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ABSTRACT

This paper describes a Japanese continuous speech recog-
nition system based on phonctic hidden Markov models
(HMMs) combined with two levels of grammatical represen-
tations: an intra-phrase transition network grammar and an
inter-phrase dependency grammar. A joint score, combin-
ing acoustic likelihood and linguistic certainty factor derived
from phonetic HMMs and two levels of grammar, is maxi-
mized to obtain the optimal recognition results of sentences.
Two efficient algorithms, bi-directional network parsing and
breadth-first dependency parsing, are devised to globally opti-
mize the joint score. The system attains a phrase recognition
rate of 80.8% with the intra-phrase parser only, and 86.8%
with both the intra-phrase and inter-phrase parsers, where
the perplexity of the phrase syntax is 40. This result shows
the effectiveness of the two-level grammar approach.

I. INTRODUCTION

Linguistic processing for speech recognition has been in-
tensively studied from various approaches such as stochastic,
syntactic and semantic grammars [1-3]. These grammars have
advantages as well as limitations. Syntactic grammar is effec-
tive in describing the structure of phrases, while supposedly
inadequate for describing the structure of whole sentences.
On the other hand, case frame grammar [4] is suitable for
governing the representation of the sentence structure. Thus,
combining different types of grammars is practical for linguis-
tic processing of speech recognition.

In Japanese sentences, which are sequences of minimal
phrases, the phrase order is much less constrained than in
English. On the other hand, the word order of phrases, which
are short sequences of words, is very regular, and the sentence
structure is ordered by semantic dependency between phrases.
Syntactic constraints are useful in recognizing specific tasks or
short-duration utterances. However, particularly in sentence
recognition for phrase-order-free languages such as Japanese,
semantic constraints are more powerful than sentence syntac-
tic constraints.

We have developed a Japanese continuous speech recogni-
tion system which obtains the most likely sentence results tak-
ing account of acoustic, syntactic and semantic factors based
on a two level grammar approach. This approach uses two
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grammars which are an intra-phrase transition network gram-
mar for phrase recognition and an inter-phrase dependency
grammar for sentence recognition. The former is a syntac-
tic grammar and the latter is a semantic and loose syntactic
grammar. The dependency grammar is compatible with the
case grammar, and has robustness against missing or misrec-
ognized words.

Two efficient parsing algorithms are devised for each gram-
mar. They are a bi-directional network parser and a breadth-
first dependency parser.

The syntactic structure within phrases is represented by
recursive transition networks (RTNs) to concisely cover a
variety of phrase structures. With the network parser, in-
put phrase utterances are parsed bi-directionally both left-
to-right and right-to-left to reduce the amount of computa-
tion, and optimal Viterbi paths are found along which the
accumulated phonetic likelihood is maximized.

With the dependency parser, inter-phrase dependency
structures within a sentence are analyzed. Semantic certainty
factor is determined taking into account grammatical cases
incorporated in word dictionaries. The joint score, obtained
by combining accumulated phonetic likelihood and seman-
tic certainty factor derived from the dependency grammar, is
maximized to obtain the optimal solution. The dependency
parser utilizes efficient breadth-first search and beam search
algorithms.

The approach described here is highly suitable for speech
understanding systems since it can use semantic dependency
structures. Furthermore, it is applicable to a wide range of
tasks since it does not need any sentence syntax.

II. SPEECH RECOGNITION SYSTEM USING
TWO LEVEL GRAMMAR

A block diagram of the system is shown in Figure 1. Input
sentences are uttered phrase by phrase. After feature parame-
ter extraction of the utterance, the parameter sequence is con-
verted into a vector code sequence. Next, phonetic likelihood
is calculated for every possible duration to obtain likelihood
matrices for phoneme candidates, based on HMMs. Phonetic
duration time can be easily controlled by giving maximum
and minimum duration times to each phoneme. Next, phrase
likelihood is calculated based on the phonetic likelihood ma-
trices. The verb and adjective entries in the dictionary have
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Figure 1:  Block diagram of the continuous speech recognition system
grammatical cases, and the noun entries are accompanied by beginning o s end
semantic primitives. Next, the top candidates of each likeli- S .r”_"j@; """"""" > @ i

hood are generated in a matrix form. The number of candi-
dates is optional. Finally, using this matrix and the depen-
dency grammar, the parser extracts the most likely sentence
of a phrase sequence and its dependency structure.

III. INTRA-PHRASE SYNTACTIC GRAMMAR
3.1 Syntactic Constraints of Phrases

Japanese phrases are composed of a stem part and a suffix
part. The stem part is a verb, a noun, or an adjective. The
suffix part is composed of suffixes such as auxiliary verbs and
particles. Although connection of these words is very regu-
lar, there are many kinds of connection rules. Thus, to cover
concisely this variety, the syntactic structure is represented
by RTNs composed of sub-networks.

3.2 Speech Recognition of Phrases

When the phrase parser expands the RTNs to a single net-
work in the phrase recognition process, the complexity of the
phrase structure makes the network too large. Recognition
is also time consuming. To overcome these problems, a bi-
directional parser for RTNs is developed. This parser parses
the input left-to-right in the stem part, and right-to-left in
the suffix part. Bottom-up parsing is carried out for the stem
words and the last suffixes of the suffix part, and top-down
parsing is carried out for preceding suffixes. After calculating
top-most m word candidates for each sub-network based on
the Viterbi algorithm, the top-most m phrase candidates are
generated.

A simple example of the phrase syntax and parsing flow
is shown in Figure 2. S and B correspond to networks of
the syntax, and A, C, D and F correspond to word sub-
dictionaries. Processing flowis A = D - E—->C — B— S5,
and the processing order number is shown in the figure. First,
the stem words, corresponding to A, are processed left-to-
right from the beginning of speech. Next, the last suffixes,
corresponding to D and E, are processed right-to-left from
the end of speech. The calculation result of B is generated
by combining the results of D, £ and C. The likelihood cal-
culation of C, namely the likelihoods of ¢1 and ¢2, is carried
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‘modify one and only one later phrase.

S — AB

B —C-(D|E)
A—alla2; C —clle2
D —dl|d2; E —elle2

Figure 2: Example of phrase recognition process

out at every top-down scan of C. Finally, the phrase recogni-
tion results are generated by combining the results of A and
B. In the figure, arrows —, «, T, | indicate the left-to-
right process, the right-to-left process, the bottom-up control
and the top-down control, respectively.

IV. INTER-PHRASE DEPENDENCY GRAMMAR

4.1 Semantic and Loose Syntactic Constraints

Dependency grammar is based on semantic dependency re-
lationships between phrases. The syntactic rules satisfy the
only two constraints. First, every phrase except the last must
This modification
is called a dependency relationship or dependency structure.
Second, no modification relationship between phrases in the
sentence cross.

The semantic certainty factors of the dependency structure
are easily provided using grammatical cases. There are two
kinds of factors. One is associated only with dependency
relationships of the modifier and modificant phrases: agree-
ment between the semantic primitive of the modifier and that
required by the modificant, agreement between the case of
modifier and that required by the modificant, idiomatic ex-
pressions and so on. The other factor is associated with all



the dependency structures of the phrase sequence: a phrase
with the obligatory case required by the modificant, no mod-
ification of the same phrase by different phrases having the
same case, simplicity of the sentence structure and so on. The
certainty factor values for these items are given heuristically.

4.2 Parser for Dependency Structure Grammar

This parsing is equivalent to solving the following objec-
tive function using the constraints of dependency structure
grammar.

N

T= max[z c(z;,p)

{P 3=1

N
+ max z dep(wy ;-1 m)vl"yldd‘)] (1)
3=

where 1 < j < N, 1 <p< M, Nis the number of input
phrases, M is the maximum number of recognition candi-
dates for each uttered phrase, z,, is a candidate of the j-th
input phrase with the p-th best likelihood, and c(z;,) 1s its
log-likelihood. A phrase sequence with one phrase candidate
for each i-th to j-th input phrase and whose last phrase is
z,, 15 denoted by X; ;. Yi;p is one of the dependency struc-
tures of X;,, Wi, is the set of phrases that modify z,, in
the sequence X;;,. Here, dep(w, z|Y) is the linguistic cer-
tainty factor of dependency relationships between w and x
taking Y into account. The first item of the term on the
right in Eq.(1) is the summation of phonetic likelihoods of
the hypothesized sentence composed of its phrase sequence,
and the second item is the summation of linguistic certainty
factor. Maximizing Eq.(1) gives the sentence and its depen-
dency structure as the speech recognition result.

To solve Eq.(1) effectively, a fast parsing algorithm using
breadth-first search and beam search was developed. This
algorithm is based on the fundamental algorithms [5,6]. Al-
though it offers sub-optimal solutions, it is practical because
it requires much less processing than the depth-first search.

The breadth-first algorithm is formulated as follows. Its
derivation is described in detail in reference {7].  Fist,
dep(w, z|Y) can be divided into two terms.

dep(w ;-1 IJaPlyliJ’)
Z depl(z,z;p) + dep2(Y1,p. 255)

T€wy j-1

= (2)
where depl is the certainty factor associated with dependency
relationships of only the modifier and modificant phrases, and
dep? is the certainty factor associated with Y;,,. Using no-
tation S(1,z,,). the objective function’s value of a phrase
sequence including the top phrase to z;, in the sentence, and
D(i,3,,), the value of a phrase sequence not including the
top phrase (i # 1), the recursive relation using beam search
are derived.
S(1,z,p,7) = r";mal.xg[S(],, Thg,71) + D(k+1,2;5,72)
gq.,ri,r
+depl(zx.q25p) + dep2(Y1, 9, z;5)]  (3)

D(i,z;p.7) = r‘:rnaixg[S(i,mk_q.rl) + D(k+1,2;5,12)
i

+depl(Tkq. “:J.p) + dep2(Yi kg ”k.q)] (i# 1) (4

591

1 2 . . 1 -
] N end phrase
N SIS
- e S x, )
| i N
1 kN E ]
D (i Lo
(i X )
N
beginning phrase
order of
' _candidales beam
Sor 1
oY 1
M L

Figure 3: Configuration of parsing table

where i < k< j—-11<g< Mand 1 < rrl1,72 < L.
Here, r, 71 and 72 indicate the beam ranks, L is the maximum
number of beams, S(1,z;,.7) and D(i.z,5,7) are the r-th
value of the element whose phrase sequence is X ;, and the
dependency structureis Y; ; 5. Here, rt% max[-] is a function for
deriving the r-th best value. When Eq.(3) or (4) is calculated,
Y, is stored for use in the later stage of evaluating dep2.

Initial values are given as follows.
if i = 1 (top phrase)

S(1, 71, 1) = c(z1,) + dep2(Yi1p. T1p) (5)

if 1# 1 (not top phrase)
D(i,2:,,1) = c(z:p) (6)

After calculating the recurrence relation. the value of the ob-
jective function is obtained:

(7)

where 1 < p < M. The best sentence and its dependency
structure are given through Y v, where p maximizes Eq.(7).
The parsing table is shown in Figure 3 and the parsing al-
gorithm is shown in Table 1. In Figure 3, the first row cor-
responds to S, and others correspond to D. The phrase se-
quence for the first to N-th phrase corresponds to the right-
most top cell. Each cell is composed of M sub-cells for the
number of candidates, and each sub-cell is composed of L
sub-cells for the beam width. The arrows show the sequence

of calculating the recurrence relation. The processing amount
order for this algorithm is O(N3M?L?).

T = max(S(1, 2. 1)]

V. SPEECH RECOGNITION EXPERIMENTS

An input utterance was sampled at a rate of 12 kHz.
One frame was extracted every 10ms with a 30ms Hamming




Table 1. Parsing algorithm

{1} : Loop for the end of phrase of the partial sequence
DO {2} to {5} forj=1,2,..., N

{2} : Loop for the candidates
DO {3} to {5} forp=1,2,.... M;

{3} : Setting the initial value
SET S(1,z1,5,1) or D(7,2;,.1) (Eqs.(3),(6))
if j =1, go back to {2}.

{4} : Loop for the beginning phrase of the partial sequence
DO {5} fori=j—1,j—2....1

{5} : Computation of recurrence relation
{ Loop for the end phrase of the former sequence )
{5-1}:DO {5-2} to {5-4} for k=i, i+1,...,5-1
{5-2}:DO {53} to {5-4} forg =1,2,..., M
( Loop for the beam width )
{5 -3}:DO {5-4} forri=1,2,.... L
{5-4}:forr2=1,2,...,L
* Evaluation of S(1, 21,5 7) or D(j. 2;,,7) taking
account of ¥y j, or ¥, x4 (Eqs.(3).(4))
* Store of ¥ijp

{6} : Acquisition of the parsing results
* Detection of value p maximizing Eq.(7)
* Acquisition of the phrase sequence and its
dependency structure using ¥i v p

window and converted into 34 acoustic feature parameters:
power, 16 LPC cepstra, A power and 16 A LPC cepstra [8,9].

In the training process, 216 phonctically balanced words
were used. These uiterances were manually labeled using
25 phoneme symbols including silence. Each phoneme was
modeled by HMM and had 4 states and 7 transition paths.
The parameter sequence was converted into a vector code
sequence and a vector codebook composed of 256 prototype
vectors was generated. Training of each HMM was carried out
using the forward-backward algorithm, and the code sequence
for training was cut out based on the phonetic labels. Output
probabilities were floored after training.

In the testing process, input sentences were uttered phrase
by phrase. Acoustic feature parameters of the input were gen-
erated in the same manner. These parameters were converted
into a code sequence using the same speaker’s codebook gen-
erated in the training process.

First, talker-dependent preliminary recognition tests were
done on two sets of 216 words, one for training and the other
for test, uttered by 10 speakers, 5 males and 5 females. The
system altained a word recognition rate of 99.9% for the train-
ing set and 98.4% [or the test set.

Next, talker-dependent recognition tests were performed on
100 sentences (including 668 phrases in an essay) uttered by
the same speakers. The word dictionary had 360 entries and
the perplexity of the phrase syntax was 40. The phrase syn-
tax was capable of generating about 10* hypotheses for each
phrase of speech. The number of candidates, M, was 5, and
the beam width, L, was 8. Certainty factor values were em-
pirically determined through feature-based speech recognition
[7] of technical literature.

The systemn attained a phrase recognition rate of 80.8% us-
ing the intra-phrase syntactic parser only. The dependency

Table 2: Speech recognition results

data 216 words [ 668 phrases
training | test
dependency analysis - without | with
recognition rate 99.9 98.4 80.8 86.8
(top 5) 100 100 96.8 -
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parser increased this rate to 86.8%, as shown in Table 2. This
result shows the effectiveness of the two-level grammar ap-
proach.

VI. CONCLUSION

This paper described a Japanese continuous speech recogni-
tion system using an intra-phrase transition network grammar
and an inter-phrase dependency grammar. Input utterances
were recognized efficiently to determine the best sentence us-
ing a bi-directional network parser and a breadth-first de-
pendency parser. Recognition experiment results showed the
elfectiveness of the inter-phrase dependency grammar. The
parser for this grammar can be easily expanded for sentence
speech recognition [7).

Further development is currently in progress to refine pho-
netic models based on continuous HMMs which take context
dependency into account.
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