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ABSTRACT

The design of multidimensional non-separable wavelets
based on iterated filter banks is investigated. To obtain reg-
ularity of the wavelet, a maximum number of zeros is put at
aliasing frequencies in the lowpass filter. Two approaches
are pursued. A direct one designs non-separable perfect re-
construction filter banks based on cascade structures and
with prescribed zeros both analytically (small cases) and
numerically (larger cases). A second, indirect method maps
biorthogonal one-dimensional banks with high regularity
into multidimensional banks using the McClellan transfor-
mation. A number of properties relevant to perfect recon-
struction and zero locations are shown in this case. Design
_examples are given in all cases, and the testing of regular-
ity is discussed, together with a fast algorithm to compute
iterates.

1. INTRODUCTION

In the last few years, the emerging wavelet theory, its con-
pection to multirate filter banks and a possible impact on
image and video coding have caused quite a stir in the
applied mathematics and signal processing communities.
Daubechies in [1] showed that by iterating filter banks one
can obtain continuous wavelet bases (assuming the lowpass
filter is regular). In the one-dimensional case, there already
exist a number of techniques to design filters with an ap-
propriate degree of regularity (see, for example, [1, 2]).

N = det (D)

Figure 1: Iterated filter bank. If the lowpass filter is regular,
this construction leads to a continuous wavelet basis.

The field of multidimensional wavelets and associated filter
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banks is, however, quite young. In more than one dimension
sampling is described by a lattice and its corresponding ba-
sis (matrix). Thus, when using the method of iterated filter
banks (see Figure 1), one has to deal with taking powers
of matrices instead of scalars, that is, the iterated filter be-
comes

i—-1
HOw) = J] Ho((DY*w)

k=0

i=12..., (1)

where D is the sampling matrix, Ho (w is the lowpass fil-
ter that we iterate, and H(z) = Hu(w) for z on the unit
hyper-circles. But while different matrices can represent
the same sampling lattice, taking their powers can lead to
vastly different behavior of iterated filters. Therefore, al-
though there have been some initial results on the design of
irreducible wavelet bases [3, 4], a number of questions still
remain open.

In one dimension, Daubechies gave a sufficient condition for
a filter to be regular (the existence of a continuous wavelet
basis is then guaranteed), namely it must possess a certain
number of zeros at the aliasing frequency = (for the case of
sampling by 2). In multiple dimensions one would like to
follow the same approach, i.e. to impose a zero of an order
m at multidimensional aliasing frequencies 2x(D*)"'n. For
example, in the quincunx case (non-separable sampling by
two in two dimensions), the following partial derivatives
have to equal zero

6"’1 Hw(WI,WQ)
Ty T @

fork=1,....,m—-1,1= 0,...,k—1. The difficult task
is precisely how to achieve the above requirement and at
the same time have a perfect reconstruction system. In
what follows we investigate two approaches; (a) structurally
impose the perfect reconstruction property by the use of
cascade structures and then try to either algebraically or
numerically impose a zero of a sufficiently high order at
aliasing frequencies and (b) use transformations from one-
dimensional into multidimensional filters that would pre-
serve both perfect reconstruction and any number of ze-
ros that the starting filters might possess. We also discuss
methods for checking regularity of iterated filters.

2. DIRECT DESIGN

From the filter bank point of view, one of the most obvious
design approaches is to use cascade structures [4], since in
that case one can automatically guarantee perfect recon-
struction and some other properties such as orthogonality
and linear phase. Unfortunately, imposing a zero of a cer-
tain order becomes a non-trivial problem in multiple dimen-
sions, and thus algebraic solutions can be obtained just for
very small size filters.
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2.1. Two-Dimensional Regular Filters

8-Tap Filter: In [4], the authors examined the quincunx
case with the sampling matrix D = (i _11) (note D? =

2I). An orthogonal filter was constructed, based on the
following cascade

Hy(z1,22) = Ro-D:1R1D:zRo, (3)

where H,, denotes the polyphase matrix and

D: = (1 zi—l), R; = (_la'. af)~ (4)

The filters obtained have 8 taps arranged in three rows
(2,4,2). After imposing a second-order zero at (w, ) on
the lowpass filter, the following two solutions were found

:F\/§ a2

0 az

243, (5)
2+V3.  (6)

@ = FVI a
@ = +V3 a

The first solution as given in (5) led to an orthogonal filter
conjectured to be regular, while the one given in (6), inter-
estingly enough, is the same as the famous Daubechies’ D4
filter (within scaling) [1].

24-Tap Filter: For larger size filters, obtaining algebraic
solutions becomes a very demanding task. However, numer-
ical approaches are possible. Thus, we extend the cascade
in (3) as follows

Hp(z1,22) = Ro-D;R:iD;R; - D;R3D,R, - D;Rs. (7)

The filters obtained have 24 taps arranged in 6 rows
(2,4,6,6,4,2). After imposing a third-order zero at (m, =)
on the lowpass filter from (7), two numerical solutions are
obtained and are given in Table 1. Comparing this filter
to the one obtained in [4] from (5), one can observe that
its higher order zero reflects in a better rate of convergence
of the largest first-order difference (see Table 2). Figure 2
gives the eighth iteration of the lowpass filter.

([ ai [ Solution T | Solution 2 |

ao 0.18086073 | —0.14101995
a1 | —0.07356250 0.25065223
az | —0.35310838 | =0.27860678
a3 | —0.16178988 | —0.23216639
[ 0.19127283 | =2.80190711
as 1.52618074 | —0.90189531

Table 1: Two solutions yielding a lowpass filter with a third-
order zero at (, r) using the cascade (7).

Iteration Largest first Rate of
I number | order difference | convergence
2 1.00396460
4 0.61660280 1.62822
6 0.35251753 1.74914
8 0.21656604 1.62776
10 0.12829728 1.68800

Table 2: The successive largest first-order differences for the
filter obtained using the second solution given in Table 1,
computed on the rectangular grid.

Note here that we also obtained an algebraic solution lead-
ing to a one-dimensional filter. This solution requires

Figure 2: Eighth iteration of the filter obtained using the
second solution given in Table 1.

ao = a2 = a4 = 0 and

72 + 9v/40 F v/3(11 + V40)v/5 + V160
7 ’

a =
2
. L (=T +VAD)V/5 + V160
3 3% ’
V5 4+ /160
ay = T———m.

V3

Similarly to the previous case, this choice of coefficients
leads to the one-dimensional regular filter of size 6, that is
Daubechies’ D6 filter [1] (within scaling).

2.2. Three-Dimensional Regular Filters

In three dimensions, one can follow the same approach.
Thus, for the FCO sampling case (non-separable sampling
by two in three dimensions) and matrix

1 0 1
D=|[|-1 -1 1},
0 -1 0

with D® = 2I, the following cascade is used
Hy(z1,22,23) = Ro-DiR1D2R;D3Ra, (8)

with the same notation as before. Imposing a second-order
zero at (m,w, w) leads to one of the possible solutions as
follows

a = —a; = -2-\/5, ax = ——2+\/§, as = V3.

An interesting observation at this point is that these values
are the same as those in (5,6), suggesting a possible trans-
formation of a one-dimensional into a two-dimensional into
a three-dimensional regular filter. However, the authors
have not yet been able to establish the relationship.

Setting az = —a), a different set of solutions is obtained,

a1 = +V7+4V3,
where four combinations are possible, and

-4+ 13a; — a‘}

> , as = a1(3 —2V3).

ag =

Another useful cascade is given in [4], which allows con-
struction of an n-dimensional linear phase solution from the
(n — 1)-dimensional one, for the two-channel non-separable
case. A useful feature of this cascade is, that the smallest
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size filters (the first block in the cascade) are a general so-
lution (which is usually not the case with multidimensional
solutions due to the fact that factorizations theorems are
lacking). Based on this cascade highly regular synthesis
filters can be constructed as has been already observed in
[3, 4] for two-dimensional diamond shaped filters. In [5],
a three-dimensional perfect reconstruction linear phase fil-
ter pair is constructed using the above cascade and is used
for processing of digital video. In three dimensions, highly
regular filters are obtained by convolving the following filter

H(z1,22,23) = 6+ 21 + 27! +om+z vant+z, (9)
a number of times with itself.

3. ONE TO MULTIDIMENSIONAL
TRANSFORMATIONS

Another way to approach the design problem is to use trans-
formations of one-dimensional filters into multidimensional
ones in such a way that [4]

1. perfect reconstruction is preserved (in order to have a
valid subband coding system) and

2. zeros at aliasing frequencies are preserved (necessary
but not sufficient for regularity).

We will discuss two approaches. The first method involves
using filters with separable polyphase components (see, for
example, [6]). The second one is to use the McClellan trans-
formation.

3.1. Separable Polyphase Components

In this approach, the polyphase components of a multidi-
mensional filter are obtained from the polyphase compo-
nents of a prototype one-dimensional filter. We will con-
centrate on the two-dimensional case, but the same analysis
can be carried out in more than two dimensions. Thus each
polyphase component can be expressed as

Hi(z1,22) = Hi(z1)Hi(22).

The first advantage of this method is that the implementa-
tion is very cheap (due to separable polyphase components).
Then the zeros at aliasing frequencies carry over. To show
this let us first express the two-dimensional filter using the
one-dimensional one as follows

1

H(z,22) = % S H(-1)'Vaz) H((—l)‘\/g).

=0

Then it is easy to see that if the one-dimensional filter has
a zero of order N at =, i.e. if it can be written as

H(z) = 1+ P(2),

then the two-dimensional one can be expressed in the fol-
lowing fashion

H(z,z) = % Az, 2)Y Bi(z,z2),  (10)
i=0
with
Ai(z1,22) = 1 % a2z & \/g + z1,
Bi(z,2) = P(xy/mzm) P(x -3).

Fourth iteration of the filter conjectured to be

Figure 3:
regular, It is obtained using the McClellan transformation
of the filter given in (11).

Now observe that Ai(—1,-1) = 0 (where (z1,22) =
(=1,-1) is (21,22) at the aliasing frequency (m,x)). Then
using (2) it is obvious that all the partial derivatives of order
N and less are going to be zero, since upon differentiating
(1(:?, every term will possess Ai(z1, 22 k where k is at least 1
and at most N. This in turn means that a one-dimensional
zero of order N will produce a two-dimensional zero of the
same order.

The problem with this approach, however, is that the per-
fect reconstruction property is preserved only for filters with
allpass polyphase components. To prove this statement one
just needs to prove that if the filter bank is orthogonal then
the polyphase components obtained in this fashion have to
be allpass. But the previous statement is equivalent to the
polyphase components satisfying the so-called power com-
plementary (PC) property (see, for example, [4]). Thus,
we assume that in one dimension, the polyphase compo-
nents satisfy the PC property. Writing the PC property in
two dimensions and using the assumption, one obtains that
for it to hold the polyphase components have to be allpass
(leading to trivial two-tap or 1IR filters).

teration Largest hrst Rate of
”_Sumber order difference | convergence
2 0.95161612
4 0.53629625 1.77442
6 0.24966172 2.14809
8 0.10269017 2.43121

Table 3: The successive largest first-order differences for
the filter obtained using the McClellan transformation of
the length-19 one-dimensional filter (11).

3.2. MecClellan Transformation

This transformation is well suited for the design of multidi-
mensional filters since it leads to very efficient implementa-
tion. It transforms one-dimensional zero-phase filters into
multidimensional zero-phase filters. Recently, the McClel-
lan transformation has been recognized as a way to build
multidimensional [7) as well as regular filter banks (3, 4].
To be more specific, if a filter is linear-phase, then it can be
written as

-1
21+ 2

H(Z],... 2 PERERY

yz") = d'Ha(

zn+z;’)
2 ’

where d denotes a pure delay. The trick is to substitute
the one-dimensional_kernel K(z) = (z+27')/2 by a mul-
tidimensional kernel K(z1,...,2n). As long as this latter
kernel is zero-phase, the filter will be linear phase [7).
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Let us first prove that perfect reconstruction is preserved.
As before we will concentrate on the two-dimensional, quin-
cunx, case. It is known that in one dimension the following
is the form of a perfect reconstruction linear phase pair

Ho(z) = 27" H,(K(2)) H: = z7'H, (K(2)),

where k,1 cannot be both odd or both even at the same
time. Suppose that k is even and ! odd. Then the polyphase
components of the filters can be expressed as follows

Hoo(2%) = 2™ Haoo (K (2)), Hoa(2%) = 2™+ B, (K (),

Hio(2%) = 27 Hoyo (K(2)), Hun(2?) = 2™ H,,,, (K (2)).
Thus the determinant of the polyphase matrix is

det Hy(z*) = :~™*=U(P(K(2)) - Q(Kk(2))),
where P(K(z)) = H, (K (2))H,,,(K(2)), ((2)) =
o ());15)11(1\'(2)) %E ) K Q(Ax(l gh)olds

H,, (K(z nce perfect reconstructio

then P(K(z)) = K1+ R(K(2)), Q(K(z)) = K2+ R(K(2)).
Defining K(z1,22) = ﬂ)zl + 271 4 22 + 2;7')/4 and the
two-dimensional filters by their polyphase components as
Hoo(z122,21/22) = 2z7¥H,oo(K (21, 22)) (and the other
ones similarly), one can see that the determinant of the

polyphase matrix reduces to (K1 + I(Z)zl_(k“_l), that is,
perfect reconstruction is preserved.

To show that zeros carry over, simply express (14+271)? as
2(1 4+ K(z)). Then it becomes obvious that a zero of order
2N at x in one dimension, will map into a zero of order 2N
at (7, ) in two dimensions.

As an example, we design a two-dimensional regular filter
bauk starting with the one-dimensional one from [2]

H(z) = (1427")"° 27%(0.474823 — 0.654174(z + 2™ )+
+ 0.364721(2427"1)% ~0.095712(2 +271) +0.01(2 + 27 1)),
11

where the filter is given in the form convenient for further
transformation. After applying the McClellan transforma-
tion a two-dimensional filter is obtained. Its fourth iteration
;’s given in Figure 3 and the first-order differences in Table

4. REGULARITY TESTING

Regularity of one-dimensional filters is by now well under-
stood, and several procedures are available to find the de-
ree of regularity of a given filter and its associated wavelet
1, 8]. Except in cases where the wavelet can be expressed
n closed form (e.g. Meyer and Battle-Lemarié wavelets),
it is often necessary to evaluate the iterated filter given by
(1). In one dimension, (1) translates into

HOG)=H(z) - H(Y) ... H(TY. (12)

The behavior of this filter as i becomes large is a good
indication of the regularity of the wavelet (for a precise
discussion of this relation, see [8]).

In multiple dimensions, regularity testing is substantially
more difficult 3], and evaluation of the iterated filter might
be the only approach available. We indicate a simple al-
gorithm that speeds up the computation of H(')(z). It is
first derived in one dimension, and then the extension to
multiple dimensions is discussed. There are many different
ways to compute (12), one of the efficient ones being

HO(z) = H(z)- HOV (). (13)

A direct computation of this polynomial product would
use L - 2L¢~1) operations, where L is the filter length and
LU=Y = (2~ —1)(L — 1) + 1 is the length of HG=1(z).
Expanding H(z) into its polyphase components (H(z) =
Ho(2%) + 271 H1(2%)) allows one to compute two products
in z? with a complexity of 2-(L/2- L), achieving a reduc-
tion by 2. Because the complexity of computing H(i"l)(z) is
comparable to this last step, the evaluation of H()(z) takes
O[2' L?] operations, while the non-optimized approaches can
take up to O[2% L?] operations. If FFT’s are used to com-
pute individual convolutions, complexity can be further im-
proved, but it is advantageous to use the following recursion

HO(z) = HO-0(z) . BH(T). (14)
Then, it can be shown that the complexity of (14) (using
both sparsity of products and FFT’s), is O[2'*" L log L}.
In multiple dimensions, the relations (12)-(14) hold, with

22 replaced by zD where D is the subsampling matrix and
the matrix exponential is appropriately defined [4]. In the
particular case considered in the previous sections, where
D? = 21, it is easier to consider the filter H(Q)(zl,zg) =
H(z1,22)H(z122,21/22) and iterate it with respect to D?
since this leads to a separable implementation of the sug-
gested algorithms. In the above case, one is actually com-

puting the even iterates H(zi)(zl, z2).

5. CONCLUSION

New results on the design of multidimensional irreducible
wavelet bases were presented. Two different approaches
were investigated, the first one using cascade structures for
building perfect reconstruction filter banks, and the second
one designing multidimensional filters from one-dimensional
ones. Regularity testing was discussed and a fast algorithm
for computing iterated filters was given.
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