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ABSTRACT

The relation between orthogonal finite impulse response fil-
ter banks and orthonormal bases of compactly supported
wavelets has been established by Daubechies. Building on
this result we use infinite impuise response filter banks to
construct more general orthonormal wavelet bases, which
have infinite support, but rapid decay. We give a complete
constructive method which gives all rational orthogonal two
channel filters banks. We develop a family of wavelets which
have similar smoothness and moment properties to those of
Daubechies. Finally we derive wavelet bases for the space
of piecewise polynomial functions, which are alternatives to
the Battle-Lemarié bases, and have the desirable property
of being realizable. We present relevant design examples.

1 INTRODUCTION

The discrete wavelet transform uses a set of basis functions
which are discrete scales and translates of a single basis
wavelet. It was shown by Mallat and Meyer that the dyadic
wavelet transform can be generated by a multiresolution
analysis scheme [5]. Daubechies derived orthonormal bases
of compactly supported wavelets using filter banks with fi-
nite impulse response (FIR) filters [2]. Details on wavelets
and filter banks can be found in [5, 2, 10].

In this paper we use infinite impulse response (IIR) filter
banks to derive orthonormal bases of wavelets. First we de-
rive a complete constructive method to generate all rational
orthogonal two channel filter banks. ‘We examine the whole
family of filters of minimal degree with a maximum num-
ber of zeros at z = —1, which contains Daubechies, Butter-
worth and intermediate solutions. These give wavelets with
desirable smoothness properties. Finally we show how to
construct alternative bases to the Battle and Lemarié bases
for the spline spaces [1, 6]; these enjoy the same properties
as those of Battle and Lemarié, except for symmetry, but
have the property that they are comstructed from realiz-
able TIR filter banks. This last result has also been derived
independently by Unser and Aldroubi [9].

2 FILTER BANKS AND WAVELETS

In the filter bank iteration scheme to generate the wavelet
transform the expression for the scaling function (in the
Fourier domain) is:

o(w) = [ ] Ho(w/2), (1)

=1

where Ho(ze is the lowpass filter of a perfect reconstruction

filter bank (PRFB).
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For perfect reconstruction it is necessary and sufficient
that the synthesis filters, Gi(z), be related to the analysis
filters, Hi(z), as follows:

[Go(z) Ga(2)] = C()Hi(=2) — Ho(=2)}, (2
where C(z) is uniquely determined as [8, 10):
1/C(z) = Ho(2)Hi(~2) — Ho(-2)Ha(2). (3

If we observe that C(z) = —C(—z) and define P(z) =
Ho(z)H1(=2)C(z), we can write that the necessary and suf-
ficient condition for perfect reconstruction is:

P(z)+ P(—z)=1. (4)

Since this condition plays an important role in what follows,
we will refer to any function having this property as valid.
A central point that we would wish to emphasize is that
to a large degree it is the function P(z) which determines
the properties of the filter bank and the wavelet. Differ-
ent factorizations P(z) = Ho(z)Hl(—z)C(z'g give different
wavelets, but when dealing with orthogonal lter banks, the
spectrum and the regularity, for example, do not depend on
the particular factorization chosen; it is the same for all.

3 STRUCTURE OF SOLUTIONS

We have just seen that the problem of constructing a PRFB
can be reduced to that of finding a function P(z) that sat-
isfies (4). In this section we investigate how to construct
such functions.

Lemma 3.1 If a valid rational function P(z) has no com-
mon factors between the numerator and denominator, then
the denominator is one of the two polyphase components of
the numerator.

Proof: The constraint that P(z) be valid gives: P(z) +
P(=2) =Y oo o 2p(2n)z~2" = 1, so p(2n) = bn. Hence
P(z) =1+ z~1F(z?) for some rational function F(z). If
F(z%) has no common factors between its numerator and

denominator, then they must each be functions of z2. That
is F(2%) = N(z?)/D(2*). So we have:

D(2?) + 27! N(Z%) .

Pl =—""5¢7

Clearly the numerator and denominator of P(z) are coprime
if and only if N(z) and D(z) are. O

Our main interest is in orthogonal filter banks. By this we
mean that the filter impulse responses obey the following
orthogonality conditions:
< hi(n), hi(n — 2k) >
< ho(n), h1(n — 2k) >

& ie{0,1} (5
0. (6)
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Taking the z-transform of (5) gives that every second value
of the autocorrelation functions of both ho(n) and hi(n)
must equal zero, except at the the origin:

Hi(z)Hi(z"') + Hi(=2)Hi(-z") =1 ie {0, 1}. (7))

So clearly Hi(z)Hi(z™') must be valid. Similarly taking
the ztransform of (6) gives that every second sample of the
crosscorrelation of ko(n) and hy(n) must equal zero:

Ho(z)H1(27') + Ho(—z)Hi(~z") = 0.

It is easily shown [4] that this forces:
Hi(z) = 2" Ho(-271)Q(2%), (®)

for some Q(z). It then follows immediately from (7) that
Q(2)Q(z™') = 1, that is Q(z) is an allpass function, and
that Hi(z)H1(z7') = Ho(—2)Ho(—z""). We now have the
necessary material for the central result.

Theorem 3.2 All orthogonal rational two channel filter
banks can be formed as follows:
(i) Choosing an arbitrary polynomial R(z), form:

R(z)R(z"")

P& = more + R(-z)R(-271)’ ©

(ii) Factor as P(z) = H(2)H(z7"),

(i1i) Form the filter Ho(z) = Ao(2)H (z), where Ao(z) is an
arbitrary allpass,

(iv) Choose Hi(z) = z**~'Ho(—2")A1(2%), where Ai(2)
13 again an arbitrary allpass,

(v) Choose Go(z) = Ho(z™"), and G1(2) = —H,(z™%).

Proof: We have already seen that to get an orthogonal
filter bank it is necessary and sufficient to find a valid P(z)
which is an autocorrelation. If an autocorrelation is a ratio-
nal function, then both numerator and denominator must
be autocorrelations also; so the numerator must indeed be
of the form R(z)R(z~") for some FIR function R(z). Since
the numerator is symmetric and of odd length one of its
polyphase components is symmetric of even length, and
therefore has a zero at z = —1. Since zeros on the unit
circle must be avoided in the denominator (9) is the only
possible choice.

If the numerator and denominator are not co-
prime then P(z) = H(z)H(z7')a(z)a(z7")/a(z)a(z7?)
= Ao(z)H(2)H(z7")Ao(z7"), where Ao(z)Ao(z™") = 1.
Hence P(z) = Ho(z)Ho(z7"), where Ho(z) = Ao(2)H(z)
is the most general case.

We hence use (8) to get the filter H:(z) in (iv). Finally it is
readily verified that C(z) = A1(2?), so that using (2) gives
the filters in (v). O

Note that the IIR structure presented in [3, 4] which

achieved linear phase and orthogonality is a special case.

3.1 Closed form factorization

Theorem 3.2 gives a constructive method for finding or-
thogonal filter banks; step (i) however involves a numerical
factorization, which is dependent on the accuracy of a root
extraction procedure. Observe however that if R(z) is of
even length N + 1, and is symmetric, then its polyphase
components are related: Ri(z) = Ro(z71)z~(N-1/2 g,
we can write: R(z) = Ro(2%) + 27N Ro(2~2), from which it
follows that:

R(2)R(z™") + R(=z)R(~2"1) = 2Ry (:*) Ro(="2).
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This gives that:

_ _R(=R(ET
P = she Ry
and one factorization is immediate:
R(z)

B = )

4 WAVELETS WITH MOMENT PROPERTIES

That the limit of orthogonal filter banks lead to or-
thonormal bases of wavelets has been firmly established by
Daubechies for the case where FIR filters and compactly
supported wavelets are involved [2]). That orthogonal IIR
filter banks lead to infinitely supported bases follows as an
essentially obvious extension [4]. The sufficient condition
given by Daubechies to guarantee convergence to a contin-
uous function was that the iterated lowpass filter, Ho(z)
should contain an adequate number of zeros at z = —1. In
fact the design strategy followed in [2] was to find FIR or-
thogonal filters with the maximum number of such zeros:
start with B(z) = (1 + z=)Y(1 + 2)" and then find the
least degree FIR function F(z) such that P(z) = B(z)F(2)
is valid; clearly F(z) contains only zeros. These give rise to
very smooth wavelets; i.e. ¥)(z) ¢ C* where k grows linearly
with the length of the filters.

4.1 Butterworth solutions

Designing orthogonal IIR filter banks with properties simi-
lar to those of Daubechies, is now very simple with the aid
of theorem 3.2: start with B(z) as before and find the least
degree all-pole function F(z) such that B(z)F(z) is valid.
This is equivalent to choosing R(z) = (14 z~!)¥. Hence
we factor:

(10)

1+ 1 4 2)V
(z7 '+ 24 2)N 4 (—2-14 2 - 2)

~ = Ho(2)Ho(z7%).

11

The wavelets have moment properties identical to thos(e o)f
Daubechies, but are smoother. It is worth pointing out that
this particular choice gives the halfband digital Butterworth
filters. That these filters obey the requirements for orthog-
onality has been previously pointed out by Smith [8], and
that they were useful in a wavelet context by Lemarié and
Malgouyres [7].

Example: Choosing N = 5 we find that R(z) is of even
length, and of course symmetric, so we can use the closed
form factorization of (10). The filters are:

(145271 410272410272 4 527* 4 z~5)
V2. (141022 4 5z-4)
11— 52! 4+102% — 102° 4 52* — 2%)
V2 (141022 + 524) '

Figure 1.a. shows the wavelet, and figure 1.b. the associated
spectrum.

Ho(z) =

H;[(z)

4.2 Intermediate solutions

Both the construction in [2], and that given in section
4.1 above involved finding F(z) such that B(z)F(z) is
valid. Between the two extremes where F(z) has only
zeros (Daubechies’ solution), and where it has only poles
(Butterworth solution) there are others where F(z) has
both poles and zeros. At first this may appear puzzling,
since if F(z) = Fn(z)/Fp(z) the numerator of the product
B(z)F(z) is increased in length by the degree of Fy(z); so
lemma 3.1 would appear to require that adding zeros would




increase the number of poles also. Essentially the idea is
that the whole sample symmetric polyphase component of
B(z)Fn(z) should have certain of its endterms set to zero.
We omit the details, however solutions are found simply by
solving a set of linear equations [4].

Example: Again considering the case N = 5 we can
choose:

(22 — 102 4 34z =10z~ +27%)

F(2) = 753,71 4608 ¥ 179222

Note that here F(z) has 4 poles and 4 zeros, compared
with 8 poles for the Butterworth case, and 8 zeros for the
Daubechies case. Figure 2 shows the associated wavelet and
spectrum.

4.3 Spline space bases

If the lowpass filter used in the iteration (1) has N zeros at
z = —1 it can be written as Ho(z) = (1+ 2" )N K (2), for
some K (z). Hence

a(w) = [Ja+e* )V ] K(w/2) = Gl T K (/2.

i=1

It can be shown that g(z), the inverse Fourier transform

of G(w), is a spline function, made up of pieces that are

polynomials of degree N — 1 [1, 6]. But note that if

K(z) = E(z)/E(z2) for some E(z) successive numerators

and denominators in the second infinite product cancel and
we get:

oo

; E(0)

Kw/2") = =

T1KC/2) = Fay:

=

which is a 27 periodic function. Hence:

s(x)= Y fk)g(z k),

k=—o

that is ¢(z) is a linear combination of splines. So our goal
now is to find E(z) such that:

_ 0+ + )V E@EGT)
E(z2)E(z~2) ’

P(z)

is valid. It works out that finding such an E(z) is not dif-
ficult [4]. Once this is done we can factor as before and
both ¢(’:1[:) and ¢(z) are piecewise polynomial as explained
above. This is most easily seen for the N = 2 case; figure
3.a. shows ¥(z), and figure 3.b. shows ¢(z), both of which
are piecewise linear.

It is clear therefore that we have constructed wavelet
bases for the spline function spaces; an alternative to the
wavelet bases derived by Battle {1] and by Lemarié [6]. In
fact, although we have approached the construction differ-
ently, if we factored P(z) = \/P(z) - \/ P(z) we would ob-
tain precisely the same basis as given in their construction.
In other words the different orthogonal bases correspond
to different factorizations of P(z). It is worth emphasizing
that wavelets generated by different orthogonal factoriza-
tions of the same P(z) do not in general span the same
spaces. All such bases enjoy similar properties however.
While the original construction gives symmetric basis func-
tions, it is based on irrational filters and is unrealizable. The
basis we present uses easily implementable IIR filters: no
approximation is necessary. This fact has also been noted
in [9]. The result is an example of a more general property
of orthogonalizing compactly supported bases (4].

4.4 Summary
In all of the above designs the construction of P(z) was
the kernel of the technique. If we desire wavelets with a
maximum number of disappearing moments we hence de-
sign P(z) with a_maximum number of zeros at z = —1.
Those minimum degree P(z)’s with this property are cas-
ily listed. To make this plain we illustrate the N=35
case in table 1. There are only the three cases already
discussed: Daubechies, Butterworth and the intermediate
case. Even though it is not of minimal degree, we tab-
ulate here also the P(z) corresponding to the orthogonal
bases for the Spline spaces. We also tabulate an estimate
of r such that ¢(x),¥(z) ¢ C". The estimation method for
the first three cases is quite crude, but suffices to show the
advantage of the IIR solutions. The spline space wavelets
enjoy a considerable advantage with respect to the others
in that no estimation is necessary; the value is known ex-
actly r = N — 1. The following shorthand notation for
causal FIR functions is used in the table: Z:;o anz” " =
@0,@1,a2,-++).  For the spline case E(z)E(z"") =
1,502, 14608, 88234, 15190, 88234, 14608, 502, 1).

5 CONCLUSION

We have presented a family of IR filter banks leading to
wavelets with good regularity properties. The family spans
the range from the Daubechies to the Butterworth wavelets,
and includes intermediate solutions. For spline spaces a
wavelet basis with an ITR implementation has also been
described.
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Figure 1: Orthogonal filter solution derived from Butterworth N = 5. (a) Wavelet (b) Spectrum.

15
©
1
@
b E
0] 0
0
Qs
01
-
10|
.Lfll 10 3 - -“+ 2 o 2 4 6 L] "0 100 00 00 400 500 600
(2) (b)

a5

5 - 3 2 1 ] 1 2 3 2 1 o 1 2 3 4 s 6 7
(a) (b)

Figure 3: Orthogonal IIR wavelet basis for piecewise linear spline space. (a) Wavelet (b) Scaling function.
Solution P(z)for N =75 Regularity
Daubechies (1+ z)5(l +2z77)° . (35, —350, 1520, —3650, 5018, —3650, 1520, —350,35) - z*277° [ r > 1.5960
Butterworth (1+2)°(1 +z277)°27*/(10, 0, 120, 0, 252, 0, 120, 0, 10) r > 3.1318
Intermediate (A+2)°(1+2"7)°-(1,-10,34,-10,1)/(1792, 0, 4608, 0, 1792) r > 3.1050

Spline (1+2)°(1+277)° - 22 Ez)E(z~ )/ E(z° ) E(z" %) r=4.0

Table 1: The various solutions for N = 5.

IV-604

T T I



