
5. SUMMARY AND CONCLUSIONS
The results on three different tasks show that the ASO algorithm
can achieve equal or better results than handtuned architectures
without any tuning to the particular task. Table 3 shows that the
MSTDNN network optimized by ASO can adapt to different
amounts of training data. The handtuned architecture performed
equally well for the amount of data that it was optimized for, but
did not generalize as well for more data and failed to learn a
small subset completely for various learning rates and momen-
tums.

The results suggest that the ASO algorithm is able to opti-
mize MSTDNN type networks for real world applications with
varying amounts of training data effectively. Preliminary experi-
ments with regularization techniques like weight decay and
weight elimination [9] together with the ASO algorithm have

Table 1: Speech Recognition Performances (Alphabet
Recognition)

training testing

manually optimized MSTDNN archi-
tecture with DTW

94.3% 85.0%

manually optimized MSTDNN with
gaussian smoothing of the DTW path

98.9% 88.0%

automatically optimized MSTDNN
architecture with standard DTW

97.1% 85.0%

automatically optimized MSTDNN
with gaussian smoothing of the DTW
path

99.5% 91.7%

Table 2: Handwritten Character Recognition
Performances (Digit Recognition)

training testing

manually optimized MSTDNN archi-
tecture without hidden units

98.3% 96.5%

automatic optimization of the win-
dow size and the number of state
units

99.6% 98.0%

automatically optimized architecture
with gaussian smoothing of the DTW
path

100% 99.5%

TDNN architecture proposed by [4]
on the same data

100% 95.5%

TDNN architecture manually opti-
mized for the same data

100% 98.5%

been encouraging. In future, the algorithm will be applied to con-
tiunous speech recognition and continuous (cursive) handwritten
character recognition tasks.

Acknowledgements

The authors gratefully acknowledge the support of the McDon-
nel-Pew Foundation (Cognitive Neuroscience Program) and
would like to thank Alex Waibel for lots of helpful discussions.

REFERENCES

[1] Waibel, A., Hanazawa, T., Hinton, G., Shiano, K., and Lang,
K. Phoneme Recognition using Time-Delay Neural Net-
works. IEEE Transactions on Acoustics, Speech and Signal
Processing, March 1989

[2] Haffner, P., Franzini, M., and Waibel, A. Integrating Time
Alignment and Neural Networks for High Performance Con-
tinuous Speech Recognition,ICASSP 91

[3] Haffner, P., and Waibel, A. Time-Delay Neural Networks
Embedding Time Alignment: A Performance Analysis,
Eurospeech 91

[4] Guyon, I., Albrecht, P., Le Cun, Y., Denker, W., Hubbard, W.
Design of a Neural Network Character Recognizer for a
Touch Terminal,Pattern Recognition, 24(2), 1991

[5] Baum, E.B., and Haussler, D., What Size Net Gives Valid
Generalization?,Neural Computation, 1: 151-160

[6] Moody, J. The Effective Number of Parameters: An Analysis
of Generalization and Regularization in Nonlinear Learning
Systems. in:Advances in Neural Information Processing
Systems 4, 1991.

[7] Sakoe,H., and Chiba, S., Dynamic Programming Algorithm
Optimization for Spoken Word Recognition,IEEE Transac-
tions on Acoustics, Speech and Signal Processing, (26): 43-
49, 1978

[8] Bodenhausen, U., and Waibel, A., Application Oriented
Automatic Structuring of Time-Delay Neural Networks for
High Performance Character and Speech Recognition, ICNN
Proceedings, San Francisco, March 1993

[9] Weigend, A.S., Hubermann, B.A., and Rumelhart, D.E., Pre-
dicting the Future: A Connectionist Approach, TR SSL-90,
Xerox Science Laboratory, Palo Alto, CA, 1990

Table 3: Handwritten Character Recognition Perform-

ances (Capital Letters) depending on training set size

number of

training

patterns

TDNN architecture

manually optimized for

1170 training patterns

automatically opti-

mized MSTDNN

architecture

520 no convergence 81.5%

1170 88.5% 88.5%

1560 90.5% 91.3%



of the output units can be computed in three different ways: The
simplest way is to give each state unit an equal share of the time
slice that the output unit respresents. The second possibility is to
use Dynamic Time Warping (DTW)  [7] to find the best path
through the activation matrix of the state units. The third possi-
bility is to smooth the DTW path by gaussian functions posi-
tioned according to the DTW segmentation [8]. Smoothing of the
DTW path allows the states to model the transitions between two
states more accurately. If each state specializes on different parts
of the spectrogram, then the transition between these parts may
not be modeled by any of them. Smoothing allows both states to
partially represent the transition.

4. SIMULATIONS
The ASO algorithm was tested with an alphabet recognition task
(aprox. 3000 isolated words by speaker DBS taken from the
same database that was used in [2]) and two handwritten charac-

ter recognition tasks (aprox. 1000 digits and 2000 capital letters,
recorded as described in [4]) so far. For the current simulations
the hidden layer of the original MSTDNN was left out. Methods
that add hidden units between the input units and the state units
are currently tested. The results for both manually optimized
architectures and automatically optimized architectures are sum-
marized below (see Tables 1-3). Results with different manually
optimized architectures (single state TDNNs with hidden layer)
are added for the handwritten character recognition task for com-
parison. Fig.2 shows the connections from the input layer to the
state ayer after constructing the network with the ASO algorithm
for the recognition of capital letters. Fig. 2 shows that the algo-
rithm constructs a rather inhomogenous architecture that would
be hard to find manually.

Fig. 2: The weights from the input units to the state units for the recognition of the handwritten capital letters after training. Negative
weights are displayed by white blobs, positive weights by black blobs. Eight input units are used to represent the features recorded from
the touch sensitive tablet (see [4]). The weights for the character “A” are displayed at the left bottom. “A” is modeled by two state units.
Each of these state units gets input from input windows with size 13 (time delays from 0 to 12). The character “B” is modeled by three
states, “C” is modeled by one state etc.



2.2. Task Decomposition
Instead of learning very complex decision surfaces for the classi-
fication of events, it may be better to decompose the classifica-
tion into the recognition of subevents that have to be observed
jointly. In many cases the decision surfaces for the recognition of
these subevents are much easier to learn. This method is used in
many speech recognition systems. For example, the recognition
of words can be decomposed into the recognition of sequences of
phonemes or phoneme like units. TDNN’s have recently been
extended to Multi State Time-Delay Neural Networks
(MSTDNNs) [2, 3] that allow the recognition of sequences of
ordered events that have to be observed jointly. Unfortunately,
this also means that (word specific) state sequence topologies
have to be found for the given type and amount of training data.

2.3. Confusion Matrix Dependant Construction of the
Network Architecture
It was frequently observed that application-oriented researchers
using neural networks use the confusion matrix of the training
data for manual optimization of the network architectures. A cer-
tain architecture is trained until the stopping criterium is reached
and then the confusion matrix is evaluated. If a structured
approach is used (as in many speech recognition systems), the
modelling can be refined if too many errors in a certain class are
observed. This kind of approach could be very useful for an auto-
matic optimization procedure.

2.4. Early Constructive Changes of the Network Archi-
tecture
Waiting for a whole training run and then making decisions on
the further optimization of the network is computationally very
expensive. Our experience shows that it is possible to detect the
most important mistakes very early in the training run and
change the architecture early in the training run. Starting the
training run again is not necessary.

3. APPLICATION OF THE ASO ALGO-
RITHM TO MSTDNN ARCHITECTURES

As can be seen, MSTDNN type networks conform with the first
two principles of paragraph 2.1 and are also very powerful classi-
fiers [2, 3].  The architecture of these highly structured networks
can be optimized in many ways. For best performance, the size of
the input windows, the number of hidden units and the (word
specific) state sequence topologies are of critical importance for
optimal performance. This makes MSTDNNs a suitable candi-
date for the demonstration of the ASO algorithm.

The ASO algorithm optimizes all relevant parameters of
MSTDNN structures for a given amount of training data. The
minimal configuration of a MSTDNN consists of an input layer,
a state layer and an output layer (see Fig. 1). Let us consider a
word recognition task where each output unit represents a word.
Each state unit represents a small piece of the utterance like pho-
nemes or sub-phonemes. The network is initialized with a win-
dow size of one (one connection between an input unit and a unit
of the following layer) and one state unit per output unit. The net
input of the output units is computed by integrating the weighted
activity of the single or multiple state unit(s) over time. The acti-
vation of the output units is given by the sigmoid of the net input.

The state units can be regarded as a special type of hidden units
because of their very constrained connectivity to the output units.

During training, the size of the input window of the state
units as well as the number of state units increases depending on
the performance of the corresponding output units. The criterium
for the allocation of further resources is derived from the confu-
sion matrix on the training set. At each epoch the mistakes of
each output unit are counted. If the counter for output unit j is
higher than the mean of all counters, then resources for this par-
ticular unit are added. At first, the size of the input window from
the input layer to the corresponding state unit is increased by
adding one set of random connections. In the next epoch, these
new connections are trained together with the already existing
connections and the above procedure is applied again.

If the size of the input window of a state unit converges and
the corresponding output unit still makes more mistakes than the
average unit, then a new state unit is added. The size of the input
window of the ‘old’ state unit is halved to avoid a dramatic
increase of the number of trainable parameters. The ‘new’ state
unit receives input from an input window of the same size as the
‘old’ state unit, but with random connections. From now on, the
output unit receives input from both state units.

The allocation of resources is controlled by a simple scheme:
• Adding more resources is easy if the number of connec-
tions is small compared to the number of training patterns
and gets harder with an increasing number of connections.
This avoids hard upper bounds for the network resources.
• All resources that are added to the network are initialized
randomly. This reduces the risk that the new resources dis-
turb the learning process. A side-effect is that noise is added
which prevents the network from getting stuck in local min-
ima. This noise is reduced afterwards because the new con-
nections are trained together with the already existing
connections.
• The maximal size of the input windows also depends on the
number of states that model a word. If a word is modeled by
many states the state units don’t need such a large input win-
dow as a state unit that models a whole word.
In case of more than one state unit per output unit the inputs

Input over time
(spectrogram etc.)

input window

time

output units

state units

Fig. 1: An example of a simple MSTDNN with an input layer, a
state layer and an output layer (consisting of two ouput units). In
this example the first output unit is connected with three state
units and the second output unit is connected with two state units.



CONNECTIONIST ARCHITECTURAL LEARNING FOR HIGH
PERFORMANCE CHARACTER AND SPEECH RECOGNITION

Ulrich Bodenhausen and Stefan Manke

Computer Science Department, University of Karlsruhe, 7500 Karslruhe 1, FRG, and

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

ABSTRACT
Highly structured neural networks like the Time-Delay Neural
Network (TDNN) can achieve very high recognition accuracies
in real world applications like handwritten character and speech
recognition systems. Achieving the best possible performance
greatly depends on the optimization of all structural parameters
for the given task and amount of training data. We propose an
Automatic Structure Optimization (ASO) algorithm that avoids
time-consuming manual optimization and apply it to Multi State
Time-Delay Neural Networks, a recent extension of the TDNN.
We show that the ASO algorithm can construct efficient architec-
tures in a single training run that achieve very high recognition
acuracies for two handwritten character recognition tasks and
one speech recognition task.

1. INTRODUCTION
Time-Delay Neural Networks (TDNN) [1] with shifted input
windows have been successfully applied to speech recognition
and handwritten character recognition tasks [2,3,4]. The main
feature of the TDNN architecture is the use of a highly structured
connectivity between the units of the network. This structured
connectivity reduces the number of trainable parameters and also
ensures a translation invariant recognition. One reason for the
introduction of structure to the network is the relationship
between the number of trainable parameters, amount of training
data and generalization (see [5, 6] and others). Networks with too
many trainable parameters for the given amount of training data
learn well, but do not generalize well. This phenomenon is usu-
ally called overfitting. With too few trainable parameters, the net-
work fails to learn the training data and performs very poorly on
the testing data. Imposing structure into the network can increase
the generalization performance by reducing the number of train-
able parameters [1].

The use of a highly structured approach leads to the problem
of finding the best possible structure for the given task and
amount of training data1. In order to achieve optimal perfor-
mance without time-consuming manual optimization of the

1.  See Table 2 for an example: Although our data was recorded
exactly the same way as proposed in [4], the architecture pro-
posed in [4] did not fit perfectly because of the different number
of training characters.

architecture, we propose an Automatic Structure Optimization
(ASO) algorithm that automatically optimizes the structure and
the total number of parameters synergetically and also considers
the current amount of training data. Rather than starting with a
distributed internal representation, the structure of the network is
constructed by adding units and connections in order to selec-
tively improve certain parts of the network. At the beginning of
the training run the internal representation is completely local
and gets more and more distributed in the following optimization
process. Only a concept for structuring the network has to be
specified before training. The concept for structuring the network
is derived from (simple) knowledge about the task (such as
invariances).

In this paper we describe an ASO algorithm and apply it to
the optimization of Multi State Time-Delay Neural Networks
(MSTDNNs), an extension of the TDNN that have been pro-
posed recently [2, 3]. These networks allow the recognition of
sequences of ordered events that have to be observed jointly. For
example, in many speech recognition systems the recognition of
words is decomposed into the recognition of sequences of pho-
nemes or phoneme like units. In handwritten character recogni-
tion the recognition of characters can be decomposed into the
joined recognition of characteristic strokes etc..

The combination of the proposed ASO algorithm with the
MSTDNN was applied successfully to speech recognition and
handwritten character recognition tasks with varying amounts of
training data.

2. CONCEPT OF THE ASO ALGORITHM
The proposed algorithm is based on four principles:

• built-in invariances
• task decomposition
• confusion matrix dependant construction of the network
• early constructive changes of the network architecture.

2.1. Built-in Invariances
If there is any knowledge about the task, it should be built into
the structure of the network. For speech and handwritten charac-
ter recognition, a classifier that is robust against temporal distor-
tions is highly desirable. This can be achieved by using shifted
input windows over time as in the Time-Delay Neural Network
[1]. Shifting the window reduces the number of weights and
ensures that the hidden abstractions that are learned are invariant
under translations in time.


