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ABSTRACT

In this , we consider multiple-sensor processing and
developa method for representing multiple-sensor data.
When resolution varies between sensors, such amultiple-sensor
system can be viewed as les of a scale-space signal
representation. We show that if the spatial transfer function of
the sensors are Gaussian, then scale-space filtering can be used
to recover small s:lale A(sﬁne molutlion)f infgmlaetion through
extrapolation in scale. As an example of multiple-sensor pro-
cessing, we consider multispectral processing of remote sensing
in which images of surface scenes are simultaneously generated
at different (center) frequencies.

INTRODUCTION

Scale-space filtering was introduced in the early 1980’s as
a technique for signal analysis over multiple scales [1,2]. The
origins of scale-space filtering lie in the edge detection concerns
of computer vision but have since been applied to other prob-
lems in computer vision [3,4] as well as a model for multire-
solution systems [5]. In this latter context, scale-space analysis
provides a mathematical framework for data integration in
multiresolution systems that are characterized by classes of
sensors varying along a dimension called scale. For example,
multispectral analysis in remote sensing requires integration of
g:: from fglnmnt-Q lbnndhmmd sensc:'tg thaltl varyulin cenlwr

uency [6]. A simple approximation of such a multiresolu-
tion system is that of a multiscale system in wgch a single
parameter, e.g., bandwidth, characterizes the primary
differences among each of the bandlimited sensors. Under this
approximation, the data from each sensor represents samples
of the scale-space representation of the imaged object.

Formally, scale-space filter theory describes the effects of
filter scale on functions e(x,s) of the form [1,2,7],

e(x,s)m0{r(x,s)},

where O(.} is a linear operator and r(x,s) is a filter output signal
given by,

rix,s) mh(x,s)%i(x).

The function i(x) is the input signal and h(x.s) is a family of
ﬁltenwhichispmmeﬁuindbyaoonﬁnumuvuiables.’{his
variable s is inversely i to filter bandwidth and
denotes the scale of the A
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Scale-space filtering represents the signal i(x) by the two-
dimensional function r(x,s) and draws inferences about varia-
tions of i(x) from the threshold crossing contours of e(x,s). The
location of these threshold crossings, x(s), is dependent on scale
and calculated from

e(x(s),s) =vx(s)), )

for some specified threshold function ((.). The threshold
crossings form contours in the x-s plane. In the nomenclature
of scale-space theory, the x-s plane is the scale-space, the
function e(.,.) is the scale-space image, and the threshold
crossing contours, x(s), are the fingerprints.

Although Zuerndorfer and Wakefield [7] have shown that
the requirements can be relaxed while still preserving major
pointsof the theory, the strongest theorems of scale-space signal
representation [2,8] assume Gaussian kernels of the form

h(z,s)=—% m{-lx—z @
T sk s I’

and a Laplacian operator for O{.}. In this case, the fingerprints
present a continuous track of the inflection points of the signal
i(.) as it is filtered over scale. The inflection points can be used
for locating "edges" in the signal [9).

Given the use of Gaussian kernels, Gaussian filtering can
be used to degrade the resolution (broaden the PSF) of fine- -
resolution sensors in multiresolution systems to match that of
a coarse-resolution sensor. Alternatively, given the features of
a signal measured by a coarse-resolution sensor, it is useful to
register their locations with signal features measured by fine-
resolution sensors. Modelled as a multiscale system, these two
problems represent interpolation and extrapolation,
respectively, of the sampled fingerprints. In the following, we
present a formal development of extrapolation in scale-space
and then apply extrapolation to multispectral processing of
remote sensing [6].

EXTRAPOLATION IN SCALE-SPACE

Extrapolation concerns determining the threshold crossing
contours, x(s), given by,

h(x(s),5)%ix(s)) = r(x(s), ) = oux(s)), 3

where a(,) is a threshold function. The function i(.) is an
ind!cmorcompocedofalineneombimﬁonofsingle sensor
data,



N
i) = Z a;i,(.),
j=1

where i(.) is the ideal output signal from the j® sensor, and the
’s are coefficients. The ion i(.) is the image output from
¢ sensor for a device having inPuu‘tesimal spatial resolution.
Without loss of generality, the sensor data are ordered by
increasing scale of the sensor. Comparing (3) with (1), the
operator O{.} in (3) is the identity.

The fingerprints x(s) in (3) are estimates of boundary
locationsinig.). True boundaries occur between surface regions
having differenti(.) values, so that boundaries occur at x values
where if.) crosses the threshold function,

il(X )=0(x). @
The threshold function a.) is a linear function of x.

In general, iy(.) cannot be processed directly due to the finite
PSF of the sensor. However, in the absence of noise, the
threshold crossings of (.,s) approach those of if.) as s =0,
since the kernel h(.,s) approximates a delta function as s — 0.
To better approximate boundary locations, we seek x(s) for as
small a scale as possible. If s is the finest scale at which data
from the j* channel is available, and s, < ... < sy, then x(s) can
only bedetermined fors 2 sy. Howevers, <sy, and the boundary
estimate is improved if there exists a threshold function B()
such that,

h(u(s),s)*i,(u(s)) = p(u(s),s) = P(u(s)), (&)}
where u(s) are the fingerprints derived from (5), and

u(s)=x(s) for sy2s2s, ©)

Note that u(s) for a particular threshold function B(.) need only
approximate x(s) over part of a single contour, and that different
threshold functions are used to approximate x(s) for different
contours,

To demonstrate the signal and threshold requi

requirements %0
achieve (6), consider the Taylor expansion of x(s) about s,,

X(8) = x(8o) + (s = 5)x"(59) +(—s-2i)zx”(s,,)+ wee (D

By the implicit function theorem [10],

S Try ey @)

x”(So) = (8b)

(7o S0) = O (%0)) (X”(50)) + 27,y (s S0)X " (S0) + 7. (X )
o, (%) -7, x(xhsﬁ) ’

where x, = x(s,); subscripted variables indicate partial differ-
entiation. In (3) the threshold function 04.) is a linear, so that
a,(.) = A for some constant A, and 0,(.) = 0. By solution to the
heatequatiou.theuseofaGaussiankcmdyielda.
7,(X0» S0) = $o7.a(Xen So). As a result, (8a) can be written as,

x'(s@:-%%’. %)
- and (8b) can be written as,
x“(s)) = (9b)
T (s $0) (" (50)) + 2507 oy (g S0)X " (S) + ST com (Ko So)
A-r, x(xm SO) )

Repeating the steps above for u(s) yields,

—c )2
u(s)=u(sy) +(s -so)u’(s°)+(s—£°—)-u"(so)+ ..., (10)

2
where,
oD cx (s S)
"(8g) = ——————, 11
wls) P:(utg, o) (1a)
u’(sy) = (11b)

Px(1dey S0) (4”(86)) + 25D (ge SoJ” (S0) + S2 s (b So)
B - p, (g, S0)

and u, = u(s,). The threshold function B(.) is linear, so that
B:(.)=B for some constant B. Thus, for u(s) to approximate
x(s), it is necessary that,

x"(s)) =u’(s) and x"(s,) = u"(s,)

’

or,
hxs)* Six)
A=-h(x, s 2ix)

(12)

R, ) i)
B -h(x,5)* £i(x)
EXAMPLES

We apply the results of the previous section to a multi-
spectral system that integrates data from N sensors, where each
sensor operates at a different (center) frequency. In this system,
each sensor receives energy using an aperture, e.g., devices such
as lenses in optical applications, antennas in microwave

lication, and arrays in sonar m?plications that collect
:ggated' energy that is emitted or reflected from a subject of
interest. In this system, as the j* sensor is scanned over a subject,
the output signal is the convolution of the spatially varying
radiation intensity of the subject with the radiation pattern
(antenna pattern) of the aperture. The radiation intensity of the
subject is equivalent to the scale-space input for the j* sensor,
ii(.). The radiation pattern of the r'mm is equivalent to a
scale-space filter impulse response of the j* sensor h(.5,), where
thescaleofﬂxeimpulsempomc,s,.isthewidth(beamwidﬂx)
of the radiation pattern; 8, is proportional to the wavelength of
the sensor. In this system, true regional ies occur at
le(v;:l crossings of i(.), and are approximated by the fingerprints
x(8).

A class of functions for which (12) holds is that where
different sensor inputs, ij(-), are scaled versions of each other.
In this case, the indictor is given by,

for n=1,2,3.



i =29k @) (138)
and the finest scale (highest frequency) input signal is given by,
i(x)=aK(x), (13b)

foran arbitrary function K(.). The significance of such functions
can be seen in multiplicative models,

) =10R(x),

as are often used in image processing and remote sensing. In
active remote sensing systems, I(.) and R(.) are surface illu-
mination and reflection functions, respectively. In passive
systems, I(.) and R,(.) are surface temperature and surface
emissivity, respectively. In both systems, Ry(.) is a function of
the surface type and is dependent on frequency. As a result, the
indicator is given by,

i[(x) = IEI(I)R,(I) (14)

An example of a surface satisfying (13a) and (13b) is one
consisting of a single surface type, and a spatially varying
illumination intensity or surface temperature.

Another class of functions that satisfies (12) is quadratic
functions. In remote sensing applications, such signals occur in
passive systems where surface and surface emis-
sivity change linearly in the vicinity of a boundary [11]. In this
case, I;(.) and Ry() are linear,

Ix)=ox +B
R;(x) = opx + By

so that,
i) = (S a4 (Zbi)e +(Z¢) (168)
and
ix)=ax’+bx +c, (16b)
where,
@; = OuyOty;
b; = 0By + Byony;
6= BIBR,’ .

A simplified example of a one-dimensional surfaces model
that satisfies (16a) and (16b) is shown in Figures 1-4 (this model
is derived from [11]). In the figures, the indicator is composed
of data from two sensors,

i) =iy (x) = iy (x), an

where the scale of sensor 1 is less than the scale of sensor 2. In
Figures 1-4, the functions i)(.) and i,(.) are quadratic in the
vicinity of regional boundaries. The surface type changes at
x=125, so that i,(.) and iy(.) exhibit different behavior in the
vicinity of boundaries for x<125 and x>125 (Figure 1). A
threshold level is selected to locate a boundary around the
surface region with a low iy(.) value. The corre ing fin-
* gerprint is shown in Figure 2. Figure 3 shows the 1,(.) function

and threshold function, and the corresponding fingerprint is
shown in Figure 4. Comparing the fingerprints of Figures 2 and
4 shows that the fingerprint of i,(.) (Figure 4) is a reasonable
match to the fingerprint of iy(.) (Figure 2), particularly at smaller
scales. Since the fingerprints of if.) cannot be calculated at
small scales, the fingerprints of i,(.) can be used to approximate
the fingerprints of if.) at small scales.

CONCLUSION

For the cases of Gaussian filtering and linear threshold
crossings, we’ve demonstrated that extrapolation of scale can
be performed in multispectral processing for signals that satisfy
(12). The fingerprints of extrapolated signals approximate the
actual multi fingerprints at small scales, and can be used
when the multispectral fingerprints are not available.

In showing the approximation of extrapolation fingerprints
to multispectral fingerprints, only three terms of the Taylor
expansion were exploited (i.c., (12) was satisfied for 3 terms).
It can be shown that N>3 terms of a Taylor expansion can be
used if (12) is satisfied for N terms. As a result, in the absence
of noise, extrapolation fingerprints that match the actual mul-
tispectral fingerprints at N>3 terms of a Taylor expansion will
provide a better approximation at small scales.
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Figure 1. Sensor input signals, indictor, and threshold. Figure 2. Indicator fingerprints.
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