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ABSTRACT 
This examination of the KING database compares proven 
spectral processing techniques to an auditory model rep- 
resentation for speaker recognition. The feature sets 
compared were LPC cepstral coefficients and auditory 
nerve firing rates provided by the Payton model. The 
two feature sets were quantized by two clustering algo- 
rithms, a Linde-Buzo-Gray (LBG) algorithm and a Ko- 
honen self-organizing feature map. The resulting Vector 
Quantized (VQ) distortion based classification indicates the 
auditory model provides comparable accuracies to LPC c e p  
stral in non-studio quality environments and over multiple 
sessions. For a 10 speaker subset using only voiced frames 
of 15 second segments, both achieve over 80% identification 
rate. Cepstral performs better on verification tasks mea- 
sured with receiver operating characteristics (ROC) curves. 

1. INTRODUCTION 

Currently, much of speaker recognition research uses proven 
LPC cepstral and various weighted and transitional deriva- 
tives of the voice production model [I]. These have been 
shown to be better feature sets than other spectral repre- 
sentations. Success has been reported on VQ techniques as 
an effective classification for speaker recognition [2]. More 
recent research demonstrates successful classification with 
Hidden Markov Models, Gaussian mixture methods and ar- 
tificial neural classifiers. Concurrent to this effort, it  was 
shown that an auditory model by Seneff can be used effec- 
tively for speaker identification using several types of clas- 
sifiers [3] on the TIMIT database. 

Using a subset of the KING database, this paper ex- 
amines the performance of auditory mean firing rate re- 
sponses compared to various cepstral representations using 
VQ distortion-based recognition methods. Codebooks are 
created for each speaker and minimum MSE is used for 
classification. 

2. EXPERIMENTAL METHODS 

2.1. Databases 
The King Database consists of 51 speakers collected in 10 
sessions, speaking on several tasks for approximately one 
minute each session. The narrowband speech is recorded 
over long distance telephone lines and sampled at 8 kHz. 
Typical evaluation on this database consists of training on 
the first 3 sessions, and testing on sessions 4 and 5. 

The first 10 speakers of the KING database (sessions 1- 
5 )  were used in the comparison (all male). The data was 
framed using a 32 msec Hamming window, stepped every 
10.6 msecs. Tenth order cepstral coefficients were derived 
from 10th order LPC coefficients, calculated using the au- 
tocorrelation method. Each frame was tagged with a prob- 
ability of voicing using an algorithm similar to the pitch 
tracking algorithm of Secrest and Doddington [4], and a 
segment of 15 seconds w a  chosen per utterance which con- 
tained the maximum consecutive voicing. 

2.2. Payton Auditory Model 
The Payton auditory model is a composite collection of 
stages based on physiological data [5]. The model accepts 
sampled data and provides predicted neural firing responses 
for 20 points along the basilar membrane, corresponding 
to center frequencies of 440Hz to 6600Hz. See Figure 1. 
This model is unique in that the displacement of the basi- 
lar membrane with respect to  time and location is modeled, 
processing biologically plausible variables of fluid dynamics, 
damping, stiffness, size and shape of the membrane. The 
output of this basilar membrane section is sharpened and 
the displacement stimuli is input to the non-linear transduc- 
tion process of the inner hair cells/synapse. Other auditory 
models only approximate this displacement and transduc- 
tion through a series of filterbanks [6]. Comparison of Pay- 
ton's representation to other models for phoneme recogni- 
tion is demonstrated by Anderson [7]. 

It was necessary to scale each of the utterances to drive 
the auditory model to approximate conversational levels, 
insuring not to saturate the neural responses. The Payton 
model references 0 dB with respect to a 1 kHz sine wave of 
certain energy, enough to drive firing of the 1 kHz Center 
Frequency synapse to threshold, a firing level equal to 10% 
of its dynamic range. A scaling value of 8000 was experi- 
mentally determined to provide adequate firing responses, 
corresponding to 47 dB model reference. The responses 
of the model were averaged over 32 msec, calculated every 
10.6 msec; thus, corresponding frames were identical to the 
cepst r al represent at ion. 

The Payton model is extremely computationally complex, 
which necessitated the choice of 15 second segments. Due 
to numerical considerations in solving the basilar membrane 
equations, the model is currently required to run at 160 kHz. 
This overall impact is that processing takes approximately 
1000 times real time. Other auditory periphery models, 
based on filterbank designs, are computationally more effi- 
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RECTI FlCATlON 

HAIR CELL 

ADAPTATION 

Sessions 1,2,3 4,5 80.0% 
Sessions 2,3,4 1,5 75.0% 

. Sessions 3,4,5 1 ,2  70.0% 
Average 75.0% 

PREDICTED FIRING WITE 

55.0% 45.0% 
55.0% 45.0% 
55.0% 60.0% 
55.0% 50.0% 

Figure 1: Payton Composite Model [5] 

Train Test LBG 

Sessions 1,2,3 4,5 85.0% 
Sessions 2,3,4 1,5 75.0% 
Sessions 3.4.5 1 ,2  80.0% 

cient, yet only model the general characteristics of basilar 
membrane displacement and neural responses. 

2.3. Recognition 
Prior experimentation has shown voiced speech carries more 
speaker dependent information than unvoiced speech; all 
high probability of voicing frames within the 15 second seg- 
ments were selected for quantization. Speaker dependent 
codebooks were created, using the iterative LBG splitting 
algorithm with convergence threshold .05 and 64 codewords. 
Kohonen self-organizing feature maps were also tested, run- 
ning approximately 40 epochs, using linear decreasing learn- 
ing rate and neighborhood radius, and map size of 8 x 
8 nodes [8]. Many parameters of Kohonen learning must 
be experimentally determined [9] such as learning sched- 
ule (linear, exponential, hyperbolic), neighborhood func- 
tion(linear, Gaussian), output neighborhood structure (2D, 
3D, etc.) and conscience implementation. Since neighbor- 
hood preservation was not required for classification, effects 
of Kohonen learning without neighborhood were examined. 
The learning schedule chosen was a monotonically decreas- 
ing piece-wise linear “saw-tooth” pattern, which had previ- 
ously demonstrated improved phoneme recognition. 

Identification is based on minimum average distortion de- 
fined over all speaker codebooks and N frames. For speaker 
s, the distortion, D,, is, 

N 

Kohonen Comp 
55.0% 45.0% 
80.0% 60.0% 
75.0% 80.0% 

where the index over m,, codewords is k = 1 , .  . . , 6 4 .  Other 
distortion metrics for cepstral vectors include weighted cep- 
stral (diagonal covariance), Mahalanobis (full covariance) 
and Root Power Sums (index’), examined in [9]. For verifi- 
cation, the classic method iteratively thresholds distortions 
calculated using speaker dependent codebooks and exam- 
ines probability of detection (Pd) of targets and probability 
of false alarm (Pfa) of imposters. 

Transitional characteristics of the processed speech signal 
also contain speaker dependent information using polyno- 
mial expansions [lo], linear regression [l] or differenced coef- 
ficients [ll]. Lee [ll], in preliminary tests for the SPHINX 
system, settled on only differenced coefficients using a 40 
msec window, symmetric about the current frame. The m 
differenced (or delta) coefficient at time t is simply, 

d m ( t )  = c,(t + 6) - cm(t - 6) (1) 

Others have used slightly larger windows, such as 90 msec 
P I .  

3. EXPERIMENTS AND RESULTS 
3.1. Identification 
Results for baseline 10 class identification are provided in 
Tables 1 and 2 using quantizer designs of LBG, Kohonen 
and Kohonen without neighborhood (Comp). These results 
for LBG are in agreement with 15 seconds of testing utter- 
ances in published data [12]. The Payton representation 
was first normalized such that each vector had zero mean 
[3]. Also, the five higher frequency Payton channels were re- 
moved, since these model basilar membrane locations hav- 
ing characteristics frequencies greater than 4 kHz. These 
15 coefficients provide better recognition than the baseline 
ceps tral representation. 

Table 1: Speaker Identification using 15 second training per 
session and 15 seconds testing (before voiced segmentation) 
per session of lo th  order LPC cepstral coefficients. 

r Train I Test I LBG I Kohonen I Comp 1 

Table 2: Speaker Identification using 15 Payton coefficients 
and zero-mean normalization. 

t 
I , ,  I , 

Average I 80.0% I 70.0% I 61.7% I 
A recent article [13] reported increases with liftering tech- 

niques on cepstral coefficients, both on individual vectors 
using bandpass liftering, and temporally over sequences of 
vectors using RASTA liftering. Bandpass liftering [14] de- 
emphasizes the low and high order cepstral components us- 
ing a raised sinusoid window. 

w ( k )  = 1 + L / 2  sin(xk/L) 

where 1 5 k 5 L are the cepstral coefficient index. Re- 
moval of cepstral time averages may reduce transmission 
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and recording characteristic effects [15]. This normaliza- 
tion and liftering techniques were applied to the 10 speaker 
tests and shown in Table 3 using LBG design. 

Sessions 1,2 ,3  4 ,5  75.0% 
Sessions 2,3,4 1 ,5  70.0% 
Sessions 3.4.5 1.2 75.0% 

Table 3: Speaker Identification using bandpass liftering cep- 
stral time average removal. 

I Train I Test I Lifter I Remove Mean 1 1  
65.0% 
70.0% 
70.0% O B -  

0.6 

0.4 

0 2  

, ,  . _  I I 

Average I 73.3% I 68.3% tl 
- 

- 

- 

A series of delta coefficients were extracted from the 
KING instantaneous cepstral vectors. No documentation 
has been reported on successful use of temporal character- 
istics on the KING narrowband corpus. Various codebooks 
were created for increasing delta windows of k 1 frame to 
*fj frames. This corresponds to window times of 21.2 msec 
to  106 msec. Performance increases over instantaneous c e p  
stral were demonstrated by up to  13.3%. Shown in 2 are 
various window sizes and the effects of bandpass liftering 
and time average removal for the cepstral representation. 

Figure 2: Speaker Identification using A cepstral and A 
Payton coefficients using LBG quantizer design. Each point 
is the average of the three training and test method. 

A series of delta windows were examined for the Pay- 
ton model, also shown in Figure 2. This technique for the 
auditory model attempted to capture temporal firing infor- 
mation without specifically estimating neural pulse trains. 
Since it has been shown that delta cepstral contains uncor- 
related information to  that of instantaneous cepstral, this 
technique was applied to  Payton. Improvements were not 
demonstrated over instantaneous coefficients. 

3.2. Verification 
Verification is performed using a technique recently docu- 
mented by Kao et a1 [la]. LBG Codebooks are designed 
using speech from a set of targets, and testing using both 
targets and imposters, again using the 15 second segments 

per session. For KING, speakers 1 - 10 were used as targets, 
and speakers 14 - 26 were used as imposters, also The re- 
ceiver operating characteristics for both LPC cepstral and 
Payton are shown in Figure 3. Training and testing for 
verification uses data from session 1 - 3 and sessions 4 - 
5 respectively. Verification is significantly worse using the 
delta representations, shown in Figure 4. 

01 I 
0 0.2 0 .4  0 6  0.8 1 

PI* 

Figure 3: Speaker Verification ROC using cepstral and Pay- 
ton coefficients. Cepstral coefficients are also liftered and 
mean removed. Payton 15 coefficients are zero mean nor- 
malized. 

1 

0 . 8  

0.6 

0 . 4  

0.2 

0 
0 2  o <  0 6  O B  I 

P f a  

Figure 4: Speaker Verification ROC of A cepstral and A 
Payton distortions derived from codebooks using a 6 of f4. 

4. SUMMARY 

Initial results using a biologically motivated model to repre- 
sent speaker spectral content were demonstrated and com- 
pared to cepstral, using the same sampled data for bot,h rep- 
resentations. Zero-mean normalized, mean-rate response 
Payton outputs using LBG quantization provided better 
performance than cepstral with and without liftering or 
mean removal. Differenced cepstral coefficients provided 
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better identification than instantaneous cepstral; delta pay- 
ton provided no improvements. Verification, as measured 
by ROC curves show comparable results. Improvements 
would naturally be seen, as documented in [12, 131, using 
greater amounts of training and testing data. Classification 
was provided by overall LMSE distortion using 64 code- 
word codebooks. The only other result reported on an au- 
ditory model representation for speaker identification used 
the TIMIT corpus, which is studio-quality, single session 
data; KING provides a more realistic corpus. Past KING 
research has developed particular train and test scenarios. 
This article presents results for a hold-two-out training pat- 
tern, showing how results do vary by as much as 35% be- 
tween training sessions, depending on codebook design. 

These cepstral results differ from past research in the 
amount of data  used for quantizer design and test, con- 
stricted by Payton processing. The 15 second windows typ- 
ically held 300 to 500 frames per session or 3 to 5 seconds 
of high voiced speech, as tagged by the pitch tracking prob- 
ability of voicing mechanism. Choosing high (2 .9) prob- 
ability frames gave improved performance over low (2 . l) 
ones. These latter frames contain transitional areas into 
and out of high voiced (vowel) areas. This leads us to be- 
lieve high voiced areas may be better for speaker recogni- 
tion than using a speech/ non-speech segmentation before 
the quantization, as is often performed. 

This initial examination of an auditory representation for 
speaker identification shows promise. Whereas distortion 
metrics and signal processing methods have been exten- 
sively developed for LPC and cepstral representations, these 
currently do no exist for neural data. Improvements in audi- 
tory modeling, often used for physiological understanding, 
should continued to be exploited for speech and speaker 
recognition. Future research will examine other temporal 
aspects of the neural signals of the auditory periphery, such 
as some form of general phase synchrony (Seneff’s GSD) or 
localized synchrony responses (Sach and Young’s ALSR). 
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