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ABSTRACT 
We describe new digital filtering algorithms for the processing 
and representation of signals using polynomial splines. We first 
consider the classical polynomial spline interpolation problem 
and show that it can be solved efficiently by recursive digital 
filtering. This result also yields a simple procedure for signal 
differentiation. We then derive filters that efficiently solve the 
problem of smoothing spline approximations. This technique is 
a regularized version of spline interpolation and is therefore less 
sensitive to noise. It is applied to the design of a robust edge 
detection algorithm with an adjustable scale parameter. Finally, 
we describe a filtering/sampling algorithm for least squares 
spline approximation. This data reduction technique is applied to 
the generation of a cubic spline image pyramid that is found to 
compare favorably with the Gauss/Laplace pyramid. 

1. INTRODUCTION 

In digital signal (or image) processing applications, the signals 
to be manipulated are represented by a set of uniformly spaced 
sampled values g(k), where k is a vector of integer indices. 
Although most processing algorithms are purely discrete, there 
is a variety of problems that are best formulated by considering a 
function g(x) of the continuous (multidimensional) variable x; 

the simplest example being signal differentiation. It is therefore 
of interest to develop a simple and consistent procedure for 
mapping discrete signals into continuous ones and vice versa. 

In this paper, we will consider representation of signals 
using polynomial splines. These functions have a number of 
attractive properties (simple representation, smoothness, etc) 
that make them very useful in numerical analysis [ l ,  21. There 
have been some early attempts of using splines in signal 
processing [3], but one of the main obstacle for their acceptance 
in the field has been the complexity of the standard numerical 
algorithms that traditionally rely on matrix algebra. It is only 
recently that it has been fully recognized that the operations 
involved, in the special case of equally spaced sample points, 
are translation-invariant and that the inteqmlation problem could 
be solved efficiently by digital filtering 141. 

The purpose of this paper is to extend the idea of 
translation-invariant processing via digital filters to a larger class 
of spline techniques including smoothing splines and least 
squares approximations. The corresponding algorithms are 
essentially filtering techniques and are therefore well suited for 
signal processing. The presentation of these results is mainly 
expository. For a full mathematical treatment and a detailed 
discussion of the implementation of these techniques, we refer 
the reader to the forthcoming series of reports [5,6]. 

2. PRELIMINARY NOTIONS 

2.1 Polynomial splines 
Polynomial splines of order n are C"-' functions (i.e., 

continuous functions with continuous derivatives up to order n- 

1) that are piecewise polynomials of degree n. Here, we 
consider a subdivision in polynomial segments defined over the 
intervals [k,k+l), k e Z  when n is odd, and [k-l/2,k+1/2), keZ 
when n is even. 

A classical result in approximation theory is that such 
polynomial splines can be. represented by the expansion 

+- 
g"(x) = C C ( k ) B " ( X - k ) ,  (1) 

k=-- 

where p"(x) is Schoenberg's central B-spline of order n [7]. 
This representation is unique in the sense that any polynomial 
spline g"(x) is entirely characterized by its sequence of B-spline 
coefficients ( c ( k ) ) k , z .  The basis functions p"(x) can be 
generated iteratively by repeated convolution of a B-spline of 
order 0 

pyx) = po *p"-'(x) (2) 

P0(X) = 

where po(x) is the indicator function in the interval [-$,$); i.e., 

1, xe[ -+ ,+ ) ,  (3) 
0, elsewhere. i 

One of the key properties of B-splines, which follows directly 
from (2), is their compact support. 

Another well known result is that the pth derivative of a 
spline of order n can be obtained by applying the pth order 
central difference operator; the result of this calculation is a 
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spline of order n-p [7]. Specifically, the first and second 
derivatives of B-splines of order n are given by 

-= dp”W p”-’(x++)-p”-’(x-+) (4) dx 
2 1  

-- y-  p”-2(x+1)-2p”-2(x)+p”-2(x-1). (5)  
dx 

2.2 Discrete splines 

factor m. are obtained by sampling the continuous B-splines 
The discrete B-spline kemels of order n with an expansion 

b:(k)=p”(k/m)  6 B”,(z). (6) 
These kernels all have a finite support; they are also 
characterized by their z-transform Bz(z). In this notation, the 
superscript n refers to the degree of the piecewise polynomials, 
while the subscript m represents the dilation factor. The z- 
transforms of the basic B-spline kemels (-1) for n=O to 3 are 
given in Table 1. The third and fourth column correspond to the 
discrete representation of the first and second B-spline 
derivatives (&(k) and &(k)) obtained by sampling (4) and 
(5), respectively. 

TABLEI 
TRANSFER FUNCTIONS OF BASIC B-SPLINE KERNELS AND 

SAMPLED FIRST AND SECOND DERIVATIVES 

n BXz) D;1)(Z) D;2)(Z) 

0 1 

1 1 z -1  
z - z-’ - z-2+z-’ 2 z+6+z-’ 

8 2 
3 z+4+z-’ e 2-2+2-’ 

2.3 Discrete signals and operators 
To simplify the presentation, we will consider one- 

dimensional discrete signals (a(k))&z. The operators that will 
be useful for our purpose are as follows. 

Convolution : The discrete convolution between two sequences 
a and b is denoted by b*a(k). b can be viewed as the impulse 
response of a filter that is applied to the signal a. This filter is 
entirely characterized by its z-tranform B(z) (transfer function). 

Convolution inverse : IfB(z) has no zeros on the unit circle, 
the inverse operator (b)-’ exists and is uniquely defined by 

@)-I * b(k) = 6,(k) (7) 

where 6&) denotes the unit pulse at the origin. 
*Up-sampling by a factor of m : This operation is required for 
expanding signals. It is defmed by 

9 Down-sampling by a factor of m : This operation is required 
for decimating signals. It is defined by 

[bIlm(k) = b(mk) + ~ ~ B ( ( Z ~ ’ ~ ~ ) ’ ’ ” ’ ) .  (9) 
m q=o 

2.4 Extensions for higher dimensional signals 
Although all our results will be presented for the one- 

dimensional case, they are directly applicable to higher- 
dimensions through the use of tensor product polynomial 
splines [2]. Practically, this means that the corresponding 
interpolation and approximation algorithms are separable and 
can be implemented by successive onedimensional processing 
along the various dimensions of the data. 

3. INTERPOLATION AND DIFFERENTIATION 

3.1 Polynomial spline interpolation 
Given a discrete signal (g(k)) ,  we would like to determine 

a polynomial spline g“(x) that provides an exact interpolation of 
this sequence. We have shown in [4] that the B-spline 
coefficients of g“(x) in (1) cm be obtained by inverse filtering 

where (b3-l  denotes the convolution inverse of the basic B- 
spline kemel 6; (cf. Eq. (6)). This filter can be implemented 
recursively [4]. The corresponding interpolation algorithm is 
computationally more efficient than classical approaches using 
matrix algorithms. 

3.2 Signal expansion (zooming) 
Once the B-spline coefficients have been determined, it is 

rather straightforward to reconsmct the initial signal at a higher 
sampling rate. Such a signal expansion is obtained as follows 

c(k) = (b$ * m, (10) 

&(k) = g“(x)lz_k,r = b: * [clTm(k). (1 1) 

where b: is the finite impulse response (FIR) filter defined by 
(6). This filter can be implemented efficiently from a cascade of 
moving average filters [4,6]. 

3.3 Differentiation 
Similarly, we can use the continuous model (1) to 

differentiate the signal. Specifically, we find that the samples of 
the first derivative of gn(x) are given by 

g’(k) = = d:) * ~ ( k )  = (dc) * (6:)-’) * g(k). (12) 
r=k 

where d o  denotes the sampled derivative of a B-spline of order 
n (c.f. third column in Table I). The operator in large 
parenthesis on the right hand side of (12) represents the global 
impulse response of the polynomial spline differentiator. 

4. SMOOTHING SPLINE APPROXIMATION 

A regularized version of the previous interpolation problem that 
is better suited for noisy data is to fiid the function ! (x) that 
minimizes an error criterion with an added smoothness term 
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9 Gradient computation : The x and y components of the gradient 
are computed by convolution with the two-dimensional 
separable kernels b:(k)d&(I) and d&(&)b:(I), respectively (cf. 
Table I). These quantities are used to determine the gradient 
magnitude and orientation. 

Non-maxima suppression : The gradient magnitude map is 
simplified by retaining only those values that are maxima along a 
short line segment in direction of the local gradient. 

An example of edge detection for a noisy high resolution 
electron micrograph is shown in Fig. 1. The present algorithm 
can be shown to be functionally equivalent to Canny's edge 
detector [9]. However, it is computationally much more 
efficient. 

5. LEAST SQUARES SPLINE APPROXIMATION 

An altemative procedure that also provides data compression is 
to approximate our sequence of data point by a polynomial 
spline with less coefficients. For this purpose, we expand the B- 
spline functions and increase their spacing by a factor of m. 

Specifically, we want to find a polynomial spline of the form 
+- 

g: ( X I  = &(k)P"(x / m - k) (16) 
k=-- 

that provides the best approximation of our signal g(k). The 
error criterion to be minimized is the residual sum of squares 

ET, = C(g(k)-b:*[cmIr,(k)j2. (17) 
keZ 

By using the fact that the error should be orthogonal to the lower 
resolution approximation space [lo]. we find that the optimal 
coefficients me solution of the equation 

[b: * b: *],,(k)=[b: *g(4]Jk). (18) 

Hence, the coefficients of the least squares approximation g:(x) 
can obtained by filtering and decimation 

cm(k) = ([b: * b:ILm)' *[b:  * g]Lm(k)=[k*g] (4 (19) 
Lm 

where [ . ] j m  is the decimation operator defined by (9). This 
procedure leads to a data reduction by a factor of m. 

An application of these technique is the generation of 
image pyramids which are data srructures that have been used 
for multiresolution image processing and data compression [ll]. 

5 .1  Polynomial spline pyramid 

Fig. 1. Example of edge detection. (a) 226x184 region of interest of a 
digitized electron micrograph of He-rpes Simplex Virus iype 2 (negatively 
stained), (b) output of a standard Sobel operator, (c) result of cubic spline 
smoothing with h=8 (aeq--), (d) gradient magnitude after non-maxims 
deletion algorithm. 

+- +- 
E: = x ( g ( k ) - i ( k ) ) Z  +a  J ( ~ i c x ) / a x ~ ) 2 d x ,  (13) 

k=-- -" 

where h is an adjustable parameter. It has been shown that the 
solution to this problem is precisely a spline of order 2-1 [8]. 
This type of approximation is called a smoothing spline; it is 
fully characterized by its B-spline coefficients cn(k). We have 
derived a filter-based algorithm that provides an efficient 
solution to this problem. Our main result is that the B-spline 
coefficients of the smoothing spline &-'can be obtained by 

convolution 

where the smoothing spline filter ST-' is specified in the z- 

transform domain: 

c,(k) = p* g(k) ,  (14) 

1 
si'-'( k) A 

B:'"(Z>+X(-z+2-2-')' 

This filter is implemented recursively [6], 

4 . 1  Smoothing spline edge detector 

An interesting application of this technique is edge 
detection. Our approach uses the following computational steps: 

Smoothing spline approximation : The first step is to determine 
the B-spline coefficients of a smoothing cubic spline that 
approximates the digital image. This is achieved by successive 
filtering along the rows (index k) and columns (index I) 
according to (14) with n=3. The parameter h is a scale factor 
that determines the equivalent window size of the smoothing 
kemel; i.e., &,=*. The fast recursive implementation of this 
filter is discussed in [6]. 

A pyramid structure is a sequence of fine-to-coarse signal 
representations g(o). g ( * )  g(2).. . . .go with a size that is reduced 
by a factor of two from one level to the next; g(o) is the initial 
signal. We can construct such a pyramid by taking the samples 
of a sequence of least squares polynomial splines with knot size 
2'. i=1, ... I. The decomposition algorithm is implemented by 
recursive application of a REDUCE operation: 
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Fig. 2. Error images between consecutive pyramid levels. 
(A) : GaussiauLaplacian pyramid. (B) : Least squares cubic spline pyramid. 

This operation is precisely a polynomial spline interpolation of 
order n with an expansion factor of two. The general expression 
for the pre- and post-filters is obtained from (19) and (11) with 
n=3 and m 2 :  

@ = p; * ([b; * 4"],')']t2 * b;, 

y =[(b;)-lIt2 *b,". 1 
In practice, these operators are either implemented recursively or 
approximated by FIR filters. 

This technique can be readily applied to the generation of a 
cubic spline image pyramid by successive processing along the 
rows and columns. The corresponding residual images g(,-&l 
for the standard Lena picture and those obtained with the 
Gaussian/Laplacian pyramid (LP) [ll] are shown Fig. 2. 
Identical intensity scaling factors were applied to all images to 
facilitate the comparison. These images display the loss of 
information that occurs through the application of the REDUCE 
function. For the initial LP, the amount of information lost at 
each level is quite significant; the initial subject is still readily 
recognizable. In the case of the cubic spline pyramid, the energy 
of the difference is reduced drastically. In fact, there is a 8dB 
improvement for the first resolution level. 

Based on those results, it appears that the present 
technique could be used to improve the performance of the 
coding scheme described in [ll]. 

CONCLUSION 

In this paper, we have considered the use of continuous 
polynomial spline representations for signal processing 
applications such as interpolation, differentiation, filtering, noise 
reduction, and data compression. Polynomial splines can be 
useful in a variety of problems that are best formulated in a 
continuous rather than a discrete framework. In this respect, it 
appears that computational tasks such as differentiation, 
integration, or the search for extrema are especially simple to 
perform in the transformed B-spline domain. Some of the most 
obvious applications are the problem of estimating higher order 
derivatives from a noisy signal and edge detection in image 
processing. 

Finally, we have shown that the method of least squares 
spline approximation is well suited to the generation of scale- 
space or multiresolution signal representations. This concept 
has been illustrated with the design of a cubic spline pyramid 
which stands as an interesting altemative to the widely used 
Gaussian/Laplacian pyramid. Such least squares techniques 
could be useful in a variety of multi-resolution image processing 
algorithms. 
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