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ABSTRACT

In this paper, we present an adaptive approach for
estimating all (or some) the orthogonal eigenvectors of the
data covariance matrix (of a time series consisting of real
narrowband in additive white noise). We use inflation
approach to estimate each of these vectors as minimum
eigenvectors (eigenvectors corresponding to the minimum
eigenvalue) of appropriately constructed symmetric positive
definite matrices. This reformulation of the problem is made
possible by the fact that the problem of estimating the
minimum eigenvector of a symmetric positive definite matrix
can be restated as the unconstrained minimization of an
appropriately constructed non-linear non-convex cost
function. The modular nature of the algorithm, that resulis
from this reformulation, makes the proposed approach highly
parallel, resulting in a high-speed adaptive approach for
subspace estimation.

1. INTRODUCTION

The problem of estimating the parameters of narrowband
signals in additive white noise has been a subject of active
research recently. The various methods which can be applied
to this kind of problem can be broadly classified into two
categories; i) eigenstructure based methods which exploit the
eigenstructure of the underlying covariance matrix and ii)
non-eigenstructure based methods. The eigenstructure based
methods are preferred to the other since they yield high
resolution and asymptotically exact results. Implementation
of these methods calls for the estimation of all or some of the
eigenvectors of the covariance matrix. Even though these
eigenvectors can be estimated using any of the known block
approaches (if we are given the covariance matrix) for real
time applications we need methods to adaptively estimate
them. The problem that we address in this paper is the
adaptive estimation of these eigenvectors formulated in a
non-linear least-squares framework.

Most of the researchers used the fact that eigenvectors
can be estimated by minimizing a specific cost function
subject to certain non-linear constraints [2], [3], {8}, for
developing algorithms for adaptive estimation.

While most of the reported work concentrates on estimating a
single eigenvector, only few have addressed the problem of
estimating more then one eigenvector adaptively. An
adaptive approach for estimating the orthogonal eigenvectors
corresponding to the signal subspace of the covariance matrix
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was first developed by Owsley [2]. Thompson [2] exploited
the constrained minimization formulation to develop a
constrained stochastic gradient algorithm for seeking the
eigenvector corresponding to the minimum eigenvalue of the
covariance matrix. Later, Larimore [3] studied the covergence
characteristics of Thompson's [2] approach. Reddy et al. [4]
restated the constrained minimization problem into an
unconstrained framework and developed an approximate
Gauss-Newton recursive algorithm for seeking the minimum
eigenvector. The development of adaptive algorithms for the
single eigenvector case is further explored by Durrani and
Sharman [5] and Fuhrman and Liu [6]. Sharman [7] has
developed an adaptive algorithm, based on h QR-recursions,
to estimate the complete eigenstructure of the covariance
matrix. Recently, Yang and Kaveh [8] proposed an adaptive
approach for the estimation of the complete noise subspace or
the signal subspace of the covariance matrix.

In this paper, we present an adaptive approach, which
combines a Gauss-Newton algorithm and an inflation method,
for estimating the eigensubspace of the covariance matrix.
We develop this algorithm in an unconstrained minimization
framework instead of the commoniy used constrained
framework. The motivation for this work has come from an
earlier work of the authors [9). The basic principle of this
approacch can be used to compute the complete eigenstructure
(set of all orthogonal eigenvectors and the corresponding
eigenvectors and the corresponding eigenvalues) of any
symmetric positive definite matrix. Applications of the
proposed adaptive approach can be found in super resolution
methods which make use of either the complete noise
subspace or the signal subspace.

2. Computation of the Complete Eigenstructure
of a Symmetric Positive Definite Matrix.

Let x(n) denote the time series consisting of the sum of P
real narrowband signals corrupted with additive white noise of
variance 62. Let R be the asymptotic covariance matrix of
size N x N, (N2 2P + 1) of x(n). Since R is symmetric, we can
express it as

L T

R= 2 Aieje; (2.1)
i=1

where 0'2 = Xl = xz == A'N-2P < )"N-ZP-H < AN—2P+2 <..% xN
are the eigenvalues of R in the ascending order and e;is the
orthonormalized eigenvector of R corresponding to the
eigenvalue A;(i = 1,..,.N). The subspace spanned by the
eigenvectors ey.2p4+1»---eN is called the signal subspace (Sg)
and that spanned by ej,....en.2p is called the noise subspace
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(NR) of R. Further, any linear combination of €),.-,€N-2p IS

also an eigenvector of R with the eigenvalue 62 and in what
follows we refer to this as a minimum eigenvector.

2.1 Computation of a Minimum Eigenvector of R

It is well known that a minimum eigenvector of R can be
obtained as the solution of the following constrained
minimization problem [2]:

min wl Rw subject to wT w =1 2.2)
w

where w = [w),wj,...,wx]T is an N-dimensional vector.

In an earlier paper [9], we have recast the above
constrained minimization problem (2.2) into an
unconstrained minimization framework different from that
used in [4]. In order to facilitate an easy recollection, we
recall the results from [9] which are relevant to the present
problem.

Define a function J as

Jw.p) = wTRwW + p(wTw-1)% 1 > 0 (2.3)
Since R is a positive definite matrix and W is positive, the
function J is always positive. The main results are: i) If Amin
represents the minimum eigenvalue of R, then | is bounded as

W > Aniaf2. ii) All the stationary points of J lie within the
unit hypersphere in the N-dimensional space. iii) w* is a
stationary point of J if and only if w* is an eigenvector of R

A
corresponding to the eigenvalue A, with Ilw*|I2 =B2=1 - E

where Il . |l denotes the 2-norm. iv) w* is a global minimizer
of J if and only if w* is a minimum eigenvector of R

corresponding to the eigenvalue Ay, with llw*|l =
B2=1 -%’;ﬂ. v) For a given p, every local minimizer of J is
also a global minimizer. vi) The minimizer of J is unique

only when N = 2P+1. vii) The signal eigenvectors of R
correspond to the saddle points of J.

2.2 Multiple Eigenvectors Case
We now present an inflation approach to extend the
results of Section 2.1 to compute multiple eigenvectors.
*
Let w; be the eigenvector (with norm B;) of R
corresponding to the eigenvalue A; and assume that

* *

Wi W g (2 £ k< N) are orthogonal. That is,
* *
Rwi =A.iwi , i=1,.k-1

Viz#j, ije {1,..k1)

Our objective is to obtain the next orthogonal eigenvector

* *
Wi, assuming that Wi = 1,...,k-1 are available.

Define the function J, as

k-1

T T 2 T *
B(wil o) = wy Rwy + p(wy wi-172 + 0 Wy w7
i=1
= wIRkwk + u(w{wk-l)z (2.4)
where wi eRN and o0 > 0 and
k-1,
Rk=R+a_2 w, wiT 2.5)
i=1
*
Y
Defining e; = ? ,1=1,..k1, we get from (2.1) and (2.5)

N k-1
T 2 T
Rk=.21 Aieje; +a.21 Bjee;
i= i=

N k-1 2 T
-2 [xim}:l By i) eie; 2.6)
1= =

where, 8;; is the Kronecker delta function. Now, if a is

chosen such that
k-1

M<h+a ) B? 8y i=1,...k-1 @7
=1

then the minimum eigenvector of Ry is e, and the
corresponding eigenvalue is A;. So, if Wy is a minimizer of
Jy, then from the results i) through vii) of Section 2.1 we get
that w; is a minimum eigenvector of R, with eigenvalue A.

It can be easily verified from (2.6) that this minimum
eigenvalue-eigenvector pair of Ry corresponds to the kth
eigenvalue-eigenvector pair of R. That is,

* * * Ak
Rwy = Ajw, with llwkll2 =1 ~£ (2.8)
Further, the strict inequality in (2.7) guarantees that
* %
wTw =0 V i=l,. k-1 2.9)

Thus, constructing N cost functions with

T
Ji(wypo) = w’lrklwl +u(w, wi-12, R; =R

and Jy, k=2,..,N as defined in (2.4), and finding the
minimizers of each of these, we get the N orthogonal
eigenvectors of R and the corresponding eigenvalues. The
procedure detailed above can be considered as the kit step of an
algorithm to compute the eigen-subspace of the covariance
matrix. The norm of each eigenvector thus obtained depends
upon the corresponding eigenvalue and the parameter pu. In
order for the computation of all the orthogonal eigenvectors
to become feasible, the parameters |1 and & must satisfy the
following conditions

Ammax
2

w> (2.10)
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which follows from the result i) of Section 2.1 where Apyy =
An. the maximum eigenvalue of R, and

Amax < Ai+ uBiZ for i=1,...,.N-1 (2.11)

Substituting for 512 in (2.11) and after some manipulations,

we get
o >_A_'mL'M (2'12)
XM
1-
2u

Since the eigenvalues of R are not known a priori, it is
necessary to derive practically computable lower bounds for p
and o.. Since

Amax < Trace(R) and A,ni,,sm“%&

we get the practical values of the lower bounds for p and o as

u>T’“2 R (2.13)
Trace(R)

0.>(l ‘Trace{R} ) (2.14)
2uN

Thus, the selection of u and o satisfying (2.13) and (2.14)
guarantees the computation of all the orthogonal
eigenvectors.
3. ADAPTIVE ESTIMATION OF THE EIGENSUB-
SPACE OF THE DATA COVARIANCE MATRIX

Let a = [a},83,...,.aN]] represent the coefficient vector of a
N-tap tapped delay line filter whose input is the sequence
{x(n)}. Then the filter output is given by

y(n) = ax, 3.1)
Following the theory developed in Section 2, we define a
least-squares criterion function for a block of L data samples
as

L
Tenl)=g T ¥4 +uieTa- 17
n=
=alR(L)a +u(ata - 1
where

x) = [x(),x(@-1),...x(n-N + 1)]T

(3.2)

1 T
RUL) ={ Y Xnxg-
n=1
In the following sub-section, we derive the adaptive
algorithm for seeking the minimum eigenvector of the data
covariance matrix.

3.1 Single Eigenvector Case

Minimization of J has been chosen as the adaptation
criterion for the filter. The Newton-type adaptive algorithm
for minimizing J is of the form

a(n) = a(n-1) - ([H]! g} la=an-1)

= a(n-1) - [Hn-1)]" g(n-1) (3.3)

where a(n) is the filter coefficient vector at the nth adaptation
instant, g and H are the first derivative vector (gradient) and
the second derivative matrix (Hessian), respectively, of J with
respect to a. Differentiating (3.2) with respect to a, we get

g(n) = 2R(n+1)a(n) + 4u(aT(n)a(n) - Da(n) 3.4)
H(n) = 2R(n+1) + Su(a(n)aT(n)) +4p(aT(n)am) - DIy (3.5)

T

Equation (3.3) implicitely assumes that the inverse of
H (n) exists for all n. Further, in order to keep the
computational requirements to a minimum it is preferable to
have a recursive updating rule for computing the inverse of
H(n). These two requirements are met if we approximate the
Hessian by dropping the last term in (3.5). Using this
approximation, we get the Gauss-Newton adaptive algorithm
in place of (3.3) as

am) = a(n-1) - (Hn-1]! gn-1) (3.6)
where
(H®) = 2R(n+1) + 8pa(m)a’(n) 3.7

Applying the matrix inversion lemma to the R H S of (3.7),
we get

~ ‘1 -1
(@)L =% R +1)_Rl (n+Dam)aT(m)R"(n+1)

“ 4 aT(n) R-1(n+1)a(n)
ap

1 (3.8)

where R-1(n) is given by
Rn-Dxx R 1)

Ri@) =577 R@-D) - T ]
n-1+x Rl(n-1)x,

3.9

Substituting (3.8) and (3.4) in (3.6), and simplifying, we get
a(n) = 1(n-1)R"(n)a(n-1) (3.10)

where T
- -1
1) = - 1 + al(n-1)a(n-1) G.11)
o +2aT(m-1)R"1(n) a(n-1)
I
3.2 Extension to the Multiple Eigenvectors Case

Extension of the adaptive algorithm developed in
Section 3.1 to the multiple eigenvectors case directly follows
from the principle described in Section 2.2 Consider the unit
k. Here, ax(n) is the estimate of the k' eigenvector of R(n).
The adaptation criterion for the k' unit is the minimization of
the least-squares cost function J, defined as

T, T
T(apL) = a R(Lay + 1y a1 2 k=1,..N (3.12)
where
R, () = R.-1(L) + 0y 1 aI_l , k=2,.N (3.13)

with
R;(L)=R(L).
Then, the Gauss-Newton algorithm for updating ay(n-1) to
ay(n) follows from (3.9) to (3.11) and can be given as
a (n) = lk(n-l)Rk‘l(n)ak(n—l), where

1+ a'I];(n-l)ak(n-l)

(3.14)

1y(n-1) = 1 ), k=1,.,N (3.15)

T
E; +2a k(n-l)R,{'1 (n)ag(n-1)
- T -1
R () a1 (@) 3y, MR}y (1)

-1 -1
R, m)=R, ,(n)-
k k-1 -1
§+ a'Il;_l(n)Rk_l(n) ap_1(n)

(3.16)

R m=R1m)
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. R-1ln-1) xnsz'l(n-l)

n -

=n_1 [Rl (l’l-l)- T 1 ]
n-1 +an (n-1)xpn

3.17)
As we did in Section 3.1, we comment that the recursive
algorithm described by equations (3.14) to (3.17) converge to
the kth orthogonal eigenvector of the data covariance matrix.
The above described algorithm is sequential in nature

since the k™ unit needs the eigenvector estimates from all the
previous k-1 units, to update its estimate (see (3.12) and
(3.13)). However, it can be made parallel by making all the
units to start computations simultaneously as described
below. At any instant n, each unit goes through a three step

procedure. This is given below for the k™ unit
Step 1 Pass on the current weight vector ax(n-1) and the

matrix Ri(l_l (n-1) to the next unit k + 1.
Step 2 Accept the weight vector ag_j(n-1) and the matrix
Rl-({l (n-1) from the just previous unit k - 1.

Step 3 Compute Rl_(l (n) as

R]-(l(n) = Rl-(l_l(n-l)

Ry (0 Dac1(n-Day_ 1 (1) Ry (1)

1 T -1
;‘*‘ ap 1(m Ry ; () ag-1(n)

k=2,.,N and update ag(n-1) to ax(n) using (3.14).

Note from Step 3 that the data x(n) that enters unit 1 reaches
unit k after a delay of k time units. Hence at instant n, even
though x(1) to x(n) have been received by the first unit, only
x(1) to x(n-k) have reached the kth unit. Consequently, there
will be a similar delay in getting the final eigenvector
estimates from each of these units.

It can be easily shown that adopting the above three-
step procedure for parallelizing the Gauss-Newton approach
results in the reduction of L . D - L- D time units where L is the
data length and D is the number of eigenvectors to be
estimated. Also, this algorithm is highly modular in nature
since the computations at each unit are exactly identical to
one another. However, inherent in the algorithm is the fact
unit k will coverage only after all the previous units have
converged.

CONCLUSIONS

The problem of computing the orthogonal eigenvectors
of a symmetric positive definite matrix has been formulated as
an unconstrained minization problem. The methodology
evolved from the formulation has been made use of to develop
a Gauss-Newton adaptive algorithm for estimating the
orthogonal eigenvectors of the data covariance matrix.
Unlike the conventional subspace estimation algorithms
where the orthogonalization of the estimated eigenvectors is
done explicitly, the proposed adaptive algorithm makes use
of an implicit orthorthogonalization procedure which is built
in through the cost function which the algorithm minimizes.

The algorithm thus resulted is not only suitable for
parallel implementation but also highly modular in nature;
thus resulting in a high-speed adaptive algorithm for subspace

T T 1T

estimation. One can show analytically that the algorithm is

convergent under mild assumption. Simulations confirm that

its performance is exactly identical to the adaptive block
inverse power method.
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