

the MAM F with the received transmission. The receiver output computation for the 

proposed system is written in matrix notation as 

T 
YN-1, = T htTRAD. (4.lO) 

where T is the time reversed received transmission composed of the transmitted signal 

vector with additive colored noise. The receiver output computation for the proposed 

system is written in matrix notation as 

- T 
YN-1, = T, ht PROP. (4.11) 

where T, is the time reversed received transmission of equation ( 4.5). 

Due to the difference in structure between the traditional and proposed MAM F 

communication systems, the decision rules for determining which bit was most probably 

transmitted on the basis of YN- i are different for each system. The minimum error 

probability criterion for a MAMF receiver processing known signal waveforms in 

additive colored noise developed by Anthony D. Whalen [ADW, p.293) is used in the 

detector of the traditional MAM F communication system. Given that the probability 

of transmitting a 'T' is equal to the probability of transmitting a "O", i.e. 

P(H1) = P(H0) = +· the minimum error decision rule selects the hypothesis that a "l" 

was transmitted, H1, if 

(4.12) 

Two different decision rules are used in the detector of the proposed system. The first 

decision rule is a simple comparison. The bit associated with the MAMF with the 
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largest output YN-ll is selected as the bit conununicated. For the second decision rule, 

the output of the MAMF is first normalized with respect to the output of the same 

MAMF that would be observed if no noise were present prior to making the simple 

comparison, i.e. the output of the i-th MAM F is first normalized as follows 

" 
YN-1, = (4.13) 

The bit associated with the MAM F producing the largest normalized output YN- u is 

selected as the bit conununicated. 

4.2 Experiment Descriptions 

Three experiments consisting of two simulations each were conducted. In all of the 

simulations, 1000 random binary data bits were conununicated. The signal vectors used 

to encode each bit were the same for each system in the first experiment, and likewise 

for the second experiment. Five different values of ISNR were used in the simulations 

of the first two experiments. The colored noise used in all of the simulations was 

narrow-band low-pass colored noise generated by the same colored noise system of 

Chapter 3 for 0 = 0. The colored noise autocorrelation sequence used in the MAMF 

receiver in each system was either the actual autocorrelation or it was an estimated 

autocorrelation. The BER performance in each simulation was measured as a function 

of SNRI. This was done by first computing the SNRI for the particular bit 

conununicated. The bit selected by the detector is compared to the bit conununicated 

to determine whether a bit error occurred. If a bit error occurred, then a bin 
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corresponding to the integer value of the SNRI was incremented and the type of bit 

error was recorded. There were two types of bit errors - a "1" detected when a "O" was 

transmitted, and a "O" detected when a "1" was transmitted. The specific details of each 

experiment follow. 

The signal vectors used in experiment # 1 to encode a random binary bit of data, 

prior to modification to obtain a specific ISNR, are for the traditional system 

.so = [ 1 0 1 0 0 1 0 1 Jr (4.14) 

~I = [ 1 0 1 0 0 -1 0 -1 ]T (4.15) 

and for the proposed system 

.so = [ 1 0 0 1 I 0 1 1 0 ]T ( 4.16) 

~I = [ 1 0 0 -1 I 0 1 -1 0 ]T (4.17) 

The signal vectors for both the traditional and proposed systems are proportional by a 

constant to the signal vectors of the traditional and proposed systems in Chapter 3; 

equations (3.20a) and (3.20b), and equations (3.2la) and (3.2lb) respectively. Note from 

the equations for ISNR and OSNR, (2.26) and (2.29) respectively, and the definition of 

SNRI that multiplying the signal vector by a constant will not change SNRI. The SNRI 

for both systems are equal to those computed in Chapter 3 when the colored noise 

autocorrelation is known. The signal vectors of the traditional system both produce an 

optimum SNRI of 39.267 dB. The signal vectors for the 0 proposed system, equations 

(4.16) and (4.17), produce an optimum SNRI of 33.174 dB and 39.815 dB respectively. 

These signal vectors were chosen to determine if the optimum SNRI influences the BER 

and/ or type of bit error. 
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The five values of ISNR used in the two simulations of the first experiment were 

21.9283, 0.0, -10.0, -20.0, and -30.0 dB. The autocorrelation used to design the MAMF 

impulse responses for both systems was the actual autocorrelation in the first simulation 

and it was an estimated autocorrelation in the second simulation. The simulation for 

which the ISNR is 21.9283 dB and the autocorrelation estimated is identical to 

comparison 3 cases 1 and 2 of Chapter 3 at 0 = 0.0 as depicted in Figure 13 on page 

58 and Figure 14 on page 59. The simple comparison scheme is used in the proposed 

system to determine which bit was probably communicated. The BER performance 

results for the first experiment are tabulated in Table 5 on page 77 and Table 6 on page 

77 respectively. 

In experiment #2, the signal vectors used to encode the random binary data, prior 

to being modified to obtain a specific ISNR, are for the traditional system 

~ = [ 1 0 1 0 0 -1 0 -1 ]T 

J'.1 = ( -1 0 -1 0 0 1 0 1 ]T 

and for the proposed system 

~ = [ 1 0 0 -1 I 0 1 -1 0 ]T 

J'.1 = [-100110-llQ]T 

(4.18) 

( 4.19) 

(4.20) 

(4.21) 

These signal vectors are chosen since they produce an optimum SNRI of 39.267 dB for 

the traditional system and 39.815 dB for the proposed system. The SNRI of the two 

systems is approximately equal, so that the direct performance comparison of both 

systems is fair. Note that the relationship between Jo and J 1 is 

(4.22) 
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This relationship produces the optimum or ideal binary communication system [ADW, 

p. 163). The resulting binary communication system is ideal because the probability of 

error is minimal. The probability of error is minimal when. the time crosscorrelation 

coefficient for the signal vectors is -1 which is true only if equation (4.22) is satisfied. 

The five values of ISNR used in the two simulations of the second experiment were 

0.0, -10.0, -20.0, -30.0, and -35.0 dB. The autocorrelation used to design the MAM F 

impulse responses for both systems was the actual autocorrelation in the first simulation 

and it was an estimated autocorrelation in the second simulation. The simple 

comparison scheme is used in the proposed system to determine which bit was probably 

communicated. The BER performance results for the two simulations of the second 

experiment are tabulated in Table 7 on page 78 and Table 8 on page 78 respectively. 

The purpose of experiment #3 is to investigate the BER performance of the 

proposed system with a detector that first normalizes the output prior to the simple 

comparison. In the first simulation of this experiment, the signal vectors are the same 

as those used in experiment #1. The signal vectors in the second simulation are the same 

as those in experiment #2. Only one ISNR is thus used in each simulation, and it is 

chosen to be -30 dB to contrast the BER performance under an adverse condition. The 

BER performance results for the two simulations are tabulated in Table 9 on page 79 

and Table 10 on page 79 respectively. 

4.3 Experimental BER Results 

The following tables are the results of the aforementioned experiments. 
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Table 5. Experiment #1, Simulation 1, Bit Errors / 1000 Bits vs ISNR 

Autocorrelation Known 

System Bit Signal ISNR (dB) 
Vector 21.93 0 -10 -20 -30 

Trad. 0 1 0 1 0 0 1 0 1 0 0 0 0 15 
1 1 0 1 0 0 -1 0 -1 0 0 0 0 7 

Prop. 0 1 0 0 1 0 1 1 0 0 0 0 14 153 
1 1 0 0 -1 0 1 -1 0 0 0 0 0 2 

Table 6. Experiment #1, Simulation 2, Bit Errors / 1000 Bits vs ISNR 

Autocorrelation Estimated, CB Estimator w/ 16 Samples 

System Bit Signal ISNR (dB) 
Vector 21.93 0 -10 -20 -30 

Trad. 0 1 0 1 0 0 1 0 1 0 0 1 44 185 
1 1 0 1 0 0 -1 0 -1 0 0 2 53 151 

Prop. 0 1 0 0 1 0 1 1 0 0 0 0 22 152 
1 1 0 0 -1 0 1 -1 0 0 0 0 2 77 
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Table 7. Experiment #2, Simulation 1, Bit Errors / 1000 Bits vs ISNR 

Autocorrelation Known 

System Bit Signal ISNR (dB) 
Vector 0 -10 -20 -30 -35 

Trad. 0 1 0 1 0 0 -1 0 -1 0 0 0 0 32 
1 -1 0 -1 0 0 1 0 1 0 0 0 0 17 

Prop. 0 1 0 0 -1 0 1 -1 0 0 0 0 1 21 
1 -1 0 0 1 0 -1 1 0 0 0 0 0 20 

Table 8. Experiment #2, Simulation 2, Bit Errors / 1000 Bits vs ISNR 

Autocorrelation Estimated, CB Estimator w/ 16 Samples 

System Bit Signal ISNR (dB) 
Vector 0 -10 -20 -30 -35 

Trad. 0 1 0 1 0 0 -1 0 -1 0 0 1 76 145 
1 -1 0 -1 0 0 1 0 1 0 0 1 67 126 

Prop. 0 1 0 0 -1 0 1 -1 0 0 0 0 0 35 
1 -1 0 0 1 0 -1 1 0 0 0 0 3 32 
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Table 9. Experiment #3, Simulation 1, Bit Errors / 1000 Bits 

ISNR = -30 dB 

System Bit Signal Autocorrelation 
Vector Actual Estimated 

Trad. 0 1 0 1 0 0 1 0 1 15 185 
1 1 0 1 0 0 -1 0 -1 7 151 

Prop. 0 1 0 0 1 0 1 1 0 274 246 
1 1 0 0 -1 0 1 -1 0 233 240 

Table 10. Experiment #3, Simulation 2, Bit Errors / 1000 Bits 

ISNR = -30 dB 

System Bit Signal Autocorrelation 
Vector Actual Estimated 

Trad. 0 1 0 1 0 0 -1 0 -1 0 76 
1 -1 0 -1 0 0 1 0 1 0 67 

Prop. 0 1 0 0 -1 0 1 -1 0 0 0 
1 -1 0 0 1 0 -1 1 0 480 480 
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5.0 Summary and Conclusions 

The results of the comparison which contrasts the maximum attainable SNRI for 

both the traditional and proposed MAM F communication systems is given in Figure 8 

on page 53. The results indicate that the absolute maximum attainable SNRI for the 

traditional MAM F communication system simulated herein is greater than the absolute 

maximum attainable SNRI for the proposed MAM F communication system at all of the 

discrete colored noise center frequency points. The absolute maximum SNRI for the 

tradtional system is not always greater than the absolute maximum SNRI for the 

proposed system since the maximum SNRI is determined by the minimum eigenvalue 

of the real symmetric Toeplitz colored noise autocorrelation matrix. These results must 

be kept in mind when considering the other comparisons. 

The results of the comparison which contrasts the performance of both systems 

when the colored noise autocorrelation is known rather than estimated are given in 

Figure 9 on page 54, Figure 10 on page 55, Figure 11 on page 56, and Figure 12 on 

page 57. From Figure 9 on page 54 and Figure 10 on page 55, wherein the traditional 

system is optimized to produce its maximum SNRI for the colored noise center 

frequency 0 = 0.0, the performance of the traditional system is better than that of the 
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proposed system in the vicinity of the point of optimization, as expected from the results 

of the earlier comparison. Note however that the SN RI of the traditional system is less 

than 0 dB, i.e. the MAM F degrades the performance of the system, when the color of 

the noise is very different from the noise color for which it was optimized. The SNRI 

for the proposed system is never less than 0 dB and hence always actually improves the 

performance of the system. The orthonormal basis vectors chosen for the proposed 

system were not optimized to produce its maximum SNRI. From Figure 11 on page 

56 and Figure 12 on page 57, wherein the traditional system is optimized to produce its 

maximum SNRI for the colored noise center frequency 0 = 0.5 7t, the performance of the 

traditional system is never less than 0 dB and hence the traditional MAM F receiver does 

not degrade the performance of the system. The SNRI of the traditional system is 

greater than the SNRI of the proposed system for 0 = 0.5 7t; however, the SNRI of the 

traditional system is not greater than SNRI of the proposed system over all the discrete 

colored noise center frequencies. From Figure 12 on page 57, wherein the orthonormal 

basis vectors of the proposed system are skew-symmetric, the colored noise need not 

deviate very far from the point for which the traditional system was optimized for the 

SNRI of the proposed system to exceed the SNRI of the traditional system. This is 

quite significant when one considers that the maximum attainable SNRI for the 

traditional system is greater than that of the proposed system. The results of this 

comparison indicate that the proposed system can be designed to be robust with respect 

to time-varying noise color and outperform the traditional system as the color of the 

noise varies. 

The comparison in which the performance of both systems is contrasted when the 

colored noise autocorrelation is known and the traditional system is not optimized for 

any particular noise color are given in Figure 13 on page 58, Figure 14 on page 59, 

Figure 15 on page 60, and Figure 16 on page 61. From Figure 13 on page 58 and 
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Figure 14 on page 59, wherein the signal vector for the traditional system is symmetric 

and skew-symmetric respectively, the traditional system can be made robust for the 

time-varying narrow-band colored noise used therein by not optimizing the system for 

any particular noise color. Note however, that the SNRI of the proposed system can 

again exceed the SNRI of the traditional system. From Figure 15 on page 60 and 

Figure 16 on page 61, wherein the transmitted signal vector for the traditional system 

is the concatenation of the orthonormal basis vectors for the proposed system, i.e. the 

transmitted signal vectors for both systems were identical. The purpose of making the 

transmitted signal vector for both systems identical is to investigate the performance for 

a receiver composed of both the traditional and proposed receivers. The results of the 

last two cases indicate that such a system could produce a high SNRI by selecting the 

receiver that has the greatest signal energy at the output of the MAM F( s) and be robust 

to time-varying noise color. 

The results of the comparison which contrasts the performance of both systems 

when the colored noise autocorrelation is estimated and the traditional system is not 

optimized for any particular noise color are illustrated in Figure 17 on page 62, 

Figure 18 on page 63, Figure 19 on page 64, and Figure 20 on page 65, and tabulated 

in Table l on page 66 and Table 2 on page 66. The colored noise autocorrelation is 

estimated by the classical biased estimator in Figure 17 on page 62 and Figure 18 on 

page 63. The colored noise autocorrelation is estimated by the Burg estimator in 

Figure 19 on page 64 and Figure 20 on page 65. When the autocorrelation is known, 

OSNR is optimum as defined in equation (2.35) and hence SNRI is optimum too. The 

signal vectors for both systems are identical to those used in Figure 13 on page 58 and 

Figure 14 on page 59, thus the optimum SNRI for the cases of this comparison are 

given in Figure 13 on page 58 and Figure 14 on page 59. In all four cases of this 

comparison, the maximum SNRI attained for both systems is equal to the optimum 
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SNRI. This is of particular importance for the proposed system since it indicates that 

when the signal energy at the output of the MAMF is maximized, SNRI can attain its 

optimum value. Note that at some points where the optimum SNRI of the traditional 

system is greater than that of the proposed system, the average SNRI of the proposed 

system is greater than that of the traditional system. From Table 1 on page 66 and 

Table 2 on page 66, the SNRI standard deviation for the proposed system is less than 

the SNRI standard deviation for the traditional system at most of the colored noise 

points. This is of particular importance since it again indicates the robust nature of the 

proposed system. Since the proposed system optimizes the OSNR with respect to the 

estimated noise, the proposed system is able to yield a high average SNRI with a small 

SNRI standard deviation. Note furthermore that if the optimum SNRI is close to 0 dB, 

then the SNRI attained from either system can be less than 0 dB due to the stochastic 

nature of the SNRI when the colored noise autocorrelation is estimated. The proposed 

system can thus outperform the traditional system when the noise autocorrelation is 

estimated even when the optimum SRNI of the traditional system is greater than the 

optimum SNRI of the proposed system due to its robust nature. 

In summary of the results of Chapter 3, it was observed that the performance of 

the MAMF receiver optimized for a particular noise color can degrade the overall 

performance of the communication system as the color of the noise varies; however, the 

performance of the MAM F receiver in the proposed system did not degrade the overall 

performance of the communication system. The proposed MAM F communication 

system is thus more robust to time-varying noise color than the traditional system 

optimized for a particular noise color. Due to the robust nature of the proposed system, 

the performance of the proposed system can exceed the performance of the traditional 

system even when the absolute maximum performance for the traditional system is 

greater than the absolute maximum performance for the proposed system. When the 
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traditional system is not intentionaly maximized for a particular noise color, its 

performance can become robust to time-varying noise color; however, the performance 

of the traditional system can be less than that of the proposed system. By combining the 

receivers of both the traditional and proposed communication systems and transmitting 

the signal vector used in the proposed system, the resulting system would be robust to 

time-varying noise and could use the receiver with the greatest SNRI. In conclusion, the 

proposed system is robust to time-varying noise color and thus can outperform the 

traditional system when the color of the noise varies. 

The first experiment of Chapter 4 was conducted to determine if a substantial 

difference in the optimum SNRI of two moving-average matched filters used to detect 

two different bits of data would influence BER performance. The maximum SNRI for 

the traditional system are equal, while for the proposed system, the maximum SNRI for 

the MAMF used to detect a "O" is 6.741 dB less than the MAMF used to detect a "l." 

From Table 5 on page 77 wherein the actual colored noise autocorrelation was used, 

14 bit errors were detected for the proposed system at -20 dB ISNR while none were 

detected for the traditional system; furthermore, 155 bit errors were detected for the 

proposed system at -30 dB ISNR while only 22 were detected for the traditional system. 

Of the 155 bit errors at -30 dB ISNR in the proposed system, 153 occurred when a "O" 

was transmitted and a "l" was detected and 2 occurred when a "1" was transmitted and 

"O" was detected. From the distribution of errors at -30 dB ISNR, it is evident that the 

difference in optimum SNRI between the two moving-average matched filters used to 

detect each bit has a significant effect on the BER performance. This is intuitively 

substantiated when one considers how a MAMF receiver functions. From Chapter 2, 

a MAMF is designed to maximize OSNR. As the ISNR decreases, the OSNR decreases. 

The ISNR can reach a point such that the OSNR produced by the MAMF is less than 

unity thus decreasing the probability of detection. If the optimum SNRI of one MAMF 
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is less than the optimum SNRI of another MAMF, the MAMF with the smaller 

optimum SNRI will produce an OSNR less than unity before the MAMF with the 

greater optimum SNRI as the ISNR decreases. The 6.741 dB difference in optimum 

.. SNRI between the moving-average matched filters of the proposed system is the cause 

of the imbalance in the type of bit errors observed. 

From Table 6 on page 77 wherein the colored noise autocorrelation was estimated, 

the imbalance in the type of bit errors for the proposed system still remains; however, 

the imbalance is not as great as in the first simulation. This is due to the stochastic 

nature of the SNRI. When the autocorrelation of the colored noise is estimated, the 

SNRI of a MAMF communication system is a stochastic process. The SNRI of the 

MAMF used to detect a "O" could be greater than or equal to the SNRI of the MAMF 

used to detect a "I", hence the output of the MAMF used to detect a "O" would be more 

likely to be greater than the output of the MAMF used to detect a "I". The imbalance 

in the errors is thus not expected to be as great as the imbalance observed in the first 

simulation. The number of errors in the traditional system increased considerably 

compared to the number of errors observed in the first simulation. From Table I on 

page 66 and Table 2 on page 66, the average SNRI for the traditional system is less than 

that for the proposed system; furthermore, the SNRI standard deviation for the 

traditional system is larger than that for the proposed system. The statistical SNRI 

performance of the traditional system is thus not as good as the statistical SNRI 

performance of the proposed system. The difference in the statistical SNRI performance 

between the two systems is the cause for the difference in their respective BER 

performances. 

Experiment #2 of Chapter 4 was conducted to compare the performance of the 

traditional optimum binary MAM F communication system with the proposed optimum 

binary MAMF communication system. From Chapter 3, the SNRI of the traditional 
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system was 39.266 dB, and the SNRI of the proposed system was 39.814 dB. The SNRI 

performance of both systems is thus approximately the same. From the results in 

Table 7 on page 78, wherein the actual colored noise autocorrelation was used, the first 

bit error occurred at -30 dB ISNR in the proposed system. At -35 dB ISNR, the number 

of errors was greater for the traditional system than the number of errors for the 

proposed system. From the results in Table 8 on page 78, wherein the colored noise 

autocorrelation sequence was estimated, the first bit errors occurred at -20 dB ISNR in 

the traditional system. The number of bit errors at -30 and -35 dB ISNR for the 

tradional system is substantially larger than the number of bit errors for the proposed 

system. The difference in bit errors is due to the statistical SNRI characteristics of the 

traditional system not being as good as those of the proposed system as previously 

mentioned. Note that the number of errors observed for the proposed system is 

approximately equally divided over the two possible types. This balance is due to the 

equal optimum SNRI and equal statistical SNRI characteristics of each MAMF. 

Experiment #3 of Chapter 4 was conducted to determine the performance of the 

detector used in the proposed system which first normalizes the output of each filter 

prior to conducting a simple comparison to determine which bit was most probably 

communicated. From the results in Table 9 on page 79, the numbers for each type of 

bit error were more balanced than in the first experiment; however, the total number of 

each type of bit error was substantially increased. From the results in Table 10 on page 

79, a larger number of errors occurred when a "1" was detected whereas a "O" was 

transmitted; furthermore, the number of bit errors has increased substantially. The 

proposed detector thus balances the number of each type of error when the colored noise 

autocorrelation is known at the cost of an enormous increase in the total number of bit 

errors. The detector performs poorly compared to the detector used in the first two 
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experiments, when the colored noise autocorrelation is estimated and the signal vectors 

are chosen such that the communication system is optimum. 

In summary of the results of Chapter 4, it is important to either insure that the 

optimum SNRI and statistical SNRI characteristics of each MAMF in the receiver are 

approximately the same or to compensate for the difference in the receiver. Care must 

be taken when selecting the detector to compensate for differences in SNRI due to 

possible impacts if the conditions under which the system is operating change. SNRI is 

a good indicator of BER performance when the ISNR is specified. It is possible for the 

proposed system to substantially outperform the traditional system. This is possible 

even when the optimum SNRI of the proposed system is less than that of the traditional 

system due to the statistical characteristics of the SNRI when the colored noise 

autocorrelation is estimated. 

In closing, a new MAM F communication system was proposed herein. The 

proposed system has many promising features. The foremost advantageous feature of 

the proposed system is that it is robust to time-varying colored noise. The SNRI and 

BER performance of the proposed system can exceed that of the traditional MAMF 

communication system even when the traditional system is optimized. Only 

narrow-band colored noise was used in the simulations, thus the performance of the 

proposed system under different colored noise still remains to be investigated. Both the 

detection scheme of the MAMF receiver in the proposed system used herein and the 

choice of signal vectors also require further investigation. 
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