
Abstract 

D5.5 
A New 2-D Fast RLS Algorithm 

A. M. Sequeira and C. W. Therrien* 
Naval Postgraduate School 
Monterey, California 93943 

2 2-D RLS Algorithm 

A two-dimensional fast recursive least squares algo- 
rithm is presented using a geometrical formulation 
based on the mathematical concepts of vector space, 
orthogonal projection, and subspace decomposition. 

By appropriately ordering the 2-D data, the algo- 

deterministic Normal equations. The method is fur- 

2.1 2-D Adaptive Filterillg 
In the following we consider a 2-D linear predictive 
filter of the form 

ii(n1, nz) = 
N A4 

rithm provides an exact least-squares solution to the 

ther extended to the general FIR Wiener filter and to 

aij y(n1- i, nz - j) 
i = O  j=O 

(i, j )  # (0,O) (1) 
ARMA The size and Of the and a 2-D data sequence I( L poi,lts as shown 
region for both the MA and AR ‘Oefficients Of the 

that the entire data set is in Fig, We filter can be chosen arbitrarily. 

y(n,,n) L-I  
, 1 

1 Introduction 
I 

K - l  
Adaptive algorithms have been used successfully in a 
wide range of signal processing applications involving 0 
unknown or non-stationary data. Real time imple- (a) 
mentation of these algorithms has recently become 
possible with the latest VLSI technology partly as 
a result of efficient computational algorithms such 
as the ‘fast’ recursive least squares (fast RLS). The 
fast RLS methods are based upon an elegant geo- 
metric approach involving the concepts of linear vec- 
tor spaces, orthogonality, projection operators, and 
their relation to linear least squares prediction [1,2,3]. 
The development of adaptive algorithms for two- 
dimensional (2-D) problems has been much slower 
than their development for one-dimensional (1-D) 
problems. In this paper we describe a fast RLS 
method for 2-D signals. We show that besides the 
2-D filter, the method involves the use and simulta- 
neous update of two additional multichannel filters, 
and related gain transversal filters. In this way the 
algorithm is similar but more extensive than the 1-D 
counterpart. 

Figure 1: First Quadrant ( N  + 1) x ( M  + 1) Filter 

processed by scanning along rows and that in process- 
ing the data, the data is considered to ‘wrap around’ 
at the end points in a helicoidal fashion, so the pre- 
diction filter has the support depicted in Fig. l(b) at 
the beginning and ends of rows. This is an important 
a.ssumption in developing the filter update procedure. 
If the prediction error is defined as 
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then the optimal least-squares filter is defined to be 
the filter that minimizes the accumulated squared er- 
ror 

The purpose of this paper is to describe a fast RLS 
algorithm that solves this problem. 

Because of limited space and the length and com- 
plexity of the derivation we will not be able to derive 
the algorithm here. (A complete derivation is given 
in [4] and requires several pages.) The derivation re- 
lies heavily on the use of projection operations and 
geometrical concepts; these will be more difficult to 
appreciate in this limited discussion. In what follows 
we will merely define the components of the algorithm 
and give a brief outline of its steps. 

2.2 Algorithm Components 
The key to developing a fast 2-D RLS algorithm lies in 
the consideration of a forwa,rd and a backward multi- 
channel filtering problem] and their interrelation with 
the 2-D problem. These components of the algorithm 
will be discussed with the aid of Fig. 2. 
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Figure 2: M + 1 Channel Analogy 

nnel 
1 

2 
3 

M + 1  

Let us consider a "channel" to be the ith row cov- 
ered by the mask and denote the data in the ith 
channel by yi(n) where n is the linear scanning in- 
dex n = n2K + n1. With this new notation] the 2-D 
linear prediction problem has the form 

&(n) = Z J 4  dn) (4) 
where y (n )  is the data covered by the filter mask 
(shaded in Fig. 2) and a(n) is the correspondingly 
ordered vector of 2-D filter coefficients. 

-1,N 

e1(n) = Yl(n) - Y1(n) (7) 
Let x ~ ( n )  be a (M+l)-channel signal formed by 

the data acquired by the 2-D mask when it is moved 
from n to n + 1 (unshaded boxes in Fig. 2). The 
matrix F(n)  is the set of optimal filter coefficients for 
predicting this data from the data under the filter 
mask. This prediction is given by 

2F(n) = FT(n)x',~(n) (8) 

and we define the corresponding prediction error co- 
variance matrix as C F ( ~ ) .  

A corresponding backward multichannel problem 
can be defined as follows. Let X B ( ~ )  represent the 
data left oat by the 2-D mask when it is moved from 
time n to n + 1 (data in left column in Fig. 2). 
Then proceeding as for the forward problem, define a 
matrix of prediction coefficients B(n) and the corre- 
sponding prediction error covariance matrix C B ( ~ ) .  
This prediction is of the form 

= B(n)Txo,~-l(n) (9) 

where ~ , ~ - ~ ( n )  is the data covered by the mask in 
Fig. 2 when it is moved from time n to n + 1. (This 
includes the unshaded boxes.) 

As a final step we proceed along lines similar to 
what has been done for l-D single channel problems 
in developing the fast RLS. We introduce the fixed 
n + l-dimensional vector 

- .(n) = [O] 0 ] 0 ] ~  . . , o ,  0, 0, 1IT (10) 

and consider the filter g ( n )  necessary for predicting 
this vector using all o f t h e  data up to time n. The 
estimate of ~ ( n )  is of the form 

k(n) = YO,N-l(n)g(n) (11) 

where Yo,N-~(~) is the data matrix whose rows are 
the transposed vectors $,N-l(k), IC = 0 , .  . . ,n.  This 
filter g is known as the gain transversal filter and - 
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its consideration leads to  a method for quantifying 
the angular change between the subspaces associated 
with data matrices at times n and n - 1. From geo- 
metric arguments it can be shown that 

(12) 
T r (n> = 1 - yo,N-l(n)g(n) = cos2 0 

where 6 is the angle between ~ ( n )  and the vector 
normal to the data subspace. Updating this filter 
and the associated angular change parameter y(n) is 
key to updating the 2-D filter. 

One further set of terms is necessary for the 2-D 
fast RLS problem. This is the concept of the ez- 
tended gain transversal filter g"(n).  Its interpreta- 
tion is that of estimating E(;) from the extended 
data sets {y (n )  is all of the data 
shown in Fig. 2 at time n (both shaded and unshaded 
boxes). Since the data for ~ ~ , ~ ( n )  is defined by cate- 
nating rows of the extended area, consideration of 
the extended problem necessarily requires the use of 
forward and backward permutation matrices QF and 
Q B  which are defined implicitly by 

( n ) }  where y 
-0,N -0,N 

3'0,~(n) = [xF(n),Yl,N(n)I 

= [yO,N-l(n),xB(n)] @ E  (13) 

Certain partitions M(n) and m ( n )  of the extended 
gain (see Eq. 20 below) corresponding to the parti- 
tioning [ ~ ~ , N - ~ ( n ) , x g ( n ) ]  of the extended data are 
needed in the algorithm. Finally f ( n )  is the an- 
gular parameter corresponding to the extended gain 
transversal vector. 

2.3 Steps and Equations 
To begin the algorithm the four filters a,F, B, and g 
are set to zero for n = 0. The angle parameter y(0) is 
set to 1.0 since the initial data is zero and since all of 
the subspaces associated with previous data are the 
null space. Since a positive forward prediction error 
variance is necessary for the algorithm to start E,' is 
set to a diagonal matrix with elements 1/S where S is 
a small positive constant. (The backward prediction 
error covariance matrix Ee is not explicitly required 
in the recursion.) For the computational analysis we 
define 11'1 = M + 1 (the number of channels) and 
11'2 = ( M  + 1)(N + 1) - 1 (the number of 2-D fil- 
ter parameters). The terms to be computed at  each 
iteration, and their formulas are given below. 
A priori 2-D prediction error (11'2 operations): 

e l (+ - 1) = Yl(n) - &Jn)a(n - 1) (14) 

2-D filter update (11'2 operations): 

- a(.) = g(n - 1) +g(n  - l)el(nln - 1) (15) 

A priori multicha.nne1 forward prediction error (K1 Ii'2 

operations) : 

e ~ ( n l n  - 1) = X F ( ~ )  - FT(n - l ) ~ , , ~ ( n )  (16) 

Multichannel forward prediction error (11'1 opera- 
tions): 

eF(n)  = eF(nln - l)y(n - 1) (17) 

Inverse error covariance matrix for the multichannel 
forward filter (1.5K; + 2.51<1 operations): 

C;'(n) = E,'(.- 1) (18) 

- ~ , ' ( n  - 1)eF(n)e$(n)E,'(n - 1) 
r (n  - 1) + eT.(n)C,'(n - l)eF(n) 

Multichannel forward filter update ( I i ' l K 2  opera- 
tions): 

~ ( n )  = F(" - 1) + - g ( n  - l)e$(nln - 1) (19) 

Extended gain transversal filter (11'; + K l K 2  opera- 
tions) : 

(subscripts M + 1 represent matrix dimensions) 
Extended angle parameter (11'1 operations using pre- 
vious results): 

y'(n) = r(n - 1) - e$(n)EF'(n)eF(n) (21) 

A priori multichannel backward prediction error 
(11'1 K 2  operations): 

eg(nln - 1) = .',(.I - BT(n - l)SroT,,-,(n) (22) 

Angle parameter (IC1 + 1 operations): 

y(n) = y'(n)[l - e',(nln - l)m(n)]-' (23) 

Gain transversal filter (11'111'2 + 11'2 operations using 
previous results): 

- dn) = [M(n) + B(" - l )m(n>l  
x (1 - ez(n1n - l)m(n))- '  (24) 

Multichannel backward filter update ( K l K 2  opera- 
tions): 

B(n) = B(n - 1) + - g(n)eg(nln - 1) (25) 

The total number of operations (multiplications or 
divisions) required per iteration by the algorithm is 

2.5K: + 611'111'2 + 4.51<1 + 311'2 + 1 (26) - 
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3 ARMA Model Extensions 
The ARMA version of the 2-D fast RLS can be viewed 
as follows. Let us call the output or observed data 
yl(n) and the input data wl(n).  For the present let 
us assume that this latter sequence is also known or 
observed. Let us separate the coefficients that operate 
on the two different sequences and call g(n) the vector 
of AR coefficients of the filter, and b ( n )  the vector of 
MA coefficients of the filter. As before, we develop 
this extension of the 2-D fast RLS to ARMA models 
assuming a first quadrant ( N  + 1) x (A4 + 1) quarter 
plane mask for both the AR and MA components of 
the filter, noting that more general forms are possible. 
Using the scanning index n defined before, we proceed 
by defining an ARMA prediction filter of the form 

T 
Y1(n) = x:,,c., a(n> + W l , N ( 4  b(n) (27) 

with ~ ~ , ~ ( n )  and ~ ~ , ~ ( n )  defined using 
dering as in (5). We want to find g(n)  
minimize the sum of squared errors 

n 

i = O  

where the prediction error is given by 

the same or- 
and b(n) to 

(28) 

(29) 

This can be written in  vector notation as 

with 

s1(n) = y1(4 - Z l ( 4  (31) 

We can combine the AR and MA coefficients in one 
single vector ~ ( n )  as 

c(n) = [2(4,bT(41T (32) 

The data under the mask can then be expressed as 

Z1,Nb)  = [x:,N(41W:,N(11.)1T (33) 

Now we have for the estimate of yl (n)  

- Y1b) = Zl,N(n) d.1 (34) 

where Z 1 , ~ ( n )  is the data matrix 

2 1 , N ( 4  = [ Y l , N ( n ) , w l , N ( n ) l  (35) 

formed by Y 1 , ~ ( n )  and W l , ~ ( n ) ,  the data matri- 
ces whose rows are the transposed vectors vectors 

x T N ( k )  and xEN(k), k = 0,. . . , n. The least squares 
solution for ~ ( n )  is given by the pseudo-inverse of 

c(n)  = ( z T , N ( n ) ~ i , N ( n ) ) - l  zT,N(71)xl(n)(36) 

After defining new projection matrices and transver- 
sal filter operators associated with the new data 
matrices, the algorithm to recursively update c(n) 
closely follows the procedures developed above. 

4 Conclusions 
A two-dimensional fast recursive least squares algo- 
rithm was described in this paper. The derivation 
is based on the relation between least squares pre- 
diction and the concepts of orthogonality associated 
with vector spaces. The ordering necessary to develop 
the recursive algorithm was imposed on the data by 
using a linear scanning index. 

The algorithm has been compared in performance 
with a more standard form RLS algorithm for 2-D and 
a 2-D LMS algorithm [4] A substantial reduction in 
computational cost is obtained when compared with 
the basic 2-D RLS algorithm. The 2-D fast RLS al- 
gorithm requires on the order of 6 K l K z  arithmetic 
operations per iteration compared with 1.5K: for the 
basic RLS, where IC1 is the number of channels de- 
fined for the 2-D fast RLS algorithm and li'~ is the 
total number of coefficients in the 2-D filter. The 
2-D LMS algorithm due to its simplicity, is more eco- 
nomical than our algorithm in terms of computational 
cost, but lacks the excellent convergence performance 
experienced for the 2-D fast RLS. 
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