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ABSTRACT

This paper describes the acoustic processor of a Spanish
Continuous Speech Recognition System based on Demisyllable
units. The acoustic processor is based on a spotting algorithm
which takes as input the unknown utterance, the HMM of the
reference demisyllables and the lexical knowledge in terms of a
finite state network. The spotting algorithm is a modified version
of the one-step Viterbi algorithm with multiple hypothesis [1].
The output of the system is a lattice of word hypothesis suitable
to be parsed by a linguistic analyzer. The proposed acoustic
processor was tested using the integers from.0 to 1000 and the
telephonic numbers in a speaker independent approach. The
results show the good performance of the demisyllable as
recognition unit for the Spanish language and the efficiency of
the spotting algorithm.

1. INTRODUCTION

One of the most important problems in speech recognition
is to build a robust acoustic processor. The definition of an
acoustic processor for continuous speech recognition involves
some questions related with the language to be recognized and
the architecture of the system. The phonetic unit, the lexical
knowledge, the speech model and the mechanism of recognition
are some of those questions.

During the last years, many answers have been proposed
to those questions and suitable systems have been built [2,3,4].
Most of those systems have a common factor, they-are based on
phonetic HMM modeling of the speech. This approach implies
the definition of the phonetic unit which is highly depended on
the language and vocabulary to be recognized. The Spanish
language has a syllabic character which suggest to use the
demisyllable as phonetic unit. The inventory of Spanish
demisyllables is relatively small: less than 750 units. Thus,
demisyllables afford a convenient phonetic coding of Spanish
utterances. The lexical knowledge describes words in terms of
demisyllables. This information is compiled in a finite state
network infered from the word vocabulary [5]. This approach
provides a compact representation of the lexical knowledge in
terms of predecessors and successors of the phonetic units. The
last question is how to locate the words of the vocabulary in the
speech signal to give a lattice of word hypothesis. Our proposal
is to use a word spotting algorithm driven by the lexical
knowledge. It takes as input the unknown utterance, the HMM
of the demisyllables and the lexical knowledge. The output is a
lattice of word candidates. The spotting algorithm proposed in
this paper has the following features: X
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1) The spotting algorithm is a modified version of the time-
synchronous Viterbi algorithm with two levels: the demisyllable
and the word levels. L o

2) Since the lexical knowledge is given in a compact finite state
network, several words can share some phonetic: units which
makes necessary to generate multiple. hypothesis: in the
demisyllable level of the Viterbi algorithm [1]: : :

The paper is organized in the following way: Section 2 -
describes an overview of the system, in Section 3 the spotting
algorithm is presented, Section 4 provides the experimental
results, and finally, Section 5 contains the main conclusions.

2. SYSTEM OVERVIEW
Figure 1 shows a general block-diigrain of the system
architecture, The heart of the system is the spotting algorithm
which is driven by the lexical knowledge compiled in a finite-
state network. IR :

2.1. Signal Processing )
The speech signal is band-pass (100 Hz - 3400 Hz)

. filtered by an antialiasing filter and sampled at 8 kHz. The

utterance is isolated by an end-point detection algorithm and pre-
emphasized. A linear prediction based parameterization follows:
the signal is segmented into frames of 30, miliseconds by a
Hamming window at a rate of 15 miliseconds, and every frame is
characterized by a LP-fiter with 8 coefficients. Afterwards, 12
band-pass lifted cepstrum coefficients are computed [6]; the
energy of the frame completes the parameterization. Before
entering the recognition algorithm, the system evaluates the
spectral difference with a time-average of 90 miliseconds [8]. In
a similar way, the energy difference is calculated. The spectral
vector and the spectral and energy differences are vector-
quantized separately; in that way, every frame of the speech
signal is represented by three symbols. = 0 ﬁ
According to the most recent proposals, our system
considers energy and time evolution information. However, the
energy is not used directly as a parameter of the signal. This is
because the energy depends on the prosody of the sentence and
the intensity of the utterance, two very fluctuant features of

_ speech. On the contrary, if the energy is expressed by a

logarithmic measure, its difference does not vary with a change
in the intensity of the overall sentence, and the variation due to
prosodic effects is greatly alleviated. :
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Figure 1. Acoustic processor architecture

2.2. Phonetic unit

" Demisyllables afford a convenient phonetic coding of
Spanish utterances, according to the syllabic character of this
language. In order to define the demisyllable set, every possible
syllable was divided by the strong vowel into an initial
demisyllable and a final demisyllable; accordingly, we
distinguished between stressed final demisyllables and
unstressed final demisyllables. The main cues of prosodic stress
in Spanish are pitch, loudness and syllable length; as pitch and
loudness information are not considered in our system, the main
difference between stressed and unstressed final demisyllable is
the length of their references.

2.3. HMM demisyllable units

The structure used for the HMM is the typical left-to-right
structure, that allows to skip one state when the model makes a
transition between states. The emission of symbols is associated
to the states, that issue three independent symbols (spectrum,
spectrum difference and energy difference) when they are
visited. The number N of states was determined [7] as a function
of the average length of the demisyllable, according with table 1.

Finally, each demisyllable reference is composed by a
HMM and the mean and variance of the length of the
demisyllable.

Average

length in

frames <4 5,6 7,8 9,101 >10
Number of] 2 3 4 5 6
states

Table 1.Criterion to select the number of states of HMM

2.4, Data bases

Three data bases have been used for testing the system:

DB1) 40 strings of integers uttered by ten speakers (SO to
§9, 5 male and 5 female), for example, 25011/96, 1019/05/70.

This data base was segmented by hand into demisyllables and
used for training the HMM of the demisyllable units. The

articulation rate of speech spanned from 5 to 7 syllables per
second.

DB2) Telephone numbers uttered by nine speakers (S0 to
S1 and S10 to S16, 5 male and 4 female). The telephone
numbers were uttered as chains of numbers from 0 to 99, for
example, 3/12/36/54, 58/66/15/9 and so on. This data base was
used for testing the system. The vocabulary is composed by 25
words with 61 demisyllables.The articulation rate of speech
spanned from 5 to 7 syllables per second.

DB3) 44 Integers from cero to one thousand uttered by
ten speakers (SO to S1 and S10 to S17, 6 male and 4 female), for
example, 495 /four hundred and ninety five/. This data base was
used for testing the system. The vocabulary is composed by 32
words with 66 demisyllables. The articulation rate of speech
spanned from 4 to 7 syllables per second.

2.5. Discrete HMM training.

Each model was trained independently of the others.
Once the samples of every demisyllable were collected from de
utterances of DB1, the Baum-Welch estimation algorithm was
applied. At the same time, the mean and the variance of the length
of the demisyllable was computed.

We use three independent codebooks of 64 codewords
for the two codebooks dedicated to spectral information and 32
codewords for the codebook devoted to energy differences.

2.6. The lexical knowledge.

The lexical knowledge compiles all expected phonetic
realizations of the vocabulary words in a network. Classically,
this network is a tree where all words having the same first N
phonetic units share the same initial nodes of the tree. The last
node of the pronunciation has a pointer to the word. However,
this representation is not convenient for applying to a time-
synchronous Viterbi algorithm which is the base of our spotting
algorithm. Thus, our approach is based on the use of a finite-
state lexical network as the used for the finite-state grammars. In
this case, the lexical knowledge is described in terms of lexical
units (states of the network) and the predecessor or successor
states of all of them. Defining the phonetic unit as every
demisyllable used to consider the different sounds in the
language, a phonetic unit can have associated several states in the
lexical network which form the lexical units. We have developed
an inference algorithm [5] for finite states grammars that can be
used to build the finite-state lexicon. The algorithm operates by
simple enumeration of the words and gives in two steps a finite-
state network with a minimum number of states. Thus, our
lexical knowledge is composed by a dictionary tree with the
pronunciation of the words in terms of demisyllables and a
compiled version of this dictionary in terms of a finite-state
network suitable for driving the spotting algorithm. Figure 2
shows an example of a dictionary tree and their comresponding
finite-state lexicon network.

The three data bases used in our experiments are based on
the vocabulary of numbers. We have to take into account that
can be some variations in the pronunciation of the words with
regard to a standard phonetic transcription. Thus, we have to
expand the dictionary tree and the finite-state lexical network with
the most frequent allophonic variations. Thus, the same word can
have more than one end node in the dictionary tree. This
expansion of the dictionary tree makes more efficient the
représentation in a finite-state network. For instance, the words
needed to cope with the integers from 0 to 1000 (DB3) are
represented with a network of 85 lexical units when the number
of final nodes in the dictionary tree is 82.

Finally, we distinguish two levels in the lexical
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Figure 2. a) Basic dictionary ‘tree for the Spanish words
/treinta/ (thirty), /sesenta/ (sixty) and /setenta/ (seventy). b)
Finite-state lexical network for these words. .

knowledge; the demisyllable level where the demisyllables are
classified in two classes: initial demisyllables and final
demisyllables, and the word level where the lexical units are
classified in three classes: start units, inside units and end units.
The start units are the subset of initial demisyllables that can be
the first demisyllable of a word, the inside units are both initial

and final demisyllables and the end units are the subset of final

demisyllables that can be the last demisyllable of a word.
3. THE SPOTTING ALGORITHM

The heart of the system is the spotting algorithm. It takes

as input the unknown utterance, the HMM of the demisyllables
and the lexical knowledge in terms of a finite- state network. The
spotting algorithm is a one-step time-synchronous Viterbi
algorithm which gives for each input frame the likelihood that
each word of the vocabulary ends in that frame. Each input frame
could be a starting point of a path in the Viterbi decoding, that is,
the starting constraint of the time-synchronous algorithm is
relaxed. We relax the starting constraint using the following
criterion: "a frame will be a starting point of a path when its
observation probability in the first state of the HMM is greater
than the observation probability of the path followed until that
frame". Thus, in the first state (HMM) of a start unit, the average
of the observation probabilities of the actual path is compared
with the observation probability of the input frame in this state.
When the difference between the observation probability and the
average probabilities is greater than a threshold, that frame is
marked as a starting point of a path. The threshold may vary
from 0 to 1. When the threshold is equal to 1 only the first frame

states

frames

Figure 3. The probability of each path must be normalized
by the length of the path prior to compare.

can be a starting point. In our experiment, a threshold of 0 was
used. As each frame could be a starting point of a path, we need
to normalize the probabilities by the length of the path to compete
all the path in the same conditions. One unit of length is defined
by an observation probability and the transition probability.
Thus, the length of the path is the difference between the actual
path point and the starting point of the path. The probabilities of
the states are updated time-synchronously by comparing the
normalized probability of each path. Figure 3 shows an example
of this criterion. o

,

Then, the update probability for the frame i, state s will

be:
P(i,s)=bs(0;) axs P(i-1,k) B ¢))
where ) 2 J/Path :
P(i-1,s) ag ¢/Pat! . i
SMEWAX (15 1yag Path2 Q)

$5152 [P(i-1,5-2) ag.p/Path3 .

To spot a word, the Viterbi path has to go from a start
unit to an end unit. That means that we have to define a between-
unit transitions which are controled by the lexical network. The
last state of each HMM has associated a duration probability
which determines the transition probability between units. The

_duration probability of a demisyllable is parameterized by th

mean and the variance of a Gaussian distribution. . :
Due to the fact that a lexical unit can be shared by several

words, we have to modify the time-synchronous: algorithm to
_generate multiple hypothesis in the between-unit transitions [1].

That modification implies to keep the N-best sequence of lexical
units in each transition. : ; b e
Finally, for each input frame, a‘probability measure can
be obtained in the last state of each end unit which gives the
probability that each word of the vocabulary ends in that frame.
A prunning strategy is used to keep only the M-best word
probabilities and a backtrack procedure over the lexical units is
done to find the M-best words that end in each frame. Once, all
the frames of the unknown: utterance have been processed, a
merging procedure is actived to select the P-best words which
will compose the lattice of word hypothesis which is the output
of the acoustic processor. The merging procedure select the most
probable location of a word when it has been detected in
successive starting and ending frames. Figure: 4. shows an
example of the spotting results that provides the merging
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Figure 4. Spotting results analizing the number /ciento
doce/ (one hundred and twelve). For each word the system
gives the following information: word recognized, the best
location with its probability and the variation in the starting
and ending point. For instance, "(-1)2(0)/cien/(-16)23(7)"
means: the word recognized was /cien/; the best location (-
3.5 of probability) was between the frames 2 and 23, but
the same word can begin .1 frame before the best location
and can end 16 frames before the best ending point and 7
after the best ending point. S

4. EXPERIMENTAL RESULTS
4.1. Demisyllable spotting results. ‘

A first set of experiments were carried to test the spotting
algorithm. We compare the one-step spotting algorithm with an
exhaustive I-steps spotting algorithm where the starting point for
the i-th step is the i-th input frame. We use as recognition units
the demisyllables. The training data base was DB1 and the test
data base was a subset of 5 utterances of each speaker of the
DB3 data base. The number of demisyllables to be located was
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66. The spotting algorithm gives for each frame the best
demisyllable that ends in that frame. Thus, we decide that a
demisyllable has been located if it appears around the rigth
position. A demisyllable is located in a 1 hypothesis if the right
demisyllable is the one with maximum probability of the set of
posible demisyllables which are around the right position, it is
the 2 hypothesis if it has the second maximum probability and so
on. Table 2 shows a summary of the results. From this results,
we can conclude that our spotting algorithm has as good
performace as an exhaustive method like the I-steps spotting
algorithm. Furthermore, the segmentation given by both
algorithms is very similar (equal or with differences of 1 or 2
frames).

1 Hyp. 2 Hyp. 3 Hyp. | >4 Hyp.
I-step| 61.8% 69.5% 74.7% 84.3%
I-steps| 63.0% 71.0% 75.5% 85.1%

Table 2. Results of demisyllable spotting.
4.2. Acoustic processor results.

The performance of the system in a speaker independent
approach was tested with the DB2 and DB3 data bases. The
system was trained with the DB1 data base which has a different
articulation rate, different sentences and different speakers than
DB2 and DB3. Two experiments were carried with each data
base. The first experiment use the finite-state lexical network
without multiple-hypothesis in the between-unit transitions (1
choice) and the second experiment use the finite-state lexical
network with multiple-hypotesis (N choice). Over the lattice of
words, we define the hypothesis levels as the position, in
probability order, of the correct word in its correct position in the
utterance. Figure 4 shows the recognition rates for the data base
of numbers (DB3). The accuracy of word spotting was about
82% for the first hypotesis level, 95% for the top five hypotesis
levels without multiple hypothesis in the demisyllable level (1
choice) and 99% for the top five hypotesis levels with multiple
hypotesis in the demisyllable level (N choice, where N depends
on the units with more predecessors, in this experiment N=4).
The average number of words in each sentence (integers from 0
to 1000) was 2.56.
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Figure 4. Recognition rates of words for the data base of
numbers (DB3) (N=4).

Figure 5 shows the recognition rates for the data base of
telephone numbers (DB2). It can be noted a small degradation of
the recognition performance. One reason is the fact that the
average number of words per sentence is 6.2 and then the words
are more coarticulated. Nevertheless, the accuracy of word
spotting is still high, 74 % for the first hypothesis level and 93 %
for the top five hypothesis levels without multiple hypothesis and
98 % for the top five hypothesis levels with multiple hypotesis in
the demisyllable level.
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Figure 5. Recognition rates of words for the data base of
telephone numbers (DB2) (N=4).

5. CONCLUSIONS

We have developed an acoustic processor for Spanish
continuous speech recognition based on the use of a HMM
spotting algorithm and demisyllables as phonetic units. The
integration of the one-step spotting algorithm with multiple
hypothesis and the lexical knowledge compiled in a finite-state
network gives an efficient and accurate acoustic processor to
generate a word lattice. A demisyllable spotting accuracy of
more than 70 % and a word spotting accuracy of more than 90
% in the recognition of the integers from 0 to 1000 and the
telephonic numbers, show the good performance of the
demisyllable as recognition unit for the Spanish language and the
efficiency of the spotting algorithm.

We are currently working to improve the training of the
HMM models and to develope a linguistic processor.
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