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Abstract 
A general solution is proposed to realize the discrete cosine 

transform of any length via cyclic convolutions in this paper. This 
algorithm is not  opt imal  in minimizing any measure of 
computational complexity, but it involves some regular forms that 
are most suitable for the realization using technologies and 
structures which are well suited for doing convolutions, such as 
the distributed arithmetic and the systolic array. On the other 
hand, this algorithm is much more flexible than any available D C r  
algorithm as it can be applied to realize DCT/IDCT with any 
length. 

Introduction 
It is well known that one can use the chirp-z transform to 

realize a DIT with any length through convolutions. This algorithm 
is not optimal in minimizing any measure of computational 
complexity, but it is useful and efficient in the realization of DFT 
with variable length as it is much more flexible compared with 
other D I T  algorithms for certain applications. 

It is obvious that similar advantages can be obtained for the 
realization of the DCT if there exists a similar general solution 
to the DCT[l]. Unfortunately, one can not apply the chirp-z 
transform directly as that in the D I T  case since the kernels of 
the two transforms are completely different. Possible solution can 
be achieved by firstly inverting the DCT into a DFT[2,3] and then 
applying the chirp-z transform directly. However, this approach 
involves complex number operations and seems a little bit 
circuitous. Hence, it is necessav for us to look for a more 
straight-forward solution which involves real operations solely. 

The aim of this paper is to suggest such a general solution 
for the realization of the DCT and to propose a simple structure 
to ease the implementation of this general solution. 

Basic Algorithm 
The definition of the DCT on a sequence {y(i):i=O,l..N-1} 

is given as 
N-1 

Y(k) = y(i)cos 
i=O for k=O,l..N-1 (1) 

In ref.[4], we have shown that by defining another sequence 
{x(i):i =0,1..N-l} as 

x(N-1) = y(N-1) 

x(i) = y(i)-x(i + 1) for i = 0,l ... N-2 (2), 

we have kn Y(k) = { 2T(k) + x(O)} C O S -  2N for k =  0,L.N-1 (3) 

ikn  where T(k) = x(i)cos- 
N - 1  

i=l N for k=0,1 ... N-1 (4) 

Instead of realizing eqn. 4 directly, we can realize another 
sequence {X(k)} defined below and then compute {T(k)} from 
{X(k)} indirectly. First of all, we have to define the sequence 
IX(k)}: 

N - 1  
X(k) = x(i) cos $(k2-2ik) 

i=l for any integer k ( 5 )  

Obviously, we have 
N-1 

X(-k) = X(2N-k) = x(i)cosR(k2+2ik) 
i= l  2N for any integer k (6) 

Then, {T(k)} can be obtained by 
1 k2n 

T(k) = 2 (X(k)+X(2N-k)) sec- 2N for k=O,1 ... N-1 (7) 

In particular, {X(k)} can be rewritten as 
R - 
2N 

N-1 
= 2 h(i) cos [e] 

i = l  

where i2x h(i) = x(i) cos- 2N 

t i = l  g(i) sin [+I 
for any integer k (8) 

for i = 1,2 ... N-1 (9) 

i *n g(i) = x(i) sin- 2N for i = 1,2 ... N-1 (10) 

To obtain the DCT of the sequence {y(i)}, we have to obtain 
the sequence {T(k):k=O,l..N-1). That means we have to compute 
{ X(k):k = O , 1  ... N - l , N  + l , N  + 2...2N}. However ,  a s  

T(0) = 2;:; x(i), all we need to do  is to calculate {X(k):k=1,2.. 

N-l,N+l,N+2..2N-l}. In other words, from eqn. 8, we have to 
compute the following two liner convolutions: 

G(k) = 2 g(i) sin $(i-k)’ 
N - l  i=l [ 1 forkE{1,2 ... 2N-l}\{N} (11) 

for kE{1,2 ... 2N-l}\{N} (12j 

In such case, one can realize a DCT with any length N by 
using two N-length linear convolutions while the overheads are at 
most 4(N-1) multiplications. 
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Further Deduction 
Sometimes it is preferable to compute the DCT by cyclic 

convolutions instead of linear convolutions due to the efficiency 
of the realization especially when dedicated hardware structure can 
be used. In such case, we can make some modifications on eqn.7 
such that we can make use of cyclic convolutions. Obviously, from 
eqns.7-12, we have 

T(k) = y 1 [H(k)+H(zN-k)+G(k)+G(2N-k)] sec[$] 

for k = 0,l ... N-1 (13) 

As T(0) = xyi: x(i), we can compute this item directly 

through simple addition. For other items of the sequence {T(k)}, 
we can first compute two sequences, {H(k)+H(2N-k)} and 
{G(k)+G(2N-k)}. That is, for the sequence {H(k} +H(ZN-k)}, we 
commte 

H(l)+H( 11) 
H(Z)+H(lO) 
H(3)+H(9) 
H(4)+H(8) 
H(5)+H(7) 

i=l 

= 

for k = 1,2 ... N-1 (14) 
where {h’(i):i =0,1..2N-l} is defined as 

h(i) if i=1,2, ... N-1 
h’(i) = 0 if i=N 

h(2N-i) if i=N+l,N+2, ... 2N-1 (15) 

if i=1,2, ... N-1 
if i=N 

[ 
Similarly, by defining another sequence {g’(i):i =0,1..2N-l} as 

g(2N-i) if i=N+l,N+2, ... 2N-1 

c(1) c(0) c(1) c(4) c(9) c(16) c(1) c(12) c(1) c(16) c(9) c(4) 
c(4) c(1) c(O)c(l)c(4) c(9) c(16) c(1) c(12) c(1) c(16) c(9) 
c(9) c(4) c(l)c(O)c(l) c(4) c(9) c(16) c(1) c(12) c(1) c(16) 
c(l6) c(9) c(4) c(1) c(0) c(1) c(4) c(9) c(16) c(1) c(12) c(1) 
c(1) c(l6) c(9) c(4) c(1) c(0) c(1) c(4) c(9) c(16) c(1) c(12) 

i=l 

we have 

f o r k =  1,2 ... N-1 (17) 

Note that both {cas n2n : nEZ} and {sin[n2$]: nEZ} 

(where 2 is the set of integers) are cyclic with a period of 2N, 
that means eqns. 14 and 17 are both in cyclic convolution form 
after appending h’(O)=O and g’(O)=O to sequences {h’(i)} and 
{g’(i)} respectively. Note that it is not necessay to compute the 
whole cyclic convolution as only N-1 items of {G(k)+G(2N-k)} 
and {H(k)+H(ZN-k)} are required. On the other hand, this 
approach can save 2(N-1) additions in realizing eqn. 7 compared 
with the approach using linear convolutions. 

[ 2Nl 

G( l )+G(l l )  
G(2)+G(10) 
G(3)+G(9) 
G(4)+G(8) 
G(5)+G(7) 

Example 
Let us use a 6-point DCT to clarify our proposal. Suppose 

the input sequence is given as {y(i):i=O,l..S}. Then, obviously, we 

have Y(0) = cLo y(i). For the other DCT coefficients, we first 

compute the sequence {x(i)} from {y(i)} with eqn. 2 
45) = Y(5) 
x(4) = Y(4) -Y(5) 
x(3) = Y(3)-Y(4)+Y(5) 
4 2 )  = y(2)-Y(3)+Y(4)-y(5) 
4 1 )  = Y(l)-Y(2)+Y(3)-Y(4)+Y(s) 
x(0) = Y(0) -Y(l)+Y(2) - Y o )  + Y W  -y(5) 

Then, based on eqns. 9,10,14-17, we can realize the following 
two cyclic convolutions to get sequences {G(k) +G(12-k)} and 
{ H(k) + H(12-k)}: 

= 

s(1) s(0) s(l)s(4)s(9)s(16) s(1) s(12) s(1) s(l6) s(9) s(4) 
s(4) s(1) s(O)s(l)s(4) s(9) s(16) s(1) s(12) s(1) s(l6) s(9) 
s(9) s(4) s(1) s(0) s(1) ~ ( 4 )  s(9) s(16) ~(1) s(12) s(1) s(16) 

s(16) s(9) s(4)s(l)s(O) s(1) s(4) s(9) s(16) s(1) s(12) s(1) 
s(1) s(16)~(9)s(4)s(l)  s(0) s(1) s(4) s(9) s(16) s(1) s(12) 

Inverse DCT 
The inverse Discrete Cosine Transform ( I D W  of data 

{Y(k):k=O,l ... N-1) is given by the following: 
N-1 

k=O for i=O,1 ... N-1 (18) 

Y(1) 
Y(2) 

Y(4) 
Y(5) 

Y(3) 

Obviously, if one can rewrite eqn.18 such that it can be 
realized through the formulation in the form of eqn.4, eqn.18 can 
also be realized using convolutions. In fact, this can be readily 
achieved by defining another sequence: 

( 2T(1)+X(O) ) X  c(1) 
( -m2)+X(O) ) X  c(2) 

(W4)+X(O) )X c(4) 
(2T(5)+X(O) )X 4 5 )  

= (ZT(3)+x(O))X c(3) 

kn ikn { 2Y(k)cos- cos- + 2Y(O) 2N1 N 

N-1 

y’(i) = y(i) + y(i-1) = 
for i = 0,l ... N-1 (19) t=1  

Where y(-1) is defined to be equal to y(0). 
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We have y’(0) =WO) and therefore {y(i):i = 0,L.N-1) can be 
obtained from {y’(i):i =0,1 ... N-1) through N-1 additions. Note that 
eqn.19 is in the form of eqn.4. Hence, by applying the same 
technique used in above sections, one can realize an IDCT with 
two linear convolutions or two cyclic convolutions. 

inpu - 

Hardware Implementation 
This algorithm suggests a straight-forward approach to  

implement an unified DCTDDCT hardware system. Figures 1 and 
2 show the flow diagrams for DCT and IDCT respectively. One 
can see that the switch from DCT to IDCT or vice versa of such 
a system implies the change of the order of the two hardware 
structures, namely, the recursive adder and the convolution module 
only. Note that the multiplier in the output stage is disabled in 
ID(JT mode as the multiplication of the c(k) value is embedded 
into the convolution module as shown in figure 2. This is not 
only able to reduce the computation time, but also reduces the 
computational error a m e  during multiplications. 

The convolution module shown in figures 1 and 2 includes 
two convolvers. The distributed arithmetic technique[S] is applied 
here due to its simple structure. From eqns.14 and 17, we know 
that we have to realize two 2N-point .cyclic convolutions. That 
means one has to construct two tables for the realization of the 
two equations if the distributed arithmetic technique is applied. 

Address pnentor - ROM table 

- -  
2N-1 

In particular, we need a table of 2 bn cos 
n=O - -  

f o r  rea l iz inn  eqn.14 a n d  a n o t h e r  t a b l e  of - 
2N-1 

bn sin[$] : bn€{O,l} for realizing eqn.17. Hence, the basic 
n=O 

size of each table will be 22N words. However, one can make a 
further simplification to reduce the table size required. 

. .  

, Recursive Adder. Convolution Module 

Fig 1. Flow diagram for the implementation of the DCT. 

I. Convolution Module l RecurriveAdder 

By substituting i = j + k  into eqn.14, we have 
2N-1-t 

H(k)+H(2N-k) = h’(j+k) cos[&] 
j=l-t 

for k = 1,2 .... N-1 (20) 

As h’(O)=O, eqn.20 can then be rewritten as 
H(k)+H(ZN-k) = 
{ h’(k)+h’(N-k)cos[F] } + N-1 2 h.(j.X)m[&] 

j=1 

for k =  1,2 .... N-l(21) 

{ h’(j +k)+ h’(k-j) if O<jsk 
if k<j<N (22) where h”u’k) = h’(j+k)+h1(2N-j+k) 

N-1 
To realize eqn.21, only a table of 2 bn cos[$] : 

ne1 
- _ I  

bnE{O,l) is required. In such case, the basic table size can be 
reduced to 2N-1 words. Storage elements required can then be 
reduced to o n e  2N+1th of the original approach. Similar 
simplification can be used to realize eqn.17. 

Figure 3 shows the structure of such a convolver. In 
conventional distributed arithmetic structure, the address for 
accessing the ROM table is generated from a circular buffer[S]. 
In the initial state, data are loaded into the circular buffer. Then, 
a specific bit of each datum will be selected and combined with 
appropriate bits from other data to form an address to access 
the ROM table. Fetched data are shifted and accumulated to form 

MSB of thc addrcsn 

2nd bit or the addrcrr 

LSE of the address 

. 
Fig 3b. Modified circular buffer used as the address generator in 

Fig 2. Flow diagram for the implementation of the IDCT. the convolver. 
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partial results until the final result comes out. Whenever an output 
is obtained, all data in the circular buffer will circulate by one 
step and the above procedure will be repeated until all outputs 
are obtained. For the structure proposed, the address is generated 
from a modified circular buffer as shown in figure 3b instead of 
a typical circular buffer. 

Numerical Stability 
From eqn.7, we know that the present approach involves the 

multiplication of the sec(k2x/2N) term for each value of k. This 
will cause numerical instability of some results as cos(k2x/2N) 
may equal to zero for specific values of k. In particular, as 
cos (k2n/2N)=0 implies ( k2)m = N (O< k < N )  and vice versa, it 
means  o n e  has  t o  face this  problem if N€{(2m-3)n2 : 
m,n = 2,3,4 ...}. Fortunately, this problem can be easily resolved 
without too much additional effort especially when the distributed 
arithmetic technique is applied. 

k8 x k8 x 
2N 2N Obviously, if cos-=O, we have sin-=l or -1. 

Moreover. we have 

Hence, by making a small modification, one can still make use 
of the structure proposed in the previous sections. In fact, only 
multiplexers are required to add to the convolver such that one 
can swap the data table fetched during the computation of the 
value of T(ko) as shown in figure 4. In general, the two convolvers 
perform the same operations as those described in the previous 
section. For the computation of other values of T(k), the circular 
buffer containing {h(i)} generates the address to access the table 

N-1 r , i  .. - 
of bn cos : bn€{O,l} while the circular buffer containing 

n = l  

Modified Circular Buffer Modified Circular Buffer 
containing (h(i)) containing {B(i)} 

ourpu1: ou1put : 

Fig 4. Convolvers swapping data table to avoid numerical instability 
by using multiplixers. 

{g( i )}  gene ra t e s  t h e  a d d r e s s  t o  access the  t ab le  of 

bn sin[$] : bn€{O,l}. In other words, no special treatment 
n = l  
is required for this normal case. However, for the computation 
of the value of T(ko), we swap the data table such that the 
address generated from the circular buffer containing {g(i)} and 
the circular buffer containing {h(i)} are respectively used to access 

the table of 
N-1 

2 bn cos : b&{O,l} and the table of 
n= 1 - -  

bn sin[$] : bnE(0,l) instead. Then the outputs of the two 
n = l  

(i- ko )’ x 2N-1 2N-1 
convolvers will be 2 h’(i)sin& and 2 g’(i)cos 2N 

i=1 2N is1 

in this cycle. For the present design, the value of l/c(k8) is 
assigned to be sin ( k b D N )  ( = 1  or -1) and the value of 

2N-1 2 g ’ ( i ) c o s w  is negated before being fed into stage 4 of 
i-1 
the system. The same implementation structure as shown in figure 
1 can then be used to obtain results of these special cases. Note 
that this trick can also be used to eliminate numerical instability 
in the case of c o s ( k 2 d N )  -0. Similar modification can be 
applied to the realization of the IDCT. 

Conclusion 
In this paper, we propose a general solution for the 

realization of the discrete cosine transform and the inverse discrete 
cosine transform. This algorithm converts the DCTADCT into 
convolution form such that one can easily implement it with 
technologies that are well suited for doing convolutions. This is 
an efficient and effective approach as it can avoid complicated 
data routing and data management. For example, there is no 
address generation problem and a simple pipeline structure can 
be applied to  achieve parallel processing. Compared with 
conventional algorithms, this algorithm is much more flexible as 
it can be applied to realize DCT/IDCT with any length. On the 
other hand, this algorithm suggests an efficient approach to realize 
an unified hardware for the implementation of both the DCT and 
the IDCT. The realization of both the DCT and the IDCT can 
rely on the same convolution module. 
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