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ABSTRACT 

Ergodic, continuous-observation, hidden Markov models 
(HMMs) were used to perform automatic language clas- 
sification and detection of speech messages. State obser- 
vation probability densities were modeled as tied Gaus- 
sian mixtures. The algorithm was evaluated on four mul- 
tilanguage speech databases: a three language subset of 
the Spoken Language Library, a three language subset of 
a five language Rome Laboratory database, the 20 lan- 
guage CCITT database, and the ten language OGI tele- 
phone speech database. Generally, performance of a single 
state HMM (i.e, a static Gaussian mixture classifier 
comparable to the multistate HMMs, indicating that th;: 
quential modeling capabilities of HMMs were not exploited. 

1. INTRODUCTION 

Automatic language identification systems take as input 
speech messages and produce as output the identity of the 
language being spoken. During training, speech messages 
from one or more languages are analyzed, resulting in one 
or more models for each language. During testing, a pre- 
viously unseen test message is applied to the system, and 
the system outputs the language associated with the model 
that most closely matches the test message. 

This paper describes a novel language identification 
technique employing continuous observation, ergodic hid- 
den Markov models (HMMs) with tied Gaussian observa- 
tion probability densities. Observations are independent 
streams of mel-scale weighted cepstrum and delta-cepstrum 
vectors extracted from the digitized speech. This paper be- 
gins with a very brief review of previous research in language 
identification of speech messages, follows with a description 
of this new continuous observation HMM approach, and 
concludes with the results of some experiments and some 
suggestions for future work. 

2 .  BACKGROUND 

Research in automatic language identification from speech 
has a history extending back at  least two decades. As very 
few systems have been evaluated on common databases, it 
is difficult to compare quantitatively the performance of 
these systems. Thus, what follows is a very brief descrip- 
tion of some representative systems without an indication 
of language ID performance. 

The earliest language ID systems were reported by 
Leonard and Doddington [9]. Filter bank features vectors 
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extracted from training messages were scanned by the re- 
searchers for regions of stability and regions of very rapid 
change. Such regions thought to be indicative of a specific 
language were used as exemplars for template matching on 
the test data. Cimarusti 13 ran a polynomial classifier on 

both formant and prosodic feature vectors, finding that for- 
mant features were generally superior. His formant vec- 
tor based language ID system used k-means training and 
vector quantization classification. Goodman [3] extended 
Foil's work by refining the formant feature vector and clas- 
sification distance metric. Ives [8] constructed a rule-based 
ID system. Classification was performed via thresholds on 
pitch and formant frequency variance, power density cen- 
troids, etc. Sugiyama [16] performed vector quantization 
classification on LPC features. He explored the difference 
between using one VQ codebook per language vs. one com- 
mon VQ codebook. In the latter case, languages were clas- 
sified according to their VQ histogram patterns. 
applied Gaussian mixture and neural net based st!!?:ck! 
sifiers to language identification. Finally, Muthusamy [11] 
built a neural-net based, multi-language segmentation sys- 
tem capable of partitioning a speech signal into sequences 
of seven broad phonetic categories. For each utterance, the 
class sequences were converted to 194 features used to iden- 
tify language. 

Whereas the language identification systems described 
above perform primarily static classification, HMMs have 
the ability to model sequential characteristics of speech pro- 
duction and have been used widely in speech recognition 

systems.' HMM based language identification was first pro- 
posed by House and Neuburg [SI. They created a discrete 
observation ergodic HMM which took as input sequences 
of speech symbols and produced as output the hypothe- 
sized source language. Training and test symbol sequences 
were derived from published phonetic transcriptions of text. 
Savic [15] and Riek [14] both applied HMMs to feature vec- 
tors derived automatically from the speech signal. Riek 
found that the HMM system did not perform as well as some 
of the static classifiers that had been tested. In a related 
approach, Li and Edwards [lo] segmented incoming speech 
into six broad acoustic-phonetic classes. Finite-state mod- 

. els were used to model transition probabilities as a function 
of language. 

100-element LPCderived r eature vectors. Foil [2] examined 

3. ALGORITHM 

During training one or more HMMs are created for each 
language L as shown in in Figure 1 (see [13] for an excellent 
HMM tutorial). Two streams of centisecond feature vec- 

'It is worth noting that the sequential modeling afforded 
by HMMs does not always result in performance superior to 
static modeling. For example, Tishby [17] obtained results 
showing HMM did not significantly improve speaker recognition 
performance. 
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Figure 1: Block diagram showing the use of tied-mixture 
HMMs for language identification. During training, the 
probabilities and densities are adjusted to maximize the 
likelihood of the training data. During testing, the like- 
lihood of each model producing the observed test data is 
calculated. 

tors are extracted from the digitized training speech utter- 
ances: cepstrum vectors derived from a mel-weighted filter 
bank and first-order delta-cepstrum vectors derived from 
the cepstrum vectors. Given the two streams of feature 
vectors for language L ,  a simple training approach would 
be to initialize randomly the parameters (initial probabil- 
ities, transition probabilities, and output densities) of an 
HMM for language L and then run several iterations of 
the forward-backward training algorithm. Although each 
iteration of the forward-backward algorithm is guaranteed 
to produce a new HMM that is as likely or more likely to 
have produced the training data than the current HMM, 
the forward-backward algorithm can find only a local max- 
imum of the HMM parameter space. Therefore, an initial- 
ization process is performed prior to starting the forward- 
backward algorithm in an effort to obtain a reasonable start- 

ing point.2 First, each of the two streams of feature vec- 
tors is partitioned into N clusters using binary-splitting k- 
means clustering. Using the N centroids as initial mean 
values, two Gaussian mixture models (GMMs), one for each 
data stream, are trained using the estimate-maximize (EM) 
algorithm. Then, using the two sets of means output by 
the EM algorithm together with randomized initial, transi- 
tion, and mixture-class probabilities, unsupervised forward- 
backward training commences. State observation probabil- 
ities are modeled as tied Gaussian mixtures models (TG- 
MMs), meaning that all states in a given language model 
share the same two sets of underlying means and covari- 
ances, but have two unique sets of mixture weights. Details 
of the single observation stream TGMM forward-backward 
algorithm are given by Huang and Jack [6], and the ex- 
tension to multiple, independent observation streams is 
straightforward. TGMM (as opposed to state-independent 

2This particular procedure is a variant of that suggested to 
the author by Richard Rose, who uses a similar procedure for 
training his HMM word spotter. 

GMM) was employed in an effort to reduce the number 
of parameters being trained while still retaining the very 
general modeling capabilities GMM. When the forward- 
backward algorithm has either converged or when it has 
reached a preset maximum number of iterations, an HMM 
has been created that is locally optimized for the input 
training speech spoken in language L. 

During testing, mel-weighted cepstra and delta-cepstra 
are extracted from the test message sampled data. For- 
ward decoding of the feature vector sequences is performed 
against each of the HMMs, producing a likelihood score 
(normalized with respect to length of the message) that the 
given test message was produced by the language L model. 
The language of the model most likely to have produced the 
test utterance observations is hypothesized as the language 
of the test utterance. 

4. DATABASES 

Four multilanguage speech databases have been employed 
to evaluate the performance of the language ID algorithm 
described above. The first is a three language subset of the 
Spoken Language Library (SLL) available from Dunwoody 
Press (Kensington, MD). For each of three languages, Man- 
darin Chinese (Peking), Tamil (India), and Japanese, five 
or six, two-way, 10 minute long conversational speech mes- 
sages were digitized. Speakers are roughly half male and 
half female. The SLL database was processed using jack- 
knifing, i.e. all messages were used for training and testing, 
but when message m of language L was tested, a new model 
for language L was trained and employed for identification 
that did not include data from message m. Although the 
two sides of the conversation are available separately all 
processing was performed on the summed speech. 

The second database, obtained from Riek, Mistretta and 
Morgan at Sanders [14], is a three language subset of a male- 
speech, five language Rome Laboratory (RL) database. The 
subset comprises the first session from each of three lan- 
guages (Russian, German, and Chinese). From 15 to 20 

read-speech messages per language are available, each spo- 
ken by a unique speaker. This database was processed in 
two ways: (1) using half of the messages for training and 
half for testing according to the Sanders convention and (2) 
using jackknifing. Some experiments also used an alternate 
form of training and testing: during training, one HMM 
was trained per speaker; during testing on message m from 
language L ,  the language of the message model (not includ- 
ing the model for message m) most likely to have produced 
the test speech was hypothesized. In this alternate mode, 
the system was actually finding the training speaker that 

matched the test speaker most closely? 
The third database employed was the 20 language CCITT 

database [7] first used for language ID by Sugiyama 161. 

male) are available. On average, each utterance is about 
eight seconds long. As these messages were recorded at 
language dependent sites, the 8 kHz, IRS filtered version 
of the database was used to insure uniform bandlimiting 
across languages. The CCITT database was processed u s  
ing half of the messages for training and half for testing 
according to the Sugiyama convention! 

Finally, the last database processed was the Oregon 
Graduate Institute Telephone Speech (OGI-TS) database 
[12]. This database contains 50 training messages, 20 devel- 
opment test messages, and 20 evaluation test messages for 
each of 10 languages. Each message is spoken by a unique 

3This idea was suggested to the author by K. P. Li., who 
has previously used this “speaker ID for language JD” algorithm 
successfdly. 

*Thanks to Sanders for making the details of this split and 
well as the endpointing information available. 

For each language, 16 short utterances (half male, hal i fe- 
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speaker and was recorded over a telephone channel. The 
messages are further divided into 10 utterances per mes- 
sage, where each utterance is, on average, 17 seconds long. 
Channel equalization including spectral norm removal and 
RASTA[4] were applied to the messages. To maintain con- 
sistency with experiments performed by Muthusamy [Ill, 

three experimental scenarios were run? 

English-L' Nine two-language classification experiments 
with English, e.g. English vs. Farsi, English vs. French, etc. 

L-Other Ten one-language detection experiments, e.g. En- 
glish vs. other, French vs. other, etc. 

10-language One ten-language classification experiment. 

The fixed vocabulary utterances in the OGI-TS database 
were not used for either training or test. 

The SLL, RL, and CCITT databases have relatively little 
training/test data and were employed prior to the availabil- 
ity of the OGI-TS database. On the other hand, the OGI- 
TS database was designed for and is much better suited to 
automatic language identification? 

5. EXPERIMENTS AND RESULTS 

Experiments were run with 1-20 states per language model, 
4-100 Gaussians underlying the TGMM, and from 10-20 
iterations of both GMM EM training and HMM forward- 
backward training. Single state HMM experiments were run 
to test whether the added complexity of HMM provided any 
performance improvement over static GMM. Classification 
results were tallied as a function of the size of the unknown 
test token length which ranged from one frame to an entire 
message. 

Classification results for the SLL, RL, and CCITT 
databases are shown in Figures 2, 3, and 4, respectively. 
Standard deviations associated with these figures assume 
statistical independence of non-overlapping segments of the 
same message. To summarize some of the highlights, the 
best results for 10 second test intervals on the three lan- 
guage databases were 71% on the SLL database using 
jackknifing, 73% on the RL database using the Sanders 
50/50 training/test convention and one HMM per language, 
and 92% on the RL database using jackknifing and one 
HMM per speaker. The improved performance on the RL 
database observed when jackknifing may be due to the in- 
creased number of training speakers or may be due to the 
one model per speaker training technique. The one model 
per speaker training technique had an ambiguous effect 
under the Sanders 50/50 training/test split. 20 language 
classification performance on single CCITT utterances was 
54%. 

Results of processing the 10 language OGI-TS database 
are shown in Table 1. These experiments used one state 
per HMM with 40 underlying Gaussians. Consistent with 
earlier research, results are shown as percent utterances 
correctly classified. The Muthusamy results are also shown 
for comparison purposes 113. Detection experiments used 
one model for the target I anguage and one model trained 
from all ten lan uages as background. Ten language classi- 
fication was 4 6 2  for the Lincoln system compared to 47.7% 
for the Muthusamy system. Standard deviations on the 
OGI database are approximately 1%. 

6.  DISCUSSION 

Generally, the single state HMM performed comparably to 
the multistate HMM, indicating that the sequential mod- 
eling capability of HMMs was not exploited. As the mul- 
tistate HMMs require training more parameters than the 

5Muthusamy's En&sh-L'-Other scenario was not run. 
6The author is grateful to OGI for making the OGI-TS 

database available to him. 

Table 1: OGI-TS Experiments 

I Laneuaees I E nelish-L' I L-Other 
" U  " 

Line. I Muth. I Linc. I Muth. 

Enalish I N/A I N/A I 73 I 69.5 

Japanese 
Korean 
Mandarin 
S p anish 

ean 
Median 82 78 

single state HMM, it is possible that the amount of train- 
ing data available was simply insufficient for the multistate 
HMM. However, it is also likely that the contribution of 
transition probabilities to the forward decoding calculation 
was dwarfed by the contribution of the observation likeli- 
hoods. Experiments that enhanced the contribution of the 
transition probabilities by using variable frame rate analy- 
sis to reduce the observation rate had little effect on per- 
formance. Better training techniques that strike a better 
balance between static and transitional information should 
be the subject of future research. 

Results on the OGI database were encouraging, as 
the Lincoln algorithm, which requires no hand labeled 
training data, resulted in performance comparable to the 
Muthusamy system, which requires some hand labeled 
training data. Because the Lincoln system requires no 
language-specific phonological knowledge or hand-labeled 
training data, it is easily extended to new languages. Fu- 
ture efforts should be focused on determining whether such 
simple statistical approaches to language ID can be refined, 
or whether systems incorporating sophisticated phonologi- 
cal knowledge are required to improve performance. 
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