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ABSTRACT

Though the hidden Markov modeling (HMM) techni-
que has been successfully applied to various speech re-
cognition applications, it has one major limitation. It
assumes state-conditioned stationarity of the observa-
tion vectors, implying that the occurrence of one obser-
vation vector is independent of others if these vectors
are generated by the same state. In most of the si-
tuations, this assumption of stationarity is not valid as
the time sequence of the observation vectors is highly
correlated. In the present paper, we try to use this tem-
poral correlation by conditioning the probability of the
current observation vector on the current state as well
as on the previous observation vectors. Results from
an isolated word recognition experiment using discrete
HMMs are reported to illustrate the point.

1. INTRODUCTION

Though the hidden Markov modeling (HMM) techni-
que has been successfully applied to various speech re-
cognition applications, it has one major limitation. It
assumes state-conditioned stationarity of the observa-
tion vectors, implying that each state is a stationary
source generating independent, identically distributed
(11D} observation vectors. This means that observation
vectors within a state are identically distributed and
the occurrence of one observation vector is indepen-
dent of others if these vectors are generated by the same
state. In certain situations (e.g. steady-state vowels),
this assumption of stationarity is reasonable. But, in
most of the cases (e.g. vowel-consonant or consonant-
vowe] transitions, glides and diphthongs), this assump-
tion of stationarity is not valid as the time sequence
of the observation vectors is highly correlated. Thus,
there is a strong need for incorporating the temporal
correlation between successive observation vectors in
the HMM framework.

In the literature {2-8], some studies have been re-
ported where the assumption of state-conditioned sta-

tionarity is somewhat relaxed. For example, Ostendorf
and Roukos [2] have used a stochastic segment mo-
del which can, in principle, avoid the IID assumption
completely. However, in their implementation, they
have assumed the observation vectors to be indepen-
dent within a state, because the computational com-
plexity becomes exorbitantly high otherwise. Explicit
use of templates to represent states in the stochastic
segment model has the advantage that it does not have
to make the assumption of identical distribution of ob-
servation vectors within a state. A similar study has
been reported by Ghitza and Sondhi [3]. Deng [4] has
used a parametric model to represent the trend wit-
hin a state, thus avoiding the assumption of identical
distribution of observation vectors. Kenny et al. []
have used a state-conditioned linear prediction model
to remove correlation between successive observation
vectors, and treated the resulting residual vectors as in-
dependent and identically distributed. Nonlinear pre-
dictors have been used recently by a number of authors
for removing this temporal correlation between succes-
sive observation vectors [6-8].

In the present paper, we try to use this temporal
correlation by conditioning the probability of the cur-
rent observation vector on the current state as well as
on the previous observation vectors. This is done by
introducing the state-conditioned transition probabili-
ties between successive observation symbols (or, vec-
tor quantizer labels) for the discrete HMMs. We use
these HMMs in a speaker-independent isolated word
recognition experiment, and provide results which illu-
strate the usefulness of incorporating temporal corre-
lation between successive observation vectors. Though
we have not studied here the use of this type of expli-
cit incorporation of temporal correlation for continuous
HMMs, a theory has been developed in [9] for this pur-
pose.
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2. THEORY

Consider a discrete HMM XA = [N, M, , A, B], where

= the number of states in the model, M = the
number of output symbols in the discrete alphabet of
the model, # = {m,l < ¢ < N}, the initial state
probability vector (w; is the probability that the mo-
del is in state ¢ initially), A = {a;;,1 < i,j < N},
the transition matrix of underlying Markov chain (a;;

is the probability of transition from state i to state
— fL 71N 1

= Wjlk),
model output symbol probability matrix (b;(k) is the
probability of outputting the symbol k£ when the mo-
del is in state j). Consider an input utterance repre-
sented by a sequence of observation symbols, X7 =
{X1,X2,..., X1}, where T is the number of frames
in the input utterance. In order to compute the pro-
bability, P(XT | A), of the observation sequence XT
being generated by the model A, define the probability
of partial observation sequence X} and state j at time
t (denoted by ¢}) as

< L -

j), and B \J<1V1\E\1Vlj the

a;(t) = P(X1,4; | A). (1)
Then, by definition
aj(l):WjP(Xl |(I},/\), (2)

and

P(XT |3 = 3)

".MZ

A forward recursion relation for the computation of
probability a;(t) can be derived as follows:

a;(t) = P(X,q|A)
N
= Y [P(X{ gt N
i=1
P(Xi, ¢} | X174 6871 0)]

N
= 3 la(t - 1)P(af | X{7h g )

P(X, | X{™hi a5 )] (4)

Since the state of the model at a given frame depends
only on the state of the model at the preceding frame
and is independent of the preceding observation sym-
bols, it follows that

P(¢} | X{7h g h )

P(g} | ¢i™ )
= ajj. (8)

Note that the last equality makes use of the time invari-
ance property of transition probabilities. Substituting

Eq. (5) in Eq. (4) and using the assumption that the
probability of the observation symbol at given frame is
independent of the state of the model in the preceding

frame, it follows

N

aj(t) =Y oi(t — ai; P(X¢ | X{74,q0,0).  (6)
i=1

As mentioned earlier, the standard HMM approach as-
sumes the state-conditioned stationarity of the obser-
vation vectors (or symbols). This means that

L) =

Substituting Eq. (7) in Eq. (6), it follows

P(Xt |XI P(Xt Ian’\) (7)

N
a;(t) = Za-‘(t—l)a-‘jP(thq},/\)

N
D ot — Daijbi (Xq). (8)
i=1

This is the famous recursion relation used in the stan-
dard HMM approach for computing the forward pro-
bability [10].

As mentioned earlier, the assumption of state condi-
tioned stationarity (given by Eq. (7)) is the cause of the
major limitation in the standard HMM approach. In
order to avoid it, we start from Eq. (6). This equation
provides an effective procedure to incorporate the tem-
poral correlation between successive observation sym-
bols. The temporal correlation can be extended to as
many frames as required. For example, suppose it is
required to incorporate temporal correlation between
observation vectors of two successive frames. In this
case, Eq. (6) can be rewritten as

N
aj(t)y = Za.-(t — Dai; P(X: | Xe-1,45,2)
z;ll
= Za,-(t — Daijbix,_,(X4), 9)
i=1

where b;1 (1) is the probability of outputting the symbol
[ given that model is in state j and has outputted the
symbol k in the previous frame.

Comparison of Eq. (9) with Eq. (8) reveals that
this approach is comparable to the standard HMM ap-
proach in terms of computation cost. However, this ap-
proach has the problem that it requires M2N parame-
ters {b;x(l)}, which is much larger in number than the
MN parameters {b;(l)} needed in a standard HMM.
However, this problem of large number of parameters
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can be solved by judiciously increasing the size of trai-
ning data and applying some smoothing technique (e.g.,
deleted interpolation [11]).

Note that this approach is developed here for di-
screte HMMs. However, it can be easily extended to
continuous HMMs [9].

3. EXPERIMENTAL RESULTS

In this section, we conduct speech recognition experi-
ments where we study the use of discrete HMMs with
and without temporal correlation. Results of these ex-
periments are described in this section.

In our experiments, we have used a speaker inde-
pendent, isolated word speech recognition system with
S-state left-to-right HMMs. Each frame is represented
here by a 12-dimensional observation vector (consisting
of 12 cepstral coefficients derived through linear predic-
tion analysis). The vocabulary consists of 9 English E-
set alphabets (i.e., B, C, D, E, G, P, T, V and Z). The
data base has two sets of data, each consisting of one
utterance of each of the nine words by each of 100 spea-
kers (50 men and 50 women). One set of data is used
for training and another set for testing. The training
and testing tokens were recorded over local dialed-up
telephone lines, bandpass filtered to 200-3200 Hz, and
digitized at a sampling rate of 6.67 kHz. An eighth-
order linear prediction analysis was performed every
15 ms with a frame width of 45 ms using the auto-
correlation method (with Hamming window and pre-
emphasis), and 12 cepstral coefficients were computed
from the 8 linear prediction coefficients. These 12 cep-
stral coefficients are weighted by a cepstral window (or,
lifter) [12], and are treated as the 12 components of an
observation vector. Endpoints of each utterance were
manually determined.

In discrete HMMs, the cepstral space is represented
in terms of M codevectors. These M codevectors are
obtained from the training set data using the k-means
algorithm {13] using total squared error as the distor-
tion measure. Recognition results are obtained with
and without temporal correlation on the training set
data. These are shown in Table 1 as a function of M.
It can be seen from this table that the present approach
provides significant improvement in recognition perfor-
mance (with the use of temporal correlation between
two successive vectors).

Effect of temporal correlation on the speech reco-
gnition performance is also studied on the test data
sct. Results are shown in Table 2 as a function of M.
It can be seen from this table that speech recognition
performance of the system improves by incorporating
the temporal correlation, though the improvement is

Table 1: Speech recognition accuracy with and without
temporal correlation on the training data set.

M Recognition accuracy (in %)
without correlation | with correlation

8 41.44 59.11

16 45.44 77.56

32 57.33 95.00

64 62.78 99.11

Table 2: Speech recognition accuracy with and without
temporal correlation on the test data set.

M Recognition accuracy (in %)
without correlation | with correlation

8 38.56 40.00

16 40.78 42.67

32 45.22 44.78

64 45.67 46.56

not much. This happens due to the fact that the trai-
ning data set is small in size. It does permit reliable
estimate of parameters {b;x(1)}. However, this problem
can be overcome by judiciously increasing the size of
training data and applying some smoothing technique
(e.g., deleted interpolation [11}).

4. CONCLUSIONS

In this paper, we have incorporated the temporal cor-
relation between successive frames in an HMM-based
speech recognizer. This is done by making the probabi-
lity of the current observation vector dependent on the
previous observation vectors. Our preliminary results
show that this approach provides significant improve-
ment in recognition performance (with the use of tem-
poral correlation between two successive frames alone).
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