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Abstract

This paper presents a general, direct method for designing
perfect reconstruction filter banks with rational sampling
rate changes, an open problem until now. Such filter banks
have N branches, each one having a sampling factor of p;/¢;
and their sum equals to one. A design example showing the
advantage of using the direct over the indirect method is
given. Due to recent results pointing to the relationship be-
tween filter banks and wavelet theory, the regularity ques-
tion is addressed as well, and a regular filter is shown for a
dilation factor of 3.

1 Introduction

The most studied case of filter banks is the one with integer
sampling rate changes. However, if one wants to analyze
the signal into unequal subbands, rational sampling rates
have to be allowed (see figure 1). Then, each channel would
have a sampling factor p;/g; and their sum equals to one (so
as to preserve the sampling density). Although it is known
how to solve this problem in practice, since one just has to
divide the spectrum in @ = lcm(g;) parts and then resyn-
thesize the appropriate subspectrums, this approach, being
indirect, is suboptimal in terms of computational complex-
ity and filter quality. Previous work in this area was aimed
only at aliasing cancellation (1] or solutions that are built
through tree splitting. It is worth noting that the tree
splitting schemes when only the lowpass signal is subdi-
vided lead to a division of the frequency region into parts
of size % (in case of subsampling by 2) and are similar to
the so-called wavelet transform [2].

In this paper we present a general, direct method for de-
signing perfect reconstruction filter banks with arbitrary
rational sampling rate changes. Note that this is a contin-
uation of previous work [3] where the direct design method
was presented for a subclass of solutions. Section 2 presents
the direct method and the tools that enable it. Section 3
gives a design example and compares it to the solution ob-
tained with the indirect method. Section 4 examines the
(2,1) case from the wavelet theory point of view.
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Figure 1: Filter bank with rational sampling rate changes.

2 A Direct Design Method

In this section we want to show how a filter bank with
arbitrary rational sampling rate changes can be designed
directly. Let us start from the critically sampled filter bank
as given in figure 1. We assume that the common factors
between each (p;,¢;) have been cancelled so that they are
relatively prime.

First, we show how to transform a single branch with up-
sampling by p and downsampling by ¢ using a p-channel
analysis bank with sampling by ¢ and an inverse polyphase
transform of size p. The way to do it is given in figure 2a.
The filter in the i-th branch is given by H!(z) = 2% Hy,(2)
where d; = [ﬂp}'j, t; = gi mod p (|z| denotes the biggest in-
teger not greater than z) and Hy, . .. Hy—; are the polyphase
components of H with respect to p. It should be noted
that for p = 1 there is no transform, i.e. Hj = z%H,, =
2%Hy, = H since the only polyphase component with re-
spect to p = 1 is the filter itself. The proof that the two
representations are equivalent is given in the Appendix.
Next, we show how to express a single branch with down-
sampling by ¢ using a p-channel analysis bank with sam-
pling by @ = pq and an inverse polyphase transform of size
p. This is given in figure 2b. Note that the filter in the
i-th branch is just a shifted version of the original filter,
Hi(z) = #9H(z). The proof that the two representations
are equivalent is given in the Appendix.

Finally, figure 3 shows how by using the above trans-
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Figure 2: a} Transform 1: expressing a single branch with upsampling by p and downsampling by ¢ using a p-channel
analysis bank with sampling by ¢ and an inverse polyphase transform of size p. All the filters involved are just shifted
polyphase components of the original filter. For p = I there is no transform. b) Transform 2: expressing a single branch with

" downsampling by ¢ using a p-channel analysis bank with sampling by @ = pg and an inverse polyphase transform of size p.
All the filters involved are just shifted versions of the original filter.
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Figure 3 To transform any bank we first apply transform I and then transform 2 in each branch. As a result an analysis
bank with @ = lem(g, . .. qn-1) branches is obtained.
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Figure 4: Magnitudes of the frequency responses of the low-
pass filters designed using the indirect (gray plot) and di-
rect method (black plot). Note the improvement obtained
by using the direct design method (the passband is flat-
tened and the value in the stopband has been reduced).

forms we design a filter bank from figure 1. First we
apply transform 1 in each branch which yields an analy-
sis bank with n = T N!p; branches and sampling rates
90,-- - ,qN-1. Now if @ = lem(go, . . .,gn—1) we apply trans-
form 2 in each branch to obtain an analysis bank with
n=yNtpi % =Q YN B = @ branches and sampling
by Q and this one we know perfectly how to design!

It is worth noting here the difference between the indirect
and the direct method. In the indirect one we design the
two stages of the analysis bank separately and moreover
we have no idea what kind of characteristics the equiva-
lent filters (Ho,. .., Hy-1 from figure 1) are going to have
since we do not know how these filters are related to the
filters in the analyzing and resynthesyzing banks. Using a
direct method however, allows us to design any filter bank
with rational sampling rates, having at the same time com-
plete control over the desired characteristics of the filters
Hy,...,Hn_1.

3 Design Example

As a simple example consider a bank with sampling by %
and }. Let us first construct the system indirectly, i.e. we
design a 3-channel analysis bank and then resynthesyze the
first two branches using a 2-channel synthesis bank. We use
optimized paraunitary examples that appeared in [4] and
[5]. The 3-channel bank contains filters of length 15 and
the 2-channel one filters of length 8 with lattice coefficients
a; = —2.638026, a; = 0.7154463, az = —0.2598479 and
aq = 0.06388361. As a result we obtain a lowpass filter of
length 14-2 4+ 7-3 + 1 = 50 and a highpass filter which
is the third filter from the 3-channel bank. The magnitude
response of the lowpass filter is given by the gray plot in
figure 4.

Now instead of this method we first obtain the equivalent

Figure 5: Fifth iteration of the filter H(z) = (1+27!)*(1+
271 + 2=?)® converging to a continuous function f(z).

lowpass filter and then minimize its error in the stopband
directly. In order to do that we use the 4 lattice parame-
ters from the 2-channel bank as the minimization variables.
We do not touch the 3-channel bank so as not to ruin the
highpass filter. The obtained optimized lattice coefficients
are a; = —0.371151, az = 2.732850, a3 = 1.056070 and
a4 = 0.664108. The magnitude response of the resulting
filter is given by the black plot in figure 4. As can be seen
from there the improvement is obvious: the passband has
been flattened and the stopband has been greatly reduced.

4 Wavelets With % Dilation Factor

In this section we address some of the questions that arise
when looking at the filter bank problem from the wavelet
theory point of view restricting ourselves at the same time
to a representative case, namely sampling by £ and }. Let
us point out that to establish correspondence between filter
banks and wavelets we split the branch with the lowpass
filter using the same filter bank. Repeating this proce-
dure to infinity, the wavelet and the scaling function can
be identified, scaling function as the equivalent filter in the
path going through all lowpass branches, and wavelet in
the same path except that in the last stage we go through
the highpass branch. For more details see [6, 7).

When constructing wavelets of compact support, one would
like them to be continuous functions and this can be
achieved when the lowpass filter meets a so-called regu-
larity condition. For sampling by 2, Daubechies in [6] gives
a sufficient condition for the iterated filter to converge to
a continuous function. It basically states that for a filter
to be regular we have to impose a sufficient number of ze-
roes at 7 (aliasing frequency) and attenuate enough the
remaining factor. Following the same reasoning we conjec-
ture that in this case a filter having sufficient number of
zeroes at 7, 2 and % would be regular. To corroborate
this statement we construct a filter having three zeroes at
each location, i.e. H(z) = (1+z7')3(1+ 271 + z72)3. Fig-
ure 5 shows graphically how the iterated filter converges to
a continuous function. To complete the perfect reconstruc-
tion system we give one of the possible highpass filters as
Hy(z) = (271 =1)%(1+20271 + 42872-2 4+ 20273 4 2™*). Note
that the synthesis part of this system would give rise to non-
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regular filters. Thus, we have constructed a biorthogonal
basis with regular analysis. The next logical step would be
to see whether we can construct an orthonormal basis with
compactly supported wavelets. Unfortunately it turns out
that this is not pessible (for proof see [8]).

5 Conclusion

[n this paper the solution to the problem of designing per-
fect reconstruction filter banks with arbitrary rational sam-
pling rates is given. A design example showing the advan-
tage of using this method over the indirect one is presented.
And finally, the case with (1,1} sampling was examined

 from the wavelet theory point of view. We conjectured
hew to construct regular filters and gave an example.
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A. Appendix

Here we sketcli the proofs for the equivalence of represen-
tations in figure 2. For more details see [9]. Refer to 2a.
Since by assumption ged(p,q} = L, in each branch of the
bank in the lower part of the figure we can interchange up-
sampler with the downsampler and then move filters and
delays across samplers (for more details refer to [3]). The
equivalent, filter obtained in this manner will be denoted by
H'. We want to show that it equals K. Thus:

p-t i g Py . . .
Bz} = Lo (") = H(), (1)

=0

since (ig — p{%]}) = ¢imodp and for ¢ and p co-
prime (gi mod p} covers the whole set of integers from
{0,...,.p~1}.0¢

Now we prove the equivalence of the two representations in
figure 2b. Let us denote the output. in the upper figure by
¥; and in the lower one by ¥;. Also in the lower figure the
output. of the i-th branch after the delays will be denoted
by Y. We want to show that ¥; and Y, are the same. In
the proofs the following two facts are going to be used:

p—1 3 e g
. ~yrik_ | p ifkmodp=0 '
Wi, = Wi, ;@WP = { @ if kmodp#0 @

where Wy denotes the N-th root of unity. The output after
filtering and downsampling by ¢ can be written as:

o

Yi(z) = - ¥ H(WERX (Wit
9 k=0

I the lower figure, the output of the i-th branch before the

adder can be expressed as:
, PEr 1 1 .
Vi) = = S WEEWEHXWED. @)
Qi= * ’ i
Summing all of them up we get:
! P ¥ e Y -
Yilz) = ) > HWEX(Whze) S WS, (4)
k=0 =0

Using (2) it becomes obvious that in the previous equation
Y3(z} is non-zero only when k mod p = 0 and this when &
goes from § to (¢ — 1) happens exactly ¢ times, for k = @,
k=p, k=2p,..,k=(g—1}p Thus we can rewrite the
previous equation as (with: k = tp):

-t

¥(z) = égﬂ@W;ﬁ)‘XQW;zf} )
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