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ABSTRACT

Signal reconstruction in oversampled A/D conversion is
classically performed by a lowpass filtering of the quan-
tized signal. This leads to an MSE inversely proportional
to R2"*! where R is the oversampling rate and n is the or-
der of the converter. We show that this reconstruction does
not necessarily lead to a signal which gives the same digital
sequence as that of the original input signal. If this were
indeed the case, we show that we would obtain an MSE in-
versely proportional to R*"t2 jnstead. We propose a way to
actually achieve such an estimate with the same bandwidth
and same digital conversion. This enabled us to perform
numerical experiments which confirm the R?"+2 behavior
of the MSE.

1. Introduction

Oversampled A/D conversion (ADC) is a successful and al-
ternative way to achieve high resolution data acquisition
from bandlimited analog signals. This technique is based
on the statistical properties of the error signal generated
by quantizing the input signals. The assumption of white
quantization noise has led to a good evaluation of the re-
maining noise power in the input bandwidth after oversam-
pled ADC. It was found that when a converter is an n't
order noise shaper, such as nt? order A modulators, the
in-band noise power is proportional to 1/ R*™t! where R
is the oversampling rate [1, 2]. Gray actually justified the
white noise assumption up to the second moment on single-
loop, multi-stage ©A modulators of order greater than 2,
with dc and sinusoidal inputs [3].

The first question we ask in this paper is the following: is
lowpass filtering the quantized signal the best signal recon-
struction we can perform from the digital sequence? Is the
remaining in-band noise irreversible? Studying these ques-
tions, we noticed in [5, 6] that in the case of simple oversam-
pled ADC, reduced to pure quantization, such reconstruc-
tion does not necessarily lead to a signal which gives the
same digital sequence as that of the original input signal.
This gave us the first hint that such signal reconstruction
is not theoretically optimal. Then, assuming periodicity of
input signals and certain conditions on threshold crossings,
we showed analytically that an estimate with same band-
width and same digital conversion as that of the analog
input signal necessarily yields a mean square error (MSE)
inversely proportional to R? instead of R; that is, an im-
provement of 6dB per octave of oversampling rather than
only 3dB/octave.
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Figure 1: Block diagram of a single-quantizer A/D con-
verter: H is an invertible affine operator and G a causal
digital to analog operator.

In this paper, we try to answer the same questions in
the case of n*"® order oversampled A/D conversion. We first
present a block diagram model that describes the mecha-
nisms of most n'* order A( D converters currently known.
Then, based on this model, we evaluate an upper bound
on the MSE when taking as signal reconstruction an es-
timate which has the same bandwidth and gives the same
digital sequence as that of the original input signal. Assum-
ing that input signals are periodic, we immediately find an
MSE upper bound of the order of O(R™?"). Then starting
from the model of white and uniform quantization noise,
we show mathematically that the MSE has an upper bound
inversely proportional to R?™*?_instead of R*"*! in classi-
cal reconstruction. Due to the fact that the set of analog
signals giving the same digital output sequence is convex,
it is possible by projections to achieve such an estimate
from the knowledge of the digital sequence. Our numerical
experiments confirm the R?"t2 behavior of the MSE.

2. Model of n** order A/D converter

We model an oversampled A/D converter by the block di-
agram of figure 1. For example, a 1** order TA modulator
can be reduced to figure 1 by taking H asa discrete integra-
tor and G as the composition of a D/A converter, a discrete
integrator and a sign change. We show in [6] how converters
such as simple, dithered, predictive converters and multi-bit
maulti-loop multi-stage LA or interpolative modulators can
be reduced to this structure. For multi-stage modulators, it
is however necessary to collect the individual binary output
of every in-built quantizer.

It can be shown, based on this diagram, that the set
I'(Co) of all analog input signals giving a particular digital
output sequence Cp is convex. Indeed, the set of signals A
giving Co through the quantizer is naturally convex. Then
I‘(Co% is simply the image of this set through the trans-
form A~ H'[A+ G[Coq which is affine, since G[C’%lhis
a fixed signal. A more complete proof is shown in [6]. This
convexity property gives us the first hint that, if an original
signal X, gives a digital sequence Co (Xo € T(Co)), then
an estimate X of Xo which does not yield Co as a digital
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Figure 2: Amplitude subdivision of signal A for a 2 bit
uniform quantization, with stability assumption.

output (X ¢ I'(Co)) can always be improved. Indeed, be-
cause I'(Cy) is convex, X necessarily gets closer to Xo when
orthogonally projected on I'(Co).

For most oversampled A/D converters, the operator H
of the equivalent structure in figure 1 is a discrete integra-
tor of a certain order n [6]. Qualitatively speaking, the
si‘gnal A coded by the quantizer is an “amplified” version
of the input signal. This explains intuitively why a high
resolution description of the input signal can be achieved
with a coarse resolution quantizer. However, the difficulty
of such a coding system lies in the fact that the input range
of the quantizer is limited. One of the achievements of LA
modulators is to bring this integrated signal back to the
amplitude range of the quantizer, thanks to a well designed
feedback. This is typically the case of multi-stage A mod-
ulators. Coming back to the structure of figure 1, the G
output signal can be interpreted as a “smart” reference sig-
nal which insures that the integrated signal A will always
fall into one of the finite length quantization intervals.

In this paper we assume that H is an n'® order discrete
integrator, and that the quantizer is uniform with a step size
equal to g. We include the particular case where the quan-
tizer is reduced to a single threshold comparator (single-bit
converters). We suppose that the coding process is stable
in the sense that, thanks to the feedback operator G, the
signal never goes beyond a distance equal to ¢ from the ex-
treme quantization thresholds. This is for example the case
for single-bit 1°* order and single-loop multi-stage A mod-
ulators when the feedback DAC output values are adjusted
to =% and input signals remain in the interval -4, gi Un-
der this assumption, the amplitude range of possible values
of A is divided into a finite number o% intervals of length
4. Moreover, when an input signal X gives a digital output
sequence Co, the digital value Cy(k) of Cp at time k deter-
mines which of these length ¢ intervals the value A(k)of A
belongs to. Figure 2 shows an example of a 2 bit quantizer.
As a consequence, if two input signals Xo and X have the
same digital output Co, then the signals 4o and A respec-
tively seen by the quantizer are such that, at every instant
k, Ao(k) and A(k) belong to the same quantization interval

Qo(k), indicated by Co(k), and
|A(k) — Ao(K)| < ¢ (1

3. First MSE upper bound O(R~?")

Starting from the assumption that input signals are ban-
dlimited and periodic, it appears from this model that the
MSE between two signals having the same bandwidth and
giving the same digital output has an upper bound inversely
proportional to R?". Let us first define the notations and
conditions of our analysis.

We suppose that input signals belong to the subsgace Vo
of bandlimited and periodic signals with a fixed period 7.
They can be written

X[tl=A+ Z B; V2 cos(2xj

j=1

N

t . .t

To) + E 1 C_,ﬁsm(%r]To
i=

where (A, Bj, C;) are the real Fourier coefficients of X, and
N the discrete maximum frequency. Therefore V, is 2N +1
dimensional with the following norm

1/2
Il = (a+ S, 18,2 + £ 1ei7)

We suppose that input signals are sampled M times within
one period To. We will designate by X (k) = X[£To] the
k" sample of X. We suppose that M > 2N + 1. The over-
sampling rate is then R = % and is thus proportional to
M. Tt can be shown from Parseval’s equality that for any
signal X € Vo, VM > 2N +1, |IX|? = £ |x (k).
When two signals Xo and X belong to V;, the MSE between
them is therefore

M
MSE(Xo,X) = % ST IX®) = Xo(B)P = |X — Xol .

k=1

The upper bound O(R~?") comes as follows. Suppose that
Xo, X € V, give the same digital sequence C, and call Ao, A
the corresponding signals entering the quantizer. Working
on figure 1, it appears that

A~ Ao = H[X] - H[Xo] = H[X — Xo] )

since the output of G is equal to G[Cy] for both analog input

signals. Therefore, the difference A — Ao is the n*® order
integration of X — Xo. But this difference is limited by
equation (1). The following lemma says that, since X — X,
is bandlimited, the maximum value of |A — Ao| is of the
order of M™,

Lemma 1 There exist two constants0 < ¢; < c2 such that,
for M large enough,

Vz €Vo, az||M™ < 1g}}s)gula(k)l < e2|lz|iM (3)

where @ = H[z] is the n'* order discrete integration of the
M point sequence z(k) = z[+5T).

Using equation (1) and applying the lower bound of equa-
tion (3) to z = X —Xo, we find that || X — Xo|| < T X R
which implies that M SE(Xo, X) has an upper bound of the
order of R=*". For a proof of lemma 1, see [6].
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4. Second MSE upper bound O(R~-(3n+2))

In reality, the distance between Ao(k) and A(k) is more
constrained than in (1). Suppose for a moment that we
had the stronger constraint

|A(k) = Ao(K)| < a/M (4)

instead of (1). Then going through the derivations of
the previous paragraph we would find that 1X = Xoll <

cl—M;‘l;;r o« gagr which is equivalent to saying that
MSE(Xo, X) has an upper bound of the order of R-(3n+2),

There is of course no reason for (4) to be true in general, but
we want to give the intuition that (4) might happen some-
times. In practice, the relative position of Ao k) within
the quantization interval Qo(k) which contains it, moves in
a “random” way from one time index to another. If we
suppose this relative position to be uniformly distributed
within Qo(k), it can be shown [6] that the minimum dis-
tance of Ag(k) to the upper (or lower) boundary of Qo(k),
over the time range k = 1,..., M, has an expectation of the
order of g/M. On the other hand, A — Ao is a slowly vary-
ing signal (being the nt? order integration of a bandlimited
signal). Since A(Kk) is constrained to remain between Ao(k)
and the boundaries of Qo(k}r, it will be “sometimes” forced
to stay at a distance of Ao(k) upper bounded by q/M.

The relative position of Ao(k) within Qo(k) is in fact
characterized by the quantization error eo(k) shown in fig-
ure 2 and defined as the difference between Ao(k) and the
center of interval Qo(k). We prove in this paragraph that,
if we assume this error signal to be white and uniform, then
the expectation of M SE(Xo,X) will be actually bounded
by O(R~(?**?). This will be based on the following lemma,
proved in [6].

Lemma 2 There ezist two constants 0 < cs < ¢4 such that,
for M large enough,

M
Ve € Vo, CallxllM"S%gla(kﬂs@llzlw“ )

where a = H([z] is the n'" order discrete integration of the
M point sequence z(k) = z[+5To)-

Theorem 1 Assume that for any M > 2N + 1, the quan-
tization error values eo(1), ..., e0(M) resulting from coding
an input signal Xo € Vo are independent random vartables
with a uniform probability density in [—%,2]. Then there
exists a constant ag > 0 such that for R large enough

«
E[MSE(Xo, X)| € Tz
where Xo € Vo is an input signal, X € Vo is a ran-

dom estimate of Xo giving the same digital sequence, and
E[MSE(Xo, X)] is the expectation of MSE(Xo, X).

Proof : We first introduce some notations.

- X/JY means 38 >0, X =Y

- Prob(A) is the probability of event “A”

- Prob(A’/ B) is the conditional probability of event “A”
given the event “B”.

Let U be a fixed element of Vo such that ||U|| = 1. We
designate by E,, [M SE(Xo, X)] the conditional expectation
of MSE(Xo,X) given that (X — Xo) JU. We have

+ oo
E,[MSE(Xo,X)] = / A%f, (A)dA  where

A=0

Figure 3: Space representation of signal Xo and estimate
X in Vo NT(Co).

fo(A)dx = Prob (]| X — Xo|l € A A+dA] /(X - Xo)JU).
If we define the cumulative probability

P,(\) = Prob(|X — Xol 2 / (X =Xo) JU)  (6)

then  fy(}) =_%PU(A)' (M)

Let us find an upper bound to P,()). Suppose that
P,(A) # 0. Saying that ||X — Xo|ll > A given that
X —"Xo) JU implies that Xo -+ AU belongs to the segment
{XO,X] see figure 3). By convexity of I'(Co) where Co is
the digital sequence commonly output by Xo and X, then
Xo + AU belongs to I'(Co) and therefore gives the same
digital sequence Co. If Ao and A are the signals seen by
the quantizer when Xo and Xo + AU are respectively input,
then equation (2) can be applied to Xo and Xo + AU:

A—Ap =H[(X0+AU)—XO]=AH[U]=AV
where V = H[U] is the n'" order discrete integration of
the M point sequence U(k) = U[45To]. Since A(k) belongs

to the same quantization interval as that of Ao(k) at every
instant k (see figure 2), then

[A(K) — (Ao(k) + eo(R))| < ¢/2

which is equivalent to

AV (k) — eo(K)| < ¢/2. (8)
Since |eo(K)| < ¢/2, this implies that
Vk=1,..M, AV(k)|<q (9)

Then equation (8) is equivalent to eo(k) € Inv(x), where
L=[-2,4n[-%+a, 2+4a], a€R. Therefore, from (6)
P,(\) < Prob(Vk=1,..., M, eo(k)€ Lvr) -
When |a] < ¢, the length of Ia is ¢ — la|. Since eo(k), k =
1,..,M are independent random variables with a uniform

distribution in [—$, £], then

M M

g = AV(F)|
P,(\) < Prob(eo(k) €I = —_—
o) < ] Prob (o8 won) =117

(10)

IV-167

T

T




Using the inequality 1 — a < e~ and applying the lower
bound of equation (5) on £ = U, then

Py(N) Sexp (=2 7N [V(K)) < emsM™Ma (1

Note that this inequality is trivially verified when P,(2) =
0. Therefore, Alir;n P,;(A) =0, and, using (7), the condi-
—400

tional expectation can be calculated with an integration by
parts

+oco
E, [MSE(Xo,X)] =2 / AP, (A)dA.

Using (11) and performing another integration by parts, we
find

2 1
E, [MSE(X,,X)] < @y M
This upper bound does not depend on the choice of U €W
with |[U]| = 1. Therefore, the unconditional expectation
has the same bound:

1 aop

2
E[MSE(XOsX)]S_ W

o) 377 =

where ap = 2(53)"2(21\7 + 1)—(2n+2) o

The assumption of white and uniform quantization er-
ror signal has been used as a convenient way to obtain in-
equality (10). However, it may be possible to obtain this
inequality with some multiplicative constant and a weaker
probabilistic assumption about the quantization error sig-
nal (see [6]).

5. Numerical experiments

Since the white and uniform quantization noise was only
a model in our analysis, we did numerical experiments to
verify this O R_(2"+2)) upper bound in practice. We de-
signed algorithms based on the fact that alternating pro-
Jections between Vp and [(Co) converges to an estimate
in Vo NT(Co). We worked with sinusoidal inputs drawn
at random and calculated averaged MSE over 300 to 1000
experiments for each configuration of A/D conversion and
oversampling rate. In figure 4, we compare our results with
the theoretical calculation of SNR in classical reconstruc-
tion from lowpass filtering the quantized signal, which is
proportional to R?"+1 [1). We obtain a systematic improve-
ment of signal reconstruction, regardless of the order .
The gain of SNR we obtained over classical reconstruction,
shown in figure 5, yields an asymptotic slope of 3dB per
octave of oversampling. This confirms that the MSE upper
bound is inversely proportional to R?"*2 instead of R*"+1,

Hein and Zakhor have shown in [4] that for 1°* order A
modulation (n=1) with constant inputs (Vo reduced to a
one dimensional space) that the MSE is lower bounded by
O(M~%). This corresponds to the classical behavior R
However, we found that our predicted R2"+2 MSE behavior
is recovered when Vj is the subspace of sinusoids and input
signals have an amplitude greater than ¢/2000.

6. Conclusion

Our reconstruction is optimal since it uses all available
information (bandlimitedness, Vo, and digital sequence,
I‘(Co)l) and picks an estimate belonging to the intersection
Vo NI(Co). We also give an upper bound on the perfor-
mance of such a reconstruction, namely, MSE will go down
at least as fast as O(R~(27+2)),

sinusoidal inputs : amplitade = ¢/2
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Figure 4: SNR of signal reconstruction versus oversampling
rate, with classical and alternate projection methods.

single-bit multi-stage sigma-delta modulation : sinusoidal inputs (amplitude=q/2)

+ 1st order
x2nd
o 3rd
15 eath

SNR gain over classical reconstruction (dB)
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3 4 ; é 'II 8 9 10 1
log2(R) (oversampling ratio in octaves)

Figure 5: SNR gain of signal reconstruction with alternate
projection over classical method, versus oversampling rate.
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