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ABSTRACT 

This paper describes the acoustic processor of a Spanish 
Continuous Speech Recognition System based on Demisyllable 
units. The acoustic processor is based on a spotting algorithm 
which takes as input the unknown utterance, the HMM of the 
reference demisyllables and the lexical knowledge in terms of a 
finite state network. The spotting algorithm is a modified version 
of the one-step Viterbi algorithm with multiple hypothesis [l]. 
The output of the system is a lattice of word hypothesis suitable 
to be parsed by a linguistic analyzer. The proposed acoustic 
processor was tested using the integers from 0 to lo00 and the 
telephonic numbers in a speaker independent approach. The 
results show the good performance of the demisyllable as 
recognition unit for the Spanish language and the efficiency of 
the spotting algorithm. 

1. INTRODUCTION 

One of the most important problems in speech recognition 
is to build a robust acoustic processor. The definition of an 
acoustic processor for continuous speech recognition involves 
some questions related with the language to be recognized and 
the architecture of the system. The phonetic unit, the lexical 
knowledge, the speech model and the mechanism of recognition 
are some of those questions. 

During the last years, many answers have been proposed 
to those questions and suitable systems have been built [2,3,4]. 
Most of those systems have a common factor, they are based on 
phonetic HMM modeling of the speech. This approach implies 
the definition of the phonetic unit which is highly depended on 
the language and vocabulary to be recognized. The Spanish 
language has a syllabic character which suggest to use the 
demisyllable as phonetic unit. The inventory of Spanish 
demisyllables is relatively small: less than 750 units. Thus, 
demisyllables afford a convenient phonetic coding of Spanish 
utterances. The lexical knowledge describes words in terms of 
demisyllables. This information is compiled in a finite state 
network infered from the word vocabulary [5] .  This approach 
provides a compact representation of the lexical knowledge in 
terms of predecessors and successors of the phonetic units. The 
last question is how to locate the words of the vocabulary in the 
speech signal to give a lattice of word hypothesis. Our proposal 
is to use a word spotting algorithm driven by the lexical 
knowledge. It takes as input the unknown utterance, the HMM 
of the demisyllables and the lexical knowledge. The output is a 
lattice of word candidates. The spotting algorithm proposed in 
this paper has the following features: 
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which is driven by the 
state network. 

2.1. Signal Processing 
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Figure 1. Acoustic processor architecture 

2.2. Phonetic unit 

Demisyllables afford a convenient phonetic coding of 
Spanish utterances, according to the syllabic character of this 
language. In order to define the demisyllable set, every possible 
syllable was divided by the strong vowel into an initial 
demisyllable and a final demisyllable; accordingly, we 
distinguished between stressed final demisyllables and 
unstressed final demisyllables. The main cues of prosodic stress 
in Spanish are pitch, loudness and syllable length; as pitch and 
loudness information are not considered in our system, the main 
difference between stressed and unstressed final demisyllable is 
the length of their references. 

2.3. HMM demisyllable units 

The structure used for the HMM is the typical left-to-right 
structure, that allows to skip one state when the model makes a 
transition between states. The emission of symbols is associated 
to the states, that issue three independent symbols (spectrum, 
spectrum difference and energy difference) when they are 
visited.The number N of states was determined [7] as a function 
of the average length of the demisyllable, according with table 1. 

Finally, each demisyllable reference is composed by a 
HMM and the mean and variance of the length of the 
demisyllable. 

Average 

Number o 
states 

Table 1.Criterion to select the number of states of HMM 

2.4. Data bases 

Three data bases have been used for testing the system: 

DB1) 40 strings of integers uttered by ten speakers (SO to 
S9, 5 male and 5 female), for example, 25011196, 1019/05/70. 
This data base was segmented by hand into demisyllables and 
used for training the HMM of the demisyllable units. The 

articulation rate of speech spanned from 5 to 7 syllables per 
second. 

DB2) Telephone numbers uttered by nine speakers (SO to 
S1 and S10 to S16, 5 male and 4 female). The telephone 
numbers were uttered as chains of numbers from 0 to 99, for 
example, 3/12/36/54,58/66/1519 and so on. This data base was 
used for testing the system. The Vocabulary is composed by 25 
words with 61 demisyllab1es.The articulation rate of speech 
spanned from 5 to 7 syllables per second. 

DB3) 44 Integers from cero to one thousand uttered by 
ten speakers (SO to S 1 and S 10 to S 17,6 male and 4 female), for 
example, 495 /four hundred and ninety five/. This data base was 
used for testing the system. The vocabulary is composed by 32 
words with 66 demisyllables. The articulation rate of speech 
spanned from 4 to 7 syllables per second. 

2.5. Discrete HMM training. 

Each model was trained independently of the others. 
Once the samples of every demisyllable were collected from de 
utterances of DBl, the Baum-Welch estimation algorithm was 
applied. At the same time, the mean and the variance of the length 
of the demisyllable was computed. 

We use three independent codebooks of 64 codewords 
for the two codebooks dedicated to spectral information and 32 
codewords for the codebook devoted to energy differences. 

2.6. The lexical knowledge. 

The lexical knowledge compiles all expected phonetic 
realizations of the vocabulary words in a network. Classically, 
this network is a tree where all words having the same first N 
phonetic units share the same initial nodes of the tree. The last 
node of the pronunciation has a pointer to the word. However, 
this representation is not convenient for applying to a time- 
synchronous Viterbi algorithm which is the base of our spotting 
algorithm. Thus, our approach is based on the use of a finite- 
state lexical network as the used for the finite-state g r a m “ .  In 
this case, the lexical knowledge is described in terms of lexical 
units (states of the network) and the predecessor or successor 
states of all of them. Defining the phonetic unit as every 
demisyllable used to consider the different sounds in the 
language, a phonetic unit can have associated several states in the 
lexical network which form the lexical units. We have developed 
an inference algorithm [5] for finite states grammars that can be 
used to build the finite-state lexicon. The algorithm operates by 
simple enumeration of the words and gives in two steps a finite- 
state network with a minimum number of states. Thus, our 
lexical knowledge is composed by a dictionary tree with the 
pronunciation of the words in terms of demisyllables and a 
compiled version of this dictionary in terms of a finite-state 
network suitable for driving the spotting algorithm. Figure 2 
shows an example of a dictionary tree and their corresponding 
finite-state lexicon network. 

The three data bases used in our experiments are based on 
the vocabulary of numbers. We have to take into account that 
can be some variations in the pronunciation of the words with 
regard to a standard phonetic transcription. Thus, we have to 
expand the dictionary tree and the finite-state lexical network with 
the most frequent allophonic variations. Thus, the same word can 
have more than one end node in the dictionary tree. This 
expansion of the dictionary tree makes more efficient the 
representation in a finite-state network. For instance, the words 
needed to cope with the integers from 0 to loo0 (DB3) are 
represented with a network of 85 lexical units when the number 
of final nodes in the dictionary tree is 82. 

Finally, we distinguish two levels in the lexical 
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Figure 2. a) Basic dictionary tree for the Spanish words 
Itreintat (thirty), /sesenta/ (sixty) and /setenta/ (seventy). b) 
Finite-state lexical network for these words. 

knowledge; the demisyllable level where 'the demisyllables are 
classified in two classes: initial demisyllables and final 
demisyllables, and the word level where the lexical units are 
classified in three classes: start units, inside units and end units. 
The start units are the subset of initial demisyllables that can be 
the first demisyllable of a word, the inside units are both initial 
and final demisyllables and the end units are the subset of final 
demisyllables that can be the last demisyllable of a word. 

3. THE SPOTTING ALGORITHM 

The heart of the system is the spotting algorithm. It takes 
as input the unknown utterance, the HMM of the demisyllables 
and the lexical knowledge in terms of a finite- state network. The 
spotting algorithm is a one-step time-synchronous Viterbi 
algorithm which gives for each input frame the likelihood that 
each word of the vocabulary ends in that frame. Each input frame 
could be a starting point of a path in the Viterbi decoding, that is, 
the starting constraint of the time-synchronous algorithm is 
relaxed. We relax the starting constraint using the following 
criterion: "a frame will be a starting point of a path when its 
observation probability in  the first state of the HMM is greater 
than the observation probability of the path followed until that 
frame". Thus, in the first state (HMM) of a start unit, the average 
of the observation probabilities of the actual path is compared 
with the observation probability of the input frame in this state. 
When the difference between the observation probability and the 
average probabilities is greater than a threshold, that frame is 
marked as a starting point of a path. The threshold may vary 
from 0 to 1. When the threshold is equal to 1 only the first frame 

i-5 i-3 i-2 i fraIlXS 

Figure 3. The probability of each path must be normalized 
by the length of the path prior to compare. 

can be a starting point. In our experiment, a threshold of 0 was 
used. As each frame could be a starting point of a path, we need 
to normalize the probabilities by the length of the path to compete 
all the path in the same conditions. One unit of length is defined 
by an observation probability and the transition probability. 
Thus, the length of the path is the difference between the actual 
path point and the starting point of the path. The probabilities of 
the states are updated time-synchronously by comparing the 
normalized probability of each path. Figure 3 shows an example 
of this criterion. 

units in each transition. 

be obtained in the last sta 
probability that each word o 

Finally, for each inpu 

4. EXPERIMEN 

4.1. Demisyllable spotting 
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66. The spotting algorithm gives for each frame the best 
demisyllable that ends in that frame. Thus, we decide that a 
demisyllable has been located if it appears around the rigth 
position. A demisyllable is located in a 1 hypothesis if the right 
demisyllable is the one with maximum probability of the set of 
posible demisyllables which are around the right position, it is 
the 2 hypothesis if it has the second maximum probability and so 
on. Table 2 shows a summary of the results. From this results, 
we can conclude that our spotting algorithm has as good 
performace as an exhaustive method like the I-steps spotting 
algorithm. Furthermore, the segmentation given by both 
algorithms is very similar (equal or with differences of 1 or 2 
frames). 

1-step 

I-steps 

1 Hyp. 2Hyp. 3Hyp. >4Hyp. 

61.8% 69.5% 74.7% 84.3% 

63.0% 71.0% 75.5% 85.1% 

1 2 3 4 5 
Hypothesis levels 

Figure 5. Recognition rates of words for the data base of 
telephone numbers @B2) (N-Q). 

5. CONCLUSIONS 

We have developed an acoustic processor for Spanish 
continuous speech recognition based on the use of a HMM 
spotting algorithm and demisyllables as phonetic units. The 
integration of the one-step spotting algorithm with multiple 
hypothesis and the lexical knowledge compiled in a finite-state 
network gives an efficient and accurate acoustic processor to 
generate a word lattice. A demisyllable spotting accuracy of 
more than 70 % and a word spotting accuracy of more than 90 
% in the recognition of the integers from 0 to 10oO and the 
telephonic numbers, show the good performance of the 
demisyllable as recognition unit for the Spanish language and the 
efficiency of the spotting algorithm. 

We are currently working to improve the training of the 
HMM models and to develope a linguistic processor. 
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