V1.2

A Globally Static Rate Optimal Scheduling for Recursive DSP
Algorithms

Lih-Gwo Jeng and Liang-Gee Chen*
Department of Electrical Engineering
National Taiwan University
Taipei, Taiwan 10764, R. O. C.

Abstract

This paper presents a set of techniques for rate-optimal
scheduling of recursive DSP algorithms. The underlying
multiprocessor system is based on the RISC architecture.
The retiming process evenly redistributes the delays and
optimizes the scheduling time of each iteration. The un-
folding of recursive data flow graph exploits intra-iteration
and inter-iteration parallelism, and the schedule can be more
compacted. It is shown that after evenly retiming and un-
folding with the optimal unfolding factor, a fully-extended
precedence graph is generated, which can be scheduled in
rate-optimal by a simple contiguous scheduling. The opti-
mal unfolding factor is merely equal to the delay counts of
the critical loop.

1 Introduction

For hard real-time implementation, special techniques
are needed. In particular, ASIC implementations of DSP
applications require static scheduling, in which the DSP ap-
plication algorithm is mapped onto the hardware at design
time or at compile time, but certainly not at run time [1,2,3].
For example, systolic arrays can be synthesized from the de-
pendence graph description of an algorithm [4].

In this paper, we introduce the notion of a fully-eztended
precedence graph which specified the operation parallelism
and precedence relations both in one iteration of the algo-
rithm and in contiguous iterations. The underlying syn-
chronous, multiprocessor system is based on the RISC ar-
chitecture , each instruction is complete within one clock
cycle. The retiming process [5] is applied here to evenly re-
distribute the delay nodes (data buffers). The unfolding pro-
cess involves multiple iterations of the algorithm to generate
a compacted precedence graph. It is shown that construc-
tion of a fully-eztended precedence graph is derived directly
from the recursive data flow graph and can be executed on a
rate-optimal schedule. The optimal unfolding factor is given
by the loop delay counts of the critical loop of the recursive
data flow graph. This will generates a reasonable problem
size of the intermediate fully-eztended precedence graph rep-
resentation to specify the inter-iteration and intra-iteration
operation parallelism and a more compacted rate-optimal

*This work is supported in part by National Science Council under
Grant NSC79-0404-E002-34 and NSC78-0404-E002-47.

schedule can be derived.

The scheduler described in this paper are incorporated
into the DSP/DA system [6], which is an automatic and in-
teractive design system targeted at high performance signal
processing applications. '

1.1 Graph Bound and Retiming

Considering a DFG involving loops or recursion or feed-
back cycles, which has an upper bound on the computation
rate or a low bound on the task iteration period [1]. This it-
eration period bound, Ppin, is given by ‘ Prin = MaXieioops %’
where the maximum is taken over all loops in the DFG, and
T} is the sum of the computation times associated with all
the nodes in loop [, and n; is the number of delay elements
in loop . Any loop I for which Ti/n; = Ppin is defined to
be a critical loop. In the context of this work, any realiza-
tion that achieves an iteration period equal to the iteration
period bound is considered to be rate-optimal, because no
faster realization of the underlying graph can exist.

Traditional retiming technique is used to improve the
clock rate of synchronous circuit by Leiserson, Rose and Saxe
[5], and is applied here to improve the iteration period of the
static multiprocessor schedule of the recursive DFG. The re-
timing technique attempts to evenly redistributes the delays
5], and also corresponds to a cutset transformation around
the node in the systolic realization [4]. The retiming model
of the system is based on the RISC architecture.

Section 2 describes the fully-eztend precedence graph and
the basic concepts underlying our optimization process of the
scheduling algorithm. Section 3 presents the details of the
optimization by retiming and unfolding. The rate-optimal
scheduling are addressed in section 4 . Section 5 presents
our conclusions. '

2 Fully-Extended Precedence Graph

The precedence graph is an acyclic, directed graph origi-
nally used for the representation of sequential precedence of
operations. Owing to its close relationship to the data flow
graph of a recursive algorithm, the precedence graph rep-
resentation is suitable for static scheduling of the recursive
algorithm onto a multiprocessor system. Since a recursive
DSP algorithm is naturally described by a data flow graph
with directed loops, which will be used to set up the corre-

- 1005 -

CH2977-7/91/0000-1005 $1.00 © 1991 IEEE

sponding fully-ezpended precedence graph.

Definition 1 4 fully-extended precedence graph is defined
as the precedence graph whose eritical path is equivalent to
the computation. path of the critical loop of the original re-
cursive data flow graph.

A fully-estended precedence graph, which put emphasis
on the equivalence between the critical path and the criti-
cal loop of the original recursive DFG, is different from the
precedence graph [4]. A fully-eztended precedence graph may
comsist of successive iterations of the recursive data flow
graph; or in another word, is a compacted combination of
several successive precedence graph. Comparing the recur-
sive data flow graph shown in figure 3 and the corresponding
fully-extended precedence graph in figure 6. The following re-
lations should be identified.

Relation 1 The Intra-iteration Precedence Relation is the
path without eny delay operators on it in the recursive DFG.

This relationship indicates the operation precedemce order

during ome sampling period (iteration period).

This kind of relation is denoted as X, — ¥, or X —
Y, for simplicity, which means node X and node ¥ must
be completed in the same iteration of the algorithm and
node ¥ is fired only after node X has been completed. In
the recursive data flow graph, the intra-iteration precedence
relation can not be chained as a loop; otherwise, a dead look
is caused. An example of a recursive data flow graph is shown
in figure I. Figure 2 shows the intra-iteration precedence
relations of this recursive data flow graph.

Relation 2 The Inter-iteration Precedence Relation is the
path with the dummy delay operators. This relationship spec-
ified the recursion or feedbacks among different iterations.

The term delay is used in the recursive sense of the signal
processing, and corresponds to a sample offset between the
input and the output. A unit delay element on the path from
node X to node ¥ means that the nth sample consumed by
node ¥ will be the (n — I)th sample produced by node X.
Figure 5 shows the inter-iteration precedence relation of the
retimed recursive data flow graph of figure 3. In figure 5,
considering the precedence path 4 — & — B of loop Lg,
which is interpreted as A, — B,4y. The ‘d" node represents
the delay. The node 4, is complete in the nth iteration and
the node Bn+1 is in the (n + I)th iteration.

Hence, in the recursive data flow graph to fully-eztended

precedence graph conversion, the delay nodes are used as di-
viders among successive iterations. The delay nodes will

be cut and the delay parts will be interpreted as starting .

and terminating nodes of each iteration. Since the original
recursive DFG must not contain any delay-free loop, the cor-
responding fully-extended precedence graph is always acyclic.

We have described the precedence constraints, the start-
ing nodes and terminating nodes of the fully-extended prece-
dence graph which corresponds to the elements in the orig-
inal' recursive data flow graph. Thus, the information of

Fig. I.A Recursive DFG witlh: three loops. The node computation delay is I
clock eycle.The cycled upper case letter in- dicates the node index,
and the cycled “d" indicates the delays (arc buffer).

LI : EAD = 3/2 * (lteration: period bound)
L2 : ADCB = 4/3
L3: AB=2/2

Critical Loop' = LI » D >E
Naoneritical Loop » L2 D - C > B (retiming)
A
L3: A->B

Fig.2 The iteration period bound 3/2 cycles, and the precedence relations
of one iteration of the recursive data flow: graph in figure: .

Fig.3 A retiming version of Fig.I.

An 'q'"Dn-kk
Da->En An and Byer
Dn->Cn Bn cn B,
. P 1
Fig.4 The intra-iteration precedence: B cg
realtion of recursive DFG of > Apgp
Fig.3. En -da By
Fig.5 The inter-iteration: precedence:
realtion among the contiguous)
iterations of Fig.3:

the original recursive data flow graph can be totally pre-
served by the corresponding fully-eztended precedence graph.
Since the system bases on the RISC architecture and the high
throughput requi nf demands a rate-optimal design, the
optimization method of retiming and unfolding can be ap-
plied on the original data flow graph in an efficient way to
construct the fully-extended precedence graph.

3 Retiming and Unfolding

Considering the recursive data flow graph of figure I and
the corresponding precedence graph in figure 2. It shows
that the loop L; has the maximum iteration period 3/2 cy-
cles which is greater than other loops. Other loops are con-

- 1006 -

sidered to be the non-critical loops, since they have a smaller
iteration period than that of L;. But, in figure 2, the path
D — C — B of the non-critical loop L, is longer than the
path D — E of the critical loop L;. If we take the prece-
dence graph of figure 2 to schedule, it is obviously that no
possible static rate-optimal scheduling of Pmin = 3/2 cycles
exists because the static scheduling period is limited by the
path D — C — B as 3 cycles.

The retiming and unfolding process is applied here to
make the critical loop of the recursive data flow graph equiv-
alent to a critical path of the fully-eztended precedence graph,
and preserves the intra-iteration and inter-iteration concur-
rency. The process of retiming involves moving around the
delays in the DFG such that the total number of delays
in any loop remains unaltered, and the stead-state input-
output behavior and the Pmin of the system is preserved [5].
In the research [3], it has shown that only retiming of the
critical loop does not guarantee a rate-optimal design. Thus,
we have made a different approach and target our multipro-
cessor system on the RISC architecture. Every operation is
complete within one clock cycle. The retiming process is ap-
plying on all loops. Since a non-critical loop always have a
smaller iteration period and there are only discrete positions
along the length of the paths, the delays can be evenly re-
distributed by retiming. In order to depict the object of the
optimization retiming process in detail, a lemma is expressed
as below:

However, we need a few simple definitions first. A path is
a sequence of precedence related operations. All operations
are assumed to be complete within a single instruction cycle.
A segment of a path is a subpath from an output of a delay
node to an input of a delay node.

Considering a loop L; with n; dummy delay operators,
we then define a function T as below:

T(Li,m)=T , l€ loops

Where T} is the sum of the computation time associated
with all the operation nodes in loop L;. The n; represents
the delay counts of the loop L;, which also corresponds to the
number of separated segments in a loop. Thus, a segment
5§(0) of the loop Ly is defined by the function T as below:

T(Li,1) = 5(0) , L€ loops

Where the parameter ‘0’ of the Sj(0) represents no delay
node in the segment, and ¢ is the index of the segment.

Lemma 1 Based on the RISC architecture, any non-critical
loop can be retimed such that T(Leyne) 2 T(Lm,ne), where
L. is the critical loop , n. represents the number of delay
nodes in the critical loop, and L, € the set of all non-critical
loops.

Proof: Since the static schedule is implemented on a RISC
machine, every operation node can be mapping on a certain
hardware component which complete its operation within
one clock cycle. Assume the segments Si(0) of the compu-
tation path of the critical loop is expressed as:

52(0), 5¢(0), -, §24(0)

and, the segments S%,(0) of the computation path of the
non-critical loop is expressed as:

Sm(0), S2(0), -y S7e(0)

Since the computation path of the critical loop and non-
critical loop both are discrete and the average segment length
of the critical loop is the maximum of all loops, we can retime
each segment S(0) as follows:

510) > S5,(0), §2(0) 2 54(0), -...., S2¢(0) = 57:(0),
To sum up the two sides of the inequality, we can derived:
T(Leyne) > T(Lm,nc)D

Comparing the recursive data flow graph of figure 1 and
a retimed version shown in figure 3, the retiming process is
locally applied on node B. The removal of one delay node
form the only outgoing arc B — A and add one delay node to
all incoming arcs. A more detail description of the segment
length of the original data flow graph and that of the retimed
version can be identified by comparing figure 2 and figure 4.
Now, we consider how an admissible schedule is constructed
for the recursive data flow graph. ‘

Lemma 2 A static schedule of all segments $(0), I € loops,
of the original DFG is an admissible schedule for the recur-
sive data flow graph.

Proof: The 5,(0) begins from a starting node and ended
on a terminating node, which does not alter any precedence
constrains. Hence, an admissible static schedule of all seg-
ments S;(0) of the original data flow graph is an admissible
schedule for the original recursive data flow graph. O

The static admissible schedule can be constructed by all
51(0) segments, we now consider the segments Sy(n). This
follows the Lemma 3.

Lemma 3 The static schedule of all Si(n) segments is an

_admissible schedule of the original recursive data flow graph.

Proof: Since the set of all Si(n)s does not alter the intra-
iteration and inter-iteration precedence constraints, and rep-
resents n iterations of the original data flow graph. Thus,
the static schedule of all Sj(n) segments is an admissible
schedule of the original recursive data flow graph. O

Since a fully-extended precedence graph is desired and
the optimization process of retiming and unfolding can be
applied to the recursive data flow graph efficiently, the con-
struction of a fully-extended precedence graph can be de-
picted as theorem 1.

Theorem 1 The set of all Si(n.) segments after appropriate
retiming, such that T(Lc,n.) > T(Lm,nc) is a fully-extended
precedence graph.

Proof: The set of all Si(n.) segments which consists of the
intra-iteration and inter-iteration precedence constraints. It
also represents n, iterations of the recursive data flow graph.

- 1007 -

The computation time associated with all operation nodes
of the critical loop is S.(n.), which can be expressed as
T(Lexnc). Since T(heync) 2 T(Lpyn.), for any non-critical
loop m, the critical path of the precedence graph constructed
by the set of all Si(n.} segments is equivalent to the compu-
tation path of the critical loop. Thus, the set of all Si(n.)
segments after appropriate retiming, such that T(L. =) >
F(Em,me) is a fully-extended precedence graph. ©

4 Rate-Optimal Scheduling

A simple scheduling method called contiguous scheduling
is used here, all operations are scheduled as soon as possible
under no hardware limitation. The fully-estended precedence
graph of figure 3 is shown in figure 6. Then, the rate-optimal
scheduling of a fully-extended precedence graph is depicted
in the following theorem:

Theorem 2 A contiguous scheduling of the fully-eztended

precedence graph is @ rate-optimal schedule of the original
recursive date flow graph.

Proof: Since the critical path of the fully-extended prece-
dence graph is equivalent to the total computation path
of the critical loop, the contiguous schedule of the fully-
extended precedence grapls is also a contiguous schedule of
the critical loop without any intermediate idle cycles. Thus,
the iteration period bound of the critical loop remains un-
changed, and a rate-optimal schedule can be derived.
Pigure 7 shows the contiguous scheduling of the fully-
estended precedence graph of figure 6. The square block rep-
resents the time instance of the processor. The sets of blocks
with different block patterns represent different iterations of
the recursive algorithm. The computation path of the crit-

ieal loop is contiguous scheduled and becomes the critical

path of the static schedule. The scheduling period is the
same as the iteration period bound = 3/2 cycles. The sched-
uleis globally static and rate-optimal. Since we take a fully-
extended precedence graph with the problem instance of n,

iterations of the original recursive data flow graph, the result’

is ranning in a globally static and locally dynamic way, as in
figure 7. Note that, our approach can achieve a rate-optimal
solution but does not ensure whether a processor-optimal
solution can be derived.

5 Conclusion

We have found a solution of the rate-optimal schedul-
ing for the recursive signal processing algorithms. In the
research of {3], unfolding the data flow graph with the facter
of least common multiple of all loop: delay counts also can:
produce a rate-optimal scheduling. The main disadvantage
of [3] is that necessary memory and controller is propor-
tional to the unfolding facter, and the unfolding factor is
also great; e.g. LOCM(3,5,7) = 105. By using the modern
signal processing hardware components of RISC architec-
ture, the recursive DFGs can be evenly retimed and unfold
to an equivalent fully-extended precedence graph. The opti-
mal unfolding factor is merely equal to the delay counts of

Fig.6 A fully-extended precedence graph (only need an unfolding factor =
2, not LCM(2,3)= 6).

N

Fig.? A rate-optimal scheduling where lth iteration & 2nd iteration are

locally dynamic scheduling and every two iterations, are globally
static scheduling on rate-optimal for iteration period bound 3/2 cycles..

the critical loop. And, a rate-optimal schedule can be gener-
ated from. the fully-extended precedence graph by a simply
contiguous scheduling.

References

[t} D. A. Schwartz and T. P. Barnwell [I, “Cyclo-Static
Multiprocessor Scheduling for the Optimal Realization

" Shift-Invariant Flow Graphs,” Proc. of ICASSP’85.
pp. 1384-1387.

[2] S. H. Lee and T. P. Barnwell IIf ,“Optimal Multipro-
cessor Implementations From a Serial Algorithm Spec-
ification,” Proc. of ICASSP'88. pp. 1694-1697.

[3] Keshab K. Parhi and David G. Messerschmitt, “Rate-
Optimal Fully-Static Multiprocessor Scheduling of
Data-Flow Signal Processing Programs,” Proc. of IS-
CAS ’89. pp. 1923-1928.

[4] Sun-Yuan Kung, “On Supercomputing with Sys-
tolic/Wavefront Array Processor”, Proceedings of
IEEE, Vol. 72, No. 7, July 1984.

[5] Leiserson C. E., Rose F. and Saxe J., “Optimi ing Syn-
chronous Circuity by Retiming,” Third Caltech Confer-
ence on VLSE, Pasadena, CA, March 1983, pp. 87-116.

[6] Liang-Gee Chen, Lih-Gwe Jeng, K. T. Chao, D.
J. Lin and €. T. Chao, “ CAD System for a
Application-Specific DSP' Processor Design,” Proceed-
ings of SASIMI 90, Japan. October 1990, pp 199-206.

- 1008 -

