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ABSTRACT

In this paper, calibration-free bearing estimation algorithms
for linearly periodic arrays with the presence of sensor posi-
tioning errors are investigated. The Toeplitz Approximation
Method (TAM) is used to cope with the two-dimensional (2-D)
sensor positioning errors which are assumed to be independent
identically distributed (i.i.d.) and Gaussian in each dimension.
After a Toeplitz covariance matrix being reconstructed by the
TAM, the eigenstructure-based bearing estimation algorithms,
such as MUSIC, can be employed as though the array were linear
and equally spaced without using any calibration process. To
improve the effectiveness of the TAM, a modification for TAM
is also described. Several examples are provided to illustrate the
effectiveness of the proposed methods.

I. INTRODUCTION

High-resolution bearing estimation techniques are usually
developed based on the assumption that the locations of array
sensors are known precisely. However, if there are uncertainties
in the sensor locations, the performance of these techniques
tends to be deteriorated greatly. In general, this problem is
solved by calibrating the sensor locations prior to performing
bearing estimation. In [1], an approach based on Schmidt’s
MUSIC method [2] was proposed. It requires the deployment of
at least two auxiliary sources at precisely known locations for
calibration. Later [3] proposed a method to eliminate the
requirement of deploying auxiliary sources at precise locations.
However, this method needs no less than three auxiliary sources
which must be spectrally (or temporally) disjoint to each other
and targets [4]. Moreover, it cannot be used in the case of
linear array configurations. Recently, an algorithm avoiding the
need of calibration process was presented in [5]. It assumes that
an array composed of m matched sensor doublets has elements
translationally separated by a known constant displacement.
This assumption may be impractical in some applications where
the array suffers random sensor location perturbation.

In this paper, we propose a calibration-free algorithm for a
nominal linearly periodic array with the presence of 2-D per-
turbations in sensor locations. Based on the assumptions that
the nominal array is linearly periodic and the random pertur-

bations have zero mean, we use a spatial averaging method, the
TAM [6] to cope with the sensor positioning errors. Since the
ideal covarjance matrix of the nominal array is Toeplitz, we
reconstruct a Toeplitz covariance matrix from the computed
covariance matrix to approximate the ideal one. The recon-
structed covariance matrix is then utilized for bearing estimation
based on the existing eigenstructure algorithms. It is shown that
the accuracy of the approximation depends on the number of
sensor elements and the variance of the random perturbations.
Therefore, the TAM method is suitable for the situations where
the variance of random perturbations is small compared with
the nominal distances between sénsors. To improve the TAM
method, a modified TAM, which appears to be superior to the
TAM, is also presented in this paper.

II. FORMULATION OF THE PROBLEM

Consider a randomly perturbed linear array with L sensor
elements and M incoherent narrow-band far-field sources. These
sources have arrival angles 6,,, m =1,..., M relative to array
broadside. Suppose that the 2th sensor with nominal location
vector o = [Xg, 0 1% suffers a 2-D random perturbation Ay, =
[Axq, Ayel! in its position. Thus, its actual location vector is
given by

ue = {ip +Aup ,2=1,2,..,L )

The received signal at the 2th sensor vq(t) is given by
M .
ve®)= 2 am()exp [j{ ke g fm +ot } 1 +ne(t),
2=1,2,..,L 2)
where k, is the wavenumber corresponding to the signal frequency
W, ap (t) and 6, = [sinfy, , cosf, 1t are waveform envelope and
bearing vector of the mth source, respectively, and ng(t) is
assumed to be the additive white noise with mean zero and

variance E[ng(t) ny(t)] = ¢>. Rewriting (2) in vector form,we
have

M .
W= 2, am(® & g +NO 3
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where v(t) = [p(t),..., »L(t)]! denotes the signal vector, S =
[elkce! ém _ ekcuf €m ]! the direction vector of the mth source,
and N(t) = [n, (), ..., np(t)] the noise vector. Therefore the
covariance matrix R is formed by

R= E[v(t) ¥

= Ellan®P ] Sn Sh + o @

“

where “ +°" and “E” denote the complex conjugate transpose
and ensemble expectation, respectively, and I the L x L identity
matrix.

To perform bearing estimation based on the eigenstructure
of R given in (4), the well-’known MUSIC of [2] can be em-
ployed. The basic idea of MUSIC is first to find the eigenvectors
Qe, #=M+1,...,L which span the noise subspace. Then a search
function is established as follows

1
lGSE.OF

P@)=

<

L (5)
z
=M+1

for finding the bearings 6;, i=1,...,M which correspond to the
peaks of P(8). In (5), S (8, U) is the search vector given by

S@ U= elkcy, & eikeu o)t )

and 8 = [sing, cosd ]! is the bearing vector associated with 6,
U = [uf, v}, .., ul 1" is the sensor location vector. Hence,
MUSIC requires the precise information of U. In case of U
having random perturbation, the performance of MUSIC will be
degraded considerably because of the inconsistency between the
search vector and the source direction vector. Recent solutions
for this problem have been focused on the use of calibration
process before estimating bearings.

III. THE TAM METHOD AND ITS MODIFICATION

In this section, we utilize a method without using cali-
bration process to tackle the problem described above. For
simplicity, the array is assumed to be linear and equally spaced
with §i; = [(e—1)d, 0], where d is the interelement spacing.
The random perturbations of sensor locations Axg, Ayg, 2= 1,2,
..., L are i.i.d. Gaussian random variables with mean zero and
variance o, respectively.

From (4), it is noted that R = R = [§;] is Toeplitz and
Hermitian if up = 0y, 2=1,2,...,L, i.e., no sensor location errors.
In this case, the element j; is given by

M e 6. aat
T Ellan®) ] efke@i=8j) ém 4+ a*8y

}ij = m=1
M o
- m§1 E [ ‘am (t) |z ] e]kc(l—])dsmqn + 0251j 0))
where §;; denotes the delta function. However, in case of random
perturbations, the element is given by

Efllan@® P ] efke®imepiim 4425y

TN

Buz Bux

E[}ap®) Iz 1 ejk(;(i'j)dsin fm
1

i t
. elke(Aui—Auf) " 8m 4 az‘sij ®8)

The factor e%c(88i~2up'8m in (8) represents the effect of
random perturbations in sensor locations. Moreover, it destroys
the Toeplitz structure of R and hence degrades the performance
of eigenstructure techniques for bearing estimation. To reduce
the effect of elkc(A4i— 28 8m and thus restore the effectiveness
of eigenstructure approaches may be achieved by reconstructing
the Toeplitz structure for R.

The TAM of [6] was proposed for finding directions of
coherent sources. In the following, we describe the use of TAM
for eliminating the effect of random perturbations. After
obtaining the r;; of (8) from the received signal, we construct the
following matrix R with size L x L.

T(0) T(—1) T(=2) oo
(1) T(0)
R=| 12) ®l) T0)

The elements of R are given as
1 L-n

T(-n)= i Z

T (g+n) 0<n<L,

T(n) = T*(—n) )

ceprr

and denotes complex conjugate. From (8) and (9), we have

H(=n)= %IE [ Feam ()12 ] e ~ikend sintm. g(n g )
m=

+0%8,, (10)
where
1 Lo o t
g, 0m)= T 2 ek (tua-ttem)ion an

The g(n, 6,) of (11) represents the random factor due to the
random perturbations in sensor locations. Taking the expecta-
tion of g(n, 6, ), we obtain

Elgm, 0pm)]= B[ eike(Aue—2ug+a)tom]

= [e-otky , 1<n<l-l
1 , n=0 (12)

The variance of g(n, 8, ) is given as

Var [8(n,0,)) = E[1g(n,05) 1?1 —1E [g(n,0,)]
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0 ,n=0
_ —L]—; [(L—n) +2(L—2n) A® + (5n—-3L) A?]
=1 @&-n) l<n< —
2
1 2 L
) (1-A%) ,2<n< -1
13)

. . H — t . .
While the variance of eikc(8te—8ue+a)! fm g given as

0 ,n=0

jKe(bug—Aug+a)tom] = (14)
Var [e e J {1_A2 l<n<L-1

where A = e~ ?ck¢. From (12), we note that the expectation of
g(n, B ) in T (-n) is the same as that of efkc(A2e—21pm)"m iy
Ty(eeny.  However, ( 13) shows that the variance due to random
perturbation is reduced in T (-n). Furthermore (10) can be
approximately written as

M . .
()= z Ellap®)?]e ikendsindm. A+,25 (15)

when L is large enough. Comparing (7) and (15), we note that
the signal subspace of R is therefore the same as that of R. Thus
any existing technique for bearing estimation based on the use
of eigenstructure of R can be utilized to resolve the directions
of the M sources.

Consider the performance of the proposed method. From
(15), we note that the expectation A of g(n, 8y, ) determines the
effectiveness of this technique when L is large enough. Hence
the performance turns out to be dependent of the variance aﬁ
of sensor location errors. It will be degraded if o2 is large because
the effective signal-to-noise ratio (SNR) is reduced. On the
other hand, when L is not large enough and o2 is small, the
variance of g(n, 8, ) dominately determines the performance.

From the above description, it can be seen that the accuracy
of the Toeplitz approximation depends upon E[g(n, 8 )] and
Var [g(n, 0,)]. Small E[g(ngy)] or large Var [g(n, 64)]
makes the approximation inadequate and thus deteriorates the
performance of the TAM. To circumvent this problem, we
present a modification for the TAM. The clements of R are
replaced by

fm(-n)= § (—n)eix(-m) (16)
o 1 L-n
where  B(—n)= T B 1Ty

and o (—n) 2 ARG (f(—n)) represents the phase of ?M (—n).
From (9) and (16), it can be shown that the magnitude of
?M (—n) is greater than that of ¥(—n). Hence the modified TAM
(MTAM) tends to reduce the effect of E[g(n, 65,)] and
Var[g(n, 8, )] on the approximation maae 1 (15).

IV. SIMULATION RESULTS

In this section, we present several computer simulations to
illustrate the effectiveness of the decribed approaches. A
linear array with L = 20 and d =\/2 (A = wave length) was used.
The random perturbations {Ax;, Ayj}, i = 1, 2, ..., L were
generated from a Gaussian random number generator. 100
snapshots were taken to estimate the covaiance matrix R. The
size of R used for the simulations is 10 x 10. All sources are
equally powered with SNR = 10dB. Figure 1 shows the results
of the MUSIC based on R using nominal sensor locations for
searching, the MUSIC based on R using actual sensor locations
for searching, and the proposed TAM for ¢2 = 0.01A%. In this
case, two incoherent sources with 10° separation were used.
Obviously, TAM has better performance. In the next example,
two coherent sources had 10° difference in direction and the
variance o2 of random perturbation was equal to 0.01A%. The
above three approaches were used again. Figure 2 shows the
simulation results. We observe that TAM possesses the capability
to resolve coherent sources. To compare the performances
of TAM and MTAM, we present the third example. In this case,
the separation of the two incoherent sources was reduced to 5°.
Figure 3 shows the result for MUSIC, TAM and MTAM. It can
be seen that MTAM shows better performance than TAM.
Finally, we increased the oé to examine the effectiveness of
MTAM. The simulation results are shown in Figure 4. In this
case, 0% was set to 0.05A% and the two incoherent sources had
10° separation. Again, we observe that MTAM is more effective
than TAM.

V. CONCLUSIONS

In this paper, we have presented two approaches, i.e., the
TAM and the modified TAM for bearing estimation using linearly
periodic arrays. The proposed approaches do not require calibra-
tion process when arrays suffer from 2-D random perturbation
in sensor locations. Simulation examples show that the
approaches are capable of estimating bearings for coherent and
incoherent sources. Furthermore, the modified TAM appears
to be more effective than the TAM. More detailed characteristics
of the TAM and the MTAM for bearing estimation with the
presence of random perturbation in sensor locations are currently
under investigation.
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