
GENERALIZED APPROACH FOR THE REALIZATION OF
DISCRETE COSINE TRANSFORM USING CYCLIC CONVOLUTIONS

Yuk-Hee CHAN and Wan-Chi SIU

Department of Electronic Engineering
Hong Kong Polytechnic

Abstract
A general solution is proposed to realize the discrete cosine

transform of any length via cyclic convolutions in this paper. This
algorithm is not opt imal in minimizing any measure of
computational complexity, but it involves some regular forms that
are most suitable for the realization using technologies and
structures which are well suited for doing convolutions, such as
the distributed arithmetic and the systolic array. On the other
hand, this algorithm is much more flexible than any available D C r
algorithm as it can be applied to realize DCT/IDCT with any
length.

Introduction
It is well known that one can use the chirp-z transform to

realize a DIT with any length through convolutions. This algorithm
is not optimal in minimizing any measure of computational
complexity, but it is useful and efficient in the realization of DFT
with variable length as it is much more flexible compared with
other D I T algorithms for certain applications.

It is obvious that similar advantages can be obtained for the
realization of the DCT if there exists a similar general solution
to the DCT[l]. Unfortunately, one can not apply the chirp-z
transform directly as that in the D I T case since the kernels of
the two transforms are completely different. Possible solution can
be achieved by firstly inverting the DCT into a DFT[2,3] and then
applying the chirp-z transform directly. However, this approach
involves complex number operations and seems a little bit
circuitous. Hence, it is necessav for us to look for a more
straight-forward solution which involves real operations solely.

The aim of this paper is to suggest such a general solution
for the realization of the DCT and to propose a simple structure
to ease the implementation of this general solution.

Basic Algorithm
The definition of the DCT on a sequence {y(i):i=O,l..N-1}

is given as
N-1

Y(k) = y(i)cos
i=O for k=O,l..N-1 (1)

In ref.[4], we have shown that by defining another sequence
{x(i):i =0,1..N-l} as

x(N-1) = y(N-1)

x(i) = y(i)-x(i + 1) for i = 0,l ... N-2 (2),

we have kn Y(k) = { 2T(k) + x(O)} C O S - 2N for k = 0,L.N-1 (3)

ikn where T(k) = x(i)cos-
N - 1

i=l N for k=0,1 ... N-1 (4)

Instead of realizing eqn. 4 directly, we can realize another
sequence {X(k)} defined below and then compute {T(k)} from
{X(k)} indirectly. First of all, we have to define the sequence
IX(k)}:

N - 1
X(k) = x(i) cos $(k2-2ik)

i=l for any integer k (5)

Obviously, we have
N-1

X(-k) = X(2N-k) = x(i)cosR(k2+2ik)
i= l 2N for any integer k (6)

Then, {T(k)} can be obtained by
1 k2n

T(k) = 2 (X(k)+X(2N-k)) sec- 2N for k=O,1 ... N-1 (7)

In particular, {X(k)} can be rewritten as
R -
2N

N-1
= 2 h(i) cos [e]

i = l

where i2x h(i) = x(i) cos- 2N

t i = l g(i) sin [+I
for any integer k (8)

for i = 1,2 ... N-1 (9)

i *n g(i) = x(i) sin- 2N for i = 1,2 ... N-1 (10)

To obtain the DCT of the sequence {y(i)}, we have to obtain
the sequence {T(k):k=O,l..N-1). That means we have to compute
{ X(k):k = O , 1 ... N - l , N + l , N + 2...2N}. However , a s

T(0) = 2;:; x(i), all we need to do is to calculate {X(k):k=1,2..

N-l,N+l,N+2..2N-l}. In other words, from eqn. 8, we have to
compute the following two liner convolutions:

G(k) = 2 g(i) sin $(i-k)’
N - l i=l [1 forkE{1,2 ... 2N-l}\{N} (11)

for kE{1,2 ... 2N-l}\{N} (12j

In such case, one can realize a DCT with any length N by
using two N-length linear convolutions while the overheads are at
most 4(N-1) multiplications.

0-7803-0946-4/93 $3.00 0 1993 IEEE

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 28, 2009 at 00:08 from IEEE Xplore. Restrictions apply.

Further Deduction
Sometimes it is preferable to compute the DCT by cyclic

convolutions instead of linear convolutions due to the efficiency
of the realization especially when dedicated hardware structure can
be used. In such case, we can make some modifications on eqn.7
such that we can make use of cyclic convolutions. Obviously, from
eqns.7-12, we have

T(k) = y 1 [H(k)+H(zN-k)+G(k)+G(2N-k)] sec[$]

for k = 0,l ... N-1 (13)

As T(0) = xyi: x(i), we can compute this item directly

through simple addition. For other items of the sequence {T(k)},
we can first compute two sequences, {H(k)+H(2N-k)} and
{G(k)+G(2N-k)}. That is, for the sequence {H(k} +H(ZN-k)}, we
commte

H(l)+H(11)
H(Z)+H(lO)
H(3)+H(9)
H(4)+H(8)
H(5)+H(7)

i=l

=

for k = 1,2 ... N-1 (14)
where {h’(i):i =0,1..2N-l} is defined as

h(i) if i=1,2, ... N-1
h’(i) = 0 if i=N

h(2N-i) if i=N+l,N+2, ... 2N-1 (15)

if i=1,2, ... N-1
if i=N

[
Similarly, by defining another sequence {g’(i):i =0,1..2N-l} as

g(2N-i) if i=N+l,N+2, ... 2N-1

c(1) c(0) c(1) c(4) c(9) c(16) c(1) c(12) c(1) c(16) c(9) c(4)
c(4) c(1) c(O)c(l)c(4) c(9) c(16) c(1) c(12) c(1) c(16) c(9)
c(9) c(4) c(l)c(O)c(l) c(4) c(9) c(16) c(1) c(12) c(1) c(16)
c(l6) c(9) c(4) c(1) c(0) c(1) c(4) c(9) c(16) c(1) c(12) c(1)
c(1) c(l6) c(9) c(4) c(1) c(0) c(1) c(4) c(9) c(16) c(1) c(12)

i=l

we have

f o r k = 1,2 ... N-1 (17)

Note that both {cas n2n : nEZ} and {sin[n2$]: nEZ}

(where 2 is the set of integers) are cyclic with a period of 2N,
that means eqns. 14 and 17 are both in cyclic convolution form
after appending h’(O)=O and g’(O)=O to sequences {h’(i)} and
{g’(i)} respectively. Note that it is not necessay to compute the
whole cyclic convolution as only N-1 items of {G(k)+G(2N-k)}
and {H(k)+H(ZN-k)} are required. On the other hand, this
approach can save 2(N-1) additions in realizing eqn. 7 compared
with the approach using linear convolutions.

[2Nl

G(l)+G(l l)
G(2)+G(10)
G(3)+G(9)
G(4)+G(8)
G(5)+G(7)

Example
Let us use a 6-point DCT to clarify our proposal. Suppose

the input sequence is given as {y(i):i=O,l..S}. Then, obviously, we

have Y(0) = cLo y(i). For the other DCT coefficients, we first

compute the sequence {x(i)} from {y(i)} with eqn. 2
45) = Y(5)
x(4) = Y(4) -Y(5)
x(3) = Y(3)-Y(4)+Y(5)
4 2) = y(2)-Y(3)+Y(4)-y(5)
4 1) = Y(l)-Y(2)+Y(3)-Y(4)+Y(s)
x(0) = Y(0) -Y(l)+Y(2) - Y o) + Y W -y(5)

Then, based on eqns. 9,10,14-17, we can realize the following
two cyclic convolutions to get sequences {G(k) +G(12-k)} and
{ H(k) + H(12-k)}:

=

s(1) s(0) s(l)s(4)s(9)s(16) s(1) s(12) s(1) s(l6) s(9) s(4)
s(4) s(1) s(O)s(l)s(4) s(9) s(16) s(1) s(12) s(1) s(l6) s(9)
s(9) s(4) s(1) s(0) s(1) ~ (4) s(9) s(16) ~(1) s(12) s(1) s(16)

s(16) s(9) s(4)s(l)s(O) s(1) s(4) s(9) s(16) s(1) s(12) s(1)
s(1) s(16)~(9)s(4)s(l) s(0) s(1) s(4) s(9) s(16) s(1) s(12)

Inverse DCT
The inverse Discrete Cosine Transform (I D W of data

{Y(k):k=O,l ... N-1) is given by the following:
N-1

k=O for i=O,1 ... N-1 (18)

Y(1)
Y(2)

Y(4)
Y(5)

Y(3)

Obviously, if one can rewrite eqn.18 such that it can be
realized through the formulation in the form of eqn.4, eqn.18 can
also be realized using convolutions. In fact, this can be readily
achieved by defining another sequence:

(2T(1)+X(O)) X c(1)
(-m2)+X(O)) X c(2)

(W4)+X(O))X c(4)
(2T(5)+X(O))X 4 5)

= (ZT(3)+x(O))X c(3)

kn ikn { 2Y(k)cos- cos- + 2Y(O) 2N1 N

N-1

y’(i) = y(i) + y(i-1) =
for i = 0,l ... N-1 (19) t=1

Where y(-1) is defined to be equal to y(0).

111-278

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 28, 2009 at 00:08 from IEEE Xplore. Restrictions apply.

We have y’(0) =WO) and therefore {y(i):i = 0,L.N-1) can be
obtained from {y’(i):i =0,1 ... N-1) through N-1 additions. Note that
eqn.19 is in the form of eqn.4. Hence, by applying the same
technique used in above sections, one can realize an IDCT with
two linear convolutions or two cyclic convolutions.

inpu -

Hardware Implementation
This algorithm suggests a straight-forward approach to

implement an unified DCTDDCT hardware system. Figures 1 and
2 show the flow diagrams for DCT and IDCT respectively. One
can see that the switch from DCT to IDCT or vice versa of such
a system implies the change of the order of the two hardware
structures, namely, the recursive adder and the convolution module
only. Note that the multiplier in the output stage is disabled in
ID(JT mode as the multiplication of the c(k) value is embedded
into the convolution module as shown in figure 2. This is not
only able to reduce the computation time, but also reduces the
computational error a m e during multiplications.

The convolution module shown in figures 1 and 2 includes
two convolvers. The distributed arithmetic technique[S] is applied
here due to its simple structure. From eqns.14 and 17, we know
that we have to realize two 2N-point .cyclic convolutions. That
means one has to construct two tables for the realization of the
two equations if the distributed arithmetic technique is applied.

Address pnentor - ROM table

- -
2N-1

In particular, we need a table of 2 bn cos
n=O - -

f o r rea l iz inn eqn.14 a n d a n o t h e r t a b l e of -
2N-1

bn sin[$] : bn€{O,l} for realizing eqn.17. Hence, the basic
n=O

size of each table will be 22N words. However, one can make a
further simplification to reduce the table size required.

. .

, Recursive Adder. Convolution Module

Fig 1. Flow diagram for the implementation of the DCT.

I. Convolution Module l RecurriveAdder

By substituting i = j + k into eqn.14, we have
2N-1-t

H(k)+H(2N-k) = h’(j+k) cos[&]
j=l-t

for k = 1,2 N-1 (20)

As h’(O)=O, eqn.20 can then be rewritten as
H(k)+H(ZN-k) =
{ h’(k)+h’(N-k)cos[F] } + N-1 2 h.(j.X)m[&]

j=1

for k = 1,2 N-l(21)

{ h’(j +k)+ h’(k-j) if O<jsk
if k<j<N (22) where h”u’k) = h’(j+k)+h1(2N-j+k)

N-1
To realize eqn.21, only a table of 2 bn cos[$] :

ne1
- _ I

bnE{O,l) is required. In such case, the basic table size can be
reduced to 2N-1 words. Storage elements required can then be
reduced to o n e 2N+1th of the original approach. Similar
simplification can be used to realize eqn.17.

Figure 3 shows the structure of such a convolver. In
conventional distributed arithmetic structure, the address for
accessing the ROM table is generated from a circular buffer[S].
In the initial state, data are loaded into the circular buffer. Then,
a specific bit of each datum will be selected and combined with
appropriate bits from other data to form an address to access
the ROM table. Fetched data are shifted and accumulated to form

MSB of thc addrcsn

2nd bit or the addrcrr

LSE of the address

.
Fig 3b. Modified circular buffer used as the address generator in

Fig 2. Flow diagram for the implementation of the IDCT. the convolver.

111-279

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 28, 2009 at 00:08 from IEEE Xplore. Restrictions apply.

partial results until the final result comes out. Whenever an output
is obtained, all data in the circular buffer will circulate by one
step and the above procedure will be repeated until all outputs
are obtained. For the structure proposed, the address is generated
from a modified circular buffer as shown in figure 3b instead of
a typical circular buffer.

Numerical Stability
From eqn.7, we know that the present approach involves the

multiplication of the sec(k2x/2N) term for each value of k. This
will cause numerical instability of some results as cos(k2x/2N)
may equal to zero for specific values of k. In particular, as
cos (k2n/2N)=0 implies (k2)m = N (O< k < N) and vice versa, it
means o n e has t o face this problem if N€{(2m-3)n2 :
m,n = 2,3,4 ...}. Fortunately, this problem can be easily resolved
without too much additional effort especially when the distributed
arithmetic technique is applied.

k8 x k8 x
2N 2N Obviously, if cos-=O, we have sin-=l or -1.

Moreover. we have

Hence, by making a small modification, one can still make use
of the structure proposed in the previous sections. In fact, only
multiplexers are required to add to the convolver such that one
can swap the data table fetched during the computation of the
value of T(ko) as shown in figure 4. In general, the two convolvers
perform the same operations as those described in the previous
section. For the computation of other values of T(k), the circular
buffer containing {h(i)} generates the address to access the table

N-1 r , i .. -
of bn cos : bn€{O,l} while the circular buffer containing

n = l

Modified Circular Buffer Modified Circular Buffer
containing (h(i)) containing {B(i)}

ourpu1: ou1put :

Fig 4. Convolvers swapping data table to avoid numerical instability
by using multiplixers.

{g(i)} gene ra t e s t h e a d d r e s s t o access the t ab le of

bn sin[$] : bn€{O,l}. In other words, no special treatment
n = l
is required for this normal case. However, for the computation
of the value of T(ko), we swap the data table such that the
address generated from the circular buffer containing {g(i)} and
the circular buffer containing {h(i)} are respectively used to access

the table of
N-1

2 bn cos : b&{O,l} and the table of
n= 1 - -

bn sin[$] : bnE(0,l) instead. Then the outputs of the two
n = l

(i- ko)’ x 2N-1 2N-1
convolvers will be 2 h’(i)sin& and 2 g’(i)cos 2N

i=1 2N is1

in this cycle. For the present design, the value of l/c(k8) is
assigned to be sin (k b D N) (= 1 or -1) and the value of

2N-1 2 g ’ (i) c o s w is negated before being fed into stage 4 of
i-1
the system. The same implementation structure as shown in figure
1 can then be used to obtain results of these special cases. Note
that this trick can also be used to eliminate numerical instability
in the case of c o s (k 2 d N) -0. Similar modification can be
applied to the realization of the IDCT.

Conclusion
In this paper, we propose a general solution for the

realization of the discrete cosine transform and the inverse discrete
cosine transform. This algorithm converts the DCTADCT into
convolution form such that one can easily implement it with
technologies that are well suited for doing convolutions. This is
an efficient and effective approach as it can avoid complicated
data routing and data management. For example, there is no
address generation problem and a simple pipeline structure can
be applied to achieve parallel processing. Compared with
conventional algorithms, this algorithm is much more flexible as
it can be applied to realize DCT/IDCT with any length. On the
other hand, this algorithm suggests an efficient approach to realize
an unified hardware for the implementation of both the DCT and
the IDCT. The realization of both the DCT and the IDCT can
rely on the same convolution module.

References
[l] N.Ahmed, T.Natarajan and K.R.Rao, “Discrete cosine

transform,” IEEE Trans., 1974, C-23, pp.90-94.

[2] J.Makhou1, “A fast cosine transform in one and two dimensions,”
IEEE trans., VoLASSP-28, No.1, Feb 1980, pp.27-34.

[3] M.T.Heideman, “Computation of an odd-length DCT from a
real-valued DFT of same length,” IEEE trans. Vol.SP-40, No.1,
Jan 1992, pp.54-61.

[4] Y.H.Chan and W.C.Siu, “Algorithm for prime length discrete
cosine transform,” IEE Electronics letters, Vo1.26, No.3, Feb
1990, pp.206-208.

[SI S.A.White, ”Applications of distributed arithmetic to digital signal
processing: A tutorial review.” IEEE A S P Mag., Vo1.6, No.3,
July 1989, pp.4-19.

111-280

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on July 28, 2009 at 00:08 from IEEE Xplore. Restrictions apply.

