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ABSTRACT

In this paper we present a new method of signal processing for
robust speech recognition using multiple microphones. The
method, loosely based on the human binaural hearing system, con-
sists of passing the speech signals detected by multiple micro-
phones through bandpass filtering and nonlinear rectification
operations, and then cross-correlating the outputs from each chan-
nel within each frequency band. These operations provide an esti-
mate of the energy contained in the speech signal in each
frequency band, and provides rejection of off-axis jamming noise
sources. We demonstrate that this method increases recognition
accuracy for a multi-channel signal compared to equivalent pro-
cessing of amonaural signal.

1. INTRODUCTION

The need for speech recognition systems and spoken language sys-
tems to be robust with respect to their acoustical environment has
become more widely appreciated in recent years. Results of sev-
eral studies have demonstrated that even automatic speech recog-
nition systems that are designed to be speaker independent can
perform very poorly when they are tested using a different type of
microphone or acoustical environment from the one with which
they were trained, even in a relatively quiet office environment
(e.g. [1]). Applications such as speech recognition over tele-
phones, in automobiles, on afactory floor, or outdoors demand an
even greater degree of environmental robustness. The proposed
paper describes a novel algorithm for combining the outputs of
multiple microphones that improves the recognition accuracy of
automatic speech recognition systems.

Several different types of array processing strategies have been
applied to speech recognition systems. The simplest such system
is the delay-and-sum beamformer (e.g. [2]). In delay-and-sum sys-
tems, steering delays are applied at the outputs of the microphones
to compensate for arrival time differences between microphones to
adesired signal, reinforcing the desired signal over other signals
present. A second approach is to use an adaptive algorithm based
on minimizing mean sguare energy, such as the Frost or the Grif-
fiths-Jim algorithm [3]. These algorithms can provide nullsin the
direction of undesired noise sources, as well as greater sensitivity
in the direction of the desired signal, but they assume that the
desired signal is statistically independent of all sources of degrada-

tion. Consequently, they do not perform well in environments
when the distortion is at least in part a delayed version of the
desired speech signal asis the case in many typical reverberant
rooms (e.g. [4]). (This problem can be avoided by only adapting
during non-speech segments [5]).

The algorithm described in this paper is based on a third type of
processing, which is loosely motivated by the cross-correlation-
based processing in the human binaural system. The human audi-
tory system is aremarkably robust recognition system for speech
in awide range of environmental conditions, and other signal pro-
cessing schemes have been proposed that are based on human bin-
aura hearing (e.g. [6]). Nevertheless, most previous studies have
used cross-correlation-based processing to identify the direction
of a desired sound source, rather than to improve the quality of
input for speech recognition (e.g. [7,8]).

We describe the new cross-correlation-based algorithm in the fol-
lowing section. We describe the ability of the algorithm to pre-
serve the shape of vowel spectrain Section 3, and in Section 4 we
report on the results of pilot experiments in which the algorithm
was used to improve speech recognition accuracy.

2. CROSS-CORRELATION-BASED
MULTI-MICROPHONE PROCESSING

Figure 1 is asimplified block diagram of the multi-microphone
correlation-based processing system. The input signals X, [n]

are first delayed in order to compensate for differencesin the
acoustical path length of the desired speech signal to each micro-
phone. The signals from each microphone are passed through a
bank of bandpass filters with different center frequencies, passed
through nonlinear rectifiers, and the outputs of the rectifiers at
each frequency are correlated. Currently we use the 40-channel fil-
terbank proposed by Seneff [9], which was designed to approxi-
mate the frequency selectivity of the auditory system. The shape
of the rectifier has a significant effect on the results. We have
examined the response of two types of nonlinear rectifiers: the rec-
tifier originally described by Seneff, which saturatesin its
response to high-level stimuli, and a family of rectifiers called
half-wave power-law rectifiers which produce zero output for neg-
ative signals and rai se positive signals to an integer power.



For two microphones, these operations correspond to the familiar
short-time cross-correlation operation for an arbitrary bandpass
channel with center frequency w.:
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where Y [n ® C] isthe signal from the K mi crophone after

delay, bandpass filtering, and rectification, nisthe time index, and
N is the number of samples per analysis frame. For the general
case of K microphones, this produces
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The factor of 2/K in the exponent enables the result to retain the
dimension of energy, regardless of the number of microphones.

The 40 “energy” values are then converted into 40 cepstral coeffi-
cients using the cosine transform. The 40 cepstral parameters and
an additional coefficient representing the power of the signal dur-
ing the analysis frame are used as phonetic features for the origi-
nal CMU SPHINX-I recognition system [10].
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Figure 1. Block diagram of multi-microphone cross-correlation-
based processing system.

3. EFFECTS OF CROSS-CORRELATION
PROCESSING ON SPECTRAL PROFILES

We first confirmed the validity of the algorithm by an analysis of a
digitized vowel segment /a/ corrupted by artificially-added white
Gaussian noise at global SNRs of 0 to +21 dB. The speech seg-
ment was presented to all microphone channels identically (to
simulate a desired signal arriving on axis) and the noise was pre-
sented with linearly increasing delays to the channels (to simulate
an off-axis corrupting signal impinging on a linear microphone
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igure 2. Estimates of spectra for the vowel segment /a/ for var-
ous SNR using (a) 2 input channels and zero delay, (b) 2 input
hannels and 125-us delay to successive channels, and (c) 8 input
hannels and 125-us delay.

array). We simulated the processing of such asystem using 2 and 8
microphone channels, and time delays for the masking noise of 0
and 125 psto successive channels.

Figure 2 describes the effect of SNR, the number of processing
channels, and the delay of the noise on the spectral profiles of the
vowel segment. The frequency representation for the vowel seg-
ment is shown along the horizontal axis. (These responses are
warped in frequency according to the nonlinear spacing of the
auditory filters.) The SNR was varied from 0 to +21 dB in 3-dB
steps, asindicated. The upper panel summarizes the results that are
obtained using 2 channels with the noise presented with zero delay
from channel to channel (which would be the case if the speech
and noise signals arrive from the same direction). Note that the
shape of the vowel, which is clearly defined at high SNRs becomes
almost indistinct at the lower SNRs. The center and lower panels
show the results of processing with 2 and 8 microphones, respec-
tively, when the noise is presented with a delay of 125 ps from



channel to channel (which corresponds to a moderately off-axis
source location for typical microphone spacing). We note that as
the number of channels increases from 2 to 8, the shape of the
vowel segment in Figure 2 becomes much more invariant to the
amount of noise present. In general, we found in our pilot experi-
ments that the benefit to be expected from processing increases
sharply as the number of microphone channels is increased. We
also observed (unsurprisingly) that the degree of improvement
increases as the simulated directional disparity between the
desired speech signal and the masker increases. We conclude from
these pilot experiments that the cross-correlation method
described can provide very good robustness to off-axis additive
noise. As the number of microphone channels increases, the sys-
tem is robust to noise at smaller time delays between micro-
phones, so even undesired signals that are slightly off-axis can be
rejected.

4. EFFECTS OF CROSS-CORRELATION
PROCESSING ON SPEECH
RECOGNITION ACCURACY

Encouraged by the appearance of these spectral profiles with sim-
ulated input, we evaluated 2- and 4-channel implementations of
the algorithm in the context of an actual speech recognition sys-
tem. The CMU SPHINX-I speech recognizer [10] was trained
using speech recorded in an office environment using the speaker-
independent alphanumeric census database [1] with the omnidi-
rectiona desktop Crown PZM6FS microphone. Identical samples
of 1018 training utterances from this database from 74 speakers
were presented to the inputs of the multi-microphone system
described in Figure 1. All speech was sampled at 16 kHz. The
frame size for analysis was 20 ms (320 samples) and frames were
analyzed every 10 ms. Two different testing databases were used,
as described below.

4.1. Nonlinear Rectification

The goal of the first series of experiments using actual speech
input to the system was to determine the effect of rectifier shape
on speech recognition accuracy. A test database was collected
using a stereo pair of PZM6FS microphones placed under the
monitor of a NeXT workstation. The database consisted of 10
mal e speakers each uttering 14 alphanumeric census utterances
that were similar to those in the training data.

We compared the word errors obtained (tabulated according to the
standard DARPA metric) using a 2-channel implementation of the
cross-correlation algorithm and a “mono” implementation of the
same algorithm in which the same signal is input to the two chan-
nels. (The “mono” implementation enables us to assess the extent
to which the system can exploit differences between the signals
arriving at the two microphones.) We tested with half-wave
power-law rectifiers with various exponents, and with the rectifier
proposed by Seneff [9]. Figure 3 summarizes the results of these
comparisons. Using the half-wave power-law rectifier with the
positive signal raised to the 2" power (the “half-square” rectifier)
provided the lowest word error rate of the various half-wave
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Figure 3. Comparison of word error rates achieved with 2-micro-
phone processing using various half-wave rectifiers, and three
types of signal processing.

power-law rectifiers. The results show that the 2-channel cross-
correlation algorithm provides a dlightly better error rate than con-
ventional LPC signal processing, and that the recognition accuracy
using this algorithm depends on the shape of the rectifier.

We hypothesize that the half-square rectifier provides the best
error rate because it is slightly expansive. The Seneff rectifier actu-
ally compresses the positive signals and limits dynamic range.
Using a power-law rectifier of too great a power starts to diminish
in performance as the dynamic range is expanded too greatly.
Using no rectifier at al provides poor performance because nega-
tive correlation values are produced. The half-wave square-law
rectifier was used for all subsequent experiments.

4.2. Number of Processing Channels

We describe in this section initial results obtained using a new set
of multiple-channel speech data. This testing database consisted of
utterances from the census task, and was collected in a much more
difficult environment with significant reverberation and additive
noise sources. The ambient noise level was approximately 60 dB
SPL with linear frequency weighting. Simultaneous speech sam-
ples from 10 new male speakers were collected using (1) a 4-ele-
ment linear array of inexpensive noise-cancelling pressure
gradient electret condenser microphones, spaced 7 cm from one
another, (2) a pair of omnidirectional desktop Crown PZM6FS
microphones, also spaced 7 cm from one another, and (3) the
DARPA-standard Sennheiser HMD-414 close-talking micro-
phone. The subject wore the closetalking microphone and sat at a
1-meter distance from the other microphones. The signals from the
electret microphones were passed through afilter with a response
of —6 dB/octave between 125 Hz and 2 kHz, and a gain of 24 dB,
to compensate for the frequency response of these microphones.

The training database for these experiments was from the original
census data, obtained with a PZM6FS microphone with very dif-
ferent acoustical ambience. In order to compensate partially for
differences between the training and environments, we normalized
each cepstral coefficient (except for the zeroth) on an utterance-by-
utterance basis by subtracting the mean of the values of that coeffi-
cient across all frames of the utterance.



Figure 4 shows the word error rates using cross-correlation pro-
cessing with 1, 2, and 4 channels. It is seen that as more micro-
phones are used, the word error rate decreases.We believe that the
performance obtained using the PZM6FS microphones is better
than that obtained with the el ectret microphones because PZM6FS
microphones were used in the training database, indicating the
need for a more effective type of environmental compensation
than the simple mean normalization used in this pilot study.
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Figure 4: Comparison of word error ratesfor 1, 2 and 4 array ele-
ments using the electret microphones from the linear array and the
PZMG6FS omnidirectional desktop microphone.

In Table | we compare the results of 2-channel implementations of
the cross-correlation algorithm (CC) with conventional LPC pro-
cessing using the electret microphones from the linear array
(ELECTRET) and the PZM6FS, along with single-channel pro-
cessing of the Sennheiser closetalking microphone (CLSTLK).
The feature set for recognition of the L PC-based system consists
of 12 cepstral coefficients plus an additional power coefficient.
These results indicate that for this more difficult database the
cross-correlation processing is not yet producing aword error rate
that is as good as the error rate obtained with conventional LPC
processing, contrary to the results shown summarized in Figure 2.
It is al'so surprising that the LPC-based performance using the
electret microphone is better than that using the PZM6FS, as the
PZM6FS was used to train the system. We believe that the perfor-
mance of the 2-channel and 4-channel multi-microphone algo-
rithms would be greatly improved by training on clean speech,
better dynamic adaptation to new acoustical environments, better
feature selection, and dynamic gain normalization.

In summary, the new multi-channel cross-correlation-based pro-
cessing algorithm was found to preserve vowel spectrain the pres-

MIC LPC CcC
PZMG6FS 57.4% 59.2%
CLSTLK 57.0% 59.3%
ELECTRET 47.5% 66.9%

Table |. Comparison of word error rates using a 2-channel
implementation of the cross-correlation processing algorithm
and conventional LPC-based processing, with three different
microphones. The system was trained using the PZM6FS micro-
phone.

ence of additive noise and to provide greater recognition accuracy
for the SPHINX-I speech recognition system than comparable pro-
cessing of single-channel signals. Further increases in recognition
accuracy should be obtained with the implementation of a small
number of further design refinements.
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