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ABSTRACT 
Joint detection of carrier and timing parameters in digital 
communications is an alternative of recent interest when 
compared with individual acquisitions of each one of the 
parameters. In this paper the eigen value decomposition 
method of the signal structured covariance matrix is applied 
to jointly synchronize carrier frequency and timing (symbol 
transitions) in a full digital receiver. A very fast acquisition 
stage is obtained when PSK and MSK signals are transmitted 
in an additive gaussian noise channel. The parameters of 
interest are estimated from the signal subspace as a fast and 
computationally efficient alternative to the matched filter 
technique to estimate the timing parameter and also and 
alternative to the classic bank of filters technique used to 
acquire the carrier frequency parameter. (*) 

1. INTRODUCTION 
Digital Signal Processing Techniques are of growing interest 
in the field of Satellite Communications. A lot of digital 
methods have appeared to estimate the timing parameter in 
digital communications and from a Maximum Likelihood 
point of view, [l]. Of particular interest are those methods 
that obtain a joint timing and carrier phase estimation with a 
single algorithm. Nevertheless. these algorithms are usually 
performed in a closed loop technique and in a digital 
environment neither a lot of efforts have been done to include 
carrier frequency acquisition in this stage nor the frequency is 
detected applying directly a Maximum Likelihood method in 
digital communication systems. 

In order to accomplish a fast transmission of 
information, the estimation of the carrier parameters, 
frequency and phase, and also symbol transitions must be 
acquired as fast as possible, preferably by means of an open 
loop method and from a very short burst of symbols. 
Simultaneous Doppler frequency and symbol transition 
acquisition methods using very short data records, are 
proposed from an ML-estimation point of view. 

The log-likelihood function is analyzed for a burst 
of symbols modulating a sinusoidal carrier in Phase Shift 
Keyed (PSK) or in Minimum-Phase Shift Keyed (MSK). in 
additive gaussian noise. The signal is sampled, to get a full 
digital structure for the processor. The vector obtained, when 
no data information is used in the estimation stage suits a 
multivariate normal model [2]. The resulting log-likelihood 
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function is just a quadratic form of the data vector and the 
covariance matrix. The parameters to be estimated are 
Doppler frequency OD and symbol transition T (also called 
timing), variables that parameterize the matrix covariance 
structure. In section 2 the complete log-likelihood function is 
analyzed, concentrating the of the interest in the covariance 
matrix of the signal. 

From a burst of a received signal, different 
submatrices appearing in the complete covariance matrix are 
identified. Using a Singular Value Decomposition of these 
matrices, the symbol transition parameter is obtained from 
the eigenvalues that determine the signal subspace, while the 
corresponding eigenvectors steer the Doppler frequency. In 
section 3 this analysis is accomplished and also simulations 
results are presented. The resulting method is proposed as a 
concluding alternative to closed loop techniques. Finally the 
most important conclusions are presented in section 4. 

2. LOG LIKELIHOOD FUNCTION 
The received signal has been processed before the 

synchronization stage. This means that it has been band- 
pass filtered, down translated to a I-Q base-band signal and 
analog to digital converted. The signal to be processed, x(n), 
for the parameters identification is shown in (1) as a sequence 
of samples coming from a PSK burst of Nsy symbols, sampled 
at N,, samples/symbol rate. The base-band pulse form has 
been initially assumed to be of limited duration, equal to one 
symbol period, in order to simplify the problem. 

x(nk A C. ei(h+M p(n-k.Nss-T)ei~ +n(n+s(n)tn(n) 

The time variable has been normaliced to the 
sampling period. s(n) is the desired signal sequence. It is 
parametericed by some unknown parameters, as the 
modulating phase $k, the carrier phase qC, the timing or 
symbol transition parameter T, and the Doppler frequency q,. 
The magnitude A is not of great interest when constant modul 
signals are processed. In the following it will be considered 
equal to one. n(n) is the noise signal. assumed as a complex 
gaussian distribution with independent real and imaginary 
parts of zero mean and o2 variance. 
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When N,, symbols are processed, a vector of 
N=N,,xN,, order is obtained and it is dismibuted as N(S,202 !) 
with desired signal vector S. parametericed by the unknown 
parameters. 
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To eliminate the phase components of the desired 
signal vector S. the received signal is averaged for all the 
equiprobable values of the transmitted symbols. The resultant 
log-likelihood function is thus simplified to a quadratic form 
as it is shown in section 2.1. for PSK modulation. 

2.1. Covariance matrices in  PSK signals 
The phase in a PSK signal is modulated by a 

sequence of independent symbols. Assuming the 
equiprobability of the transmitted symbols proceeding of a 
limited alphabet, the mean averaged signal vector results 
equal to zero. 

E is the statistical operator. With (3) the 
parameterizacion of the signal by the phase parameters 
disappears. When the covariance matrix of the signal vector 
is calculated, the same kind of simplifications are obtained. 
Two samples s(i) and s(k) of one symbol are strongly 
correlated, but two samples proceeding of different symbols 
are completely uncorrelated because of the statistical 
independence between different symbols of the transmitted 
sequence. 

(4) 
ej(i-k)aD 0 I i-k 5 N,, 
0 o t h e r  c a s e s  

rs(i,k) = E[s(i)s*(k)] = 

So, the non zero elements are distributed in the total 
covariance matrix along the principal diagonal, forming 
NssxNss submatrices, denominated go. For a five symbols 
burst the general covariance matrix structure is shown in (5) .  

The submatrix So represents the autocovariance of a 
single symbol vector “i“ and it is generated by the steering 
vector ~ ( ( O D )  to the carrier Doppler frequency parameter OD, 
caused by the constant envelope conditions of the PSK signal 
and by the noise components. 
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denotes the hermitian vector. Samples of two 
different symbols are uncorrelated. The timing parameter 
information is located in the special structure of the 
covariance matrix, which has a particular form considering 
null and non null elements. The elements of the principal 
diagonal appear periodically with period equal to the number 
of samples by symbol N,,, and the same happens with the 
other diagonals parallel to the principal one. This 
characteristic is caused by the ciclostacionarity condition of 
this kind of digital modulation. The covariance matrix 

structure C - is thus parametericed by the Doppler frequency OD 
steering the _Ro - submatrix and by the timing parameter r. 

a 
<3 

I A 

‘5- ‘5 3” a.m 
-1 * -ss .* *.r  

Fig. 1. ML function (nepers) with SNR = 5dB. 

The ML function evaluation, for a ten symbol burst 
of a PSK received signal with 5 dB of Signal to Noise ratio, is 
shown in figure 1. One axe shows the Doppler frequency 
error. and the other the timing error. The timing error range is 
of two symbols, and the Doppler frequency range, when 
normalized to the sampling frequency, is 0.5. It can be 
noticed that in the three correct synchronism situations 
(Doppler frequency error equal to zero and timing error equal 
to -1,0,+1 symbol) a maximum peak is located. 

U 

Fig. 2. ML function (nepers) with S N R  = 5dF4, interference to 
signal ratio OdB, interference frequency q=%+O.l. 

When a sinusoidal interference is added to the desired 
signal, the log-ML function discriminates both signals, the 
PSK modulated carrier and the m o d u l a t e d  carrier. As an 
example it is presented in figure 2, the case of an interfering 
frequency of 0.1. Both signals are detected with complete 
resolution. 

V-414 



2.2. Covariance matrices in MSK signals 
For the MSK case, each pair of consecutive symbols 

in the sequence are dependent, so auto-covariance symbol 
submatrices and cross-covariance submatrices of each pair of 
consecutive symbols appear. The resultant structure is shown 
in (7) for a five symbol burst of an MSK signal. The non zero 
correlation of samples coming from two consecutive symbols 
is given by the codification produced in the instantaneous 
phase of the MSK signal, necessary to obtain a phase 
continuity. 

A periodical structure for all the diagonals in the 
matrix is obtained again. The signal vectors that generate the 
autocorrelation matrix It, and the vector generator of the 
cross-correlation matrix El, steer the positive modulation 
frequency a(+)) or the negative modulation frequency a(-)) 
added to the Doppler frequency %. 

- 

In (10) both modulation frequencies are defined, the 
positive one and the negative one, for the MSK modulation 
[3]. The statistical dependence between consecutive symbols 
of MSK modulation has produced cross-covariance 
submatrices It1 of two consecutive symbols, beside the 
diagonal of autocovariance symbol submatrices It,. Similar 
simulation results are obtained for MSK modulation compared 
with those presented for the PSK case. 

- 

3. EIGEN VALUE DECOMPOSITION 
The complete evaluation of the log-likelihood 

function gives us all the information about both parameters 
of interest, frequency and timing. Nevertheless the 
computational cost to detect them directly from the maximum 
of the likelihood function is very high. An intensive search 
could not be accomplished in real time in a digital 
synchronizer. 

In the evaluation of the likelihood function, 
implicitly we compare the theoretical submatrices of 
correlation _Ri with the real submatrices of the processed 
burst. From a burst of a received signal, we propose to 
identify the different submatrices appearing in the complete 
covariance matrix, as an alternative to the full analysis of the 
likelihood function. With a Singular Value Decomposition of 
the obtained correlation submatrices, the symbol transition 
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parameter and the Doppler frequency parameter are detected 
from the signal subspace. 

3.1. Signal Subspace in PSK 
The NsyxNSs order vector is divided in N,, vectors of 

N,, order. These vectors are averaged to get the matrix 
estimation to in PSK signals. 

1 N,Y 
- 8, = - C X(i)X(i)H - Nq i=l 

- 

(11) 

Different forms of averaging the vectors are 
possible, depending on the initial sample to be processed, 
this is, depending on the % estimation assumed to compute go. - 
When the burst of symbols is processed without timing error 
& the estimation 4, is only generated by the steering vector 

~ ( O D )  and the noise components, just as it is shown in (6). 
The signal subspace range is minimum and equal to one, and 
the signal vector is the eigenvector that generates the signal 
subspace. The associated eigenvalue is the eigenvector 
energy added to the noise power. The other N,,,-l eigenvectors 
are noise components and they generate the called orthogonal 
subspace. 

- 

In non correct time synchronism situations, 
samples coming from two different symbols are uncorrelated 
and zero elements appear in the estimated submatrix. In (13). 
(14) an example is given with N,,=5 samples/symbol and an 
initial timing error of two samples. The maximum eigenvalue 
determines the timing error and all the signal eigenvectors 
steer the Doppler frequency OD. 

0 I 2 3 4 ' m  

Fig. 3. Signal eigenvalues evolution with timing error. 
7Ll=al, 7Lz=a2, N,=5, T, sampling period. 

The best eigenvectors to get the frequency value by 
spectral estimation techniques, are those obtained from the 
analysis of the covariance submatrix in a time synchronized 
situation. In figure 3 both signal eigenvalues evolution with 
timing error is shown for a burst of NSy=500 symbols sampled 
at rate of N,,=5 samples/symbol, with different signal to 
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noise ratio values. The maximum eigenvalue 
the timing error, while the second signal eigenvalue 
and increases with the timing error. 

decreases with 

appear 

The evolution of the signal eigenvalues with the 
number of symbols N,, used to compute the matrix has also 
been studied, and it has been noted that with a burst of 25 
symbols and SNR=O dB, the maximum eigenvalue is obtained 
with enough resolution and in consequence the timing 
parameter is correctly detected. 

3.2. Signal Subspace in MSK signals. 
If MSK signal is processed, there are two different 

submatrices available for computing the signal subspace the 
autocovariance matrix and the crosscovariance matrix. The 
estimated II, range in a correct timing synchronism situation 
is two and it increases to three in a non correct timing case. 
Signal eigenvalues and eigenvectors are given in [4]. The 
evolution of the two maximum signal eigenvalues with 
timing error is similar to the PSK case shown in precedent 
figures. 

The range of the crosscovariance submatrix in a 
correct timing assumption is equal to one and it increases to 
two when there is a timing error. In figure 4 the evolution of 
the corresponding signal eigenvalues is shown. 

- 
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Fig. 4.  e, signal eigenvalues evolution with timing error. 

kl=al, &=a2, N,,=5, S N R = O ,  10, 100 dF3 and no noise. 
- 

It should be noted that the second signal eigenvalue 
k2 appears when timing error occurs. Theoretically in this 
matrix there is not noise subspace (AWGN channel), because 
it does not contain elements of the principal diagonal of the 
total covariance matrix _C, but in the simulation results 
presented in figure 4, the computed eigenvalues in noisy 
situations are over the theoretical values obtained without 
noise. Nevertheless the evolution of the principal eigenvalue 
detects correctly the timing error in all the cases. 

3.3. Final proposed scheme 
To jointly obtain the frequency and the timing 

parameters directly from the signal subspace, the 
autocovariance symbol matrix E, (or the cross-covariance 
symbol matrix in MSK ) has to be computed from a 
symbol burst. By means of parallel processing techniques, 
assuming the N,, initial possible timing errors, the principal 
eigenvalue of each computed matrix is obtained. The 
maximum one detects the correct timing parameter and from 
the associated eigenvectors that generate the signal subspace 

- 
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the Doppler frequency is directly estimated. A first and row 
frequency estimation is obtained that could be improved in a 
second stage. 

The fundamental advantage that this method 
presents in front of the classic matched filter can be 
summariced as follow. The signal eigenvectors represent the 
best matched filter to the received signal. The computed 
eigenvectors represent the impulse response that implicitly 
contains the possible transformations produced by the 
channel response and the maximum signal eigenvalue is the 
maximum and optimum correlation lag to detect the correct 
synchronism situation. 

4. CONCLUSIONS 
The introduction of the Doppler frequency in the 

maximum likelihood function of the processed PSK or MSK 
received signal can be considered an original application of 
the ML theory applied to the parameter acquisition stage. The 
sensibility of this function with noise and other undesired 
effects has been studied, proving that narrowband interference 
rejection and robustness with noise are very important 
characteristics of the detection system proposed. 

The acquisition of the parameters from SVD 
techniques can be done using parallel processing to track the 
subspace signal eigenvalues as information for the timing 
parameter, and applying methods of spectral estimation based 
on SVD analysis (Pisarenko, MUSIC, etc..[5]) to acquire the 
Doppler frequency from the associated eigenvectors. The 
estimation of both parameters, frequency and timing directly 
from the subspace signal, gives to the problem a linear 
perspective, with consequent advantages in convergence and 
general resolution of the problem. They are proposed as an 
alternative replacing two isolated techniques for timing 
acquiring (matched filtering) and frequency estimation (bank 
of filters), with significant reduction of computation cost and 
with a very fast convergence from very short data records of 
signal. 

Finally, let's say that a remarkable point is the easy 
extension of the method to more general modulation formats, 
those as CPFSK modulation in general and PSK signal with 
band limited transmission pulse (Nyquist Pulse Shaping). The 
extension of correlation between different symbols will be 
done in every case by codification of symbols (CPFSK) or by 
the extension in time of the transmission pulse (Nyquist 
pulse). From the resulting correlation the signal subspace 
must be determinate in any case. 
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