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ABSTRACT

As an alternative to the usual statistical analysis, we present
a purely deterministic analysis of oversampled A/D con-
version and £A modulation, which requires no assumption
on the quantizer error. This leads to the notion of con-
sistent estimate for the decoding, which is a necessary
condition for optimality. Algorithms using convex projec-
tions are discussed, and the reduction of decoding error from
O(R~(®"+1)) 1o O(R~***2)) (where R is the oversampling
ratio and n is the order of the encoder) is demonstrated
experimentally for multi-loop and multi-stage £A modula-
tors.

1. INTRODUCTION

Analog-to-digital conversion (ADC) is basically the dis-
cretization operation of an analog signal in time and ampli-
tude. Following Shannon’s well known sampling theorem,
no information is lost in the time discretization operation,
if the input signal is bandlimited to some maximum fre-
quency frm and the sampling frequency f, is larger or equal
to the Nyquist rate 2fm, (operation I in Figure 1). In this
situation, the input signal can be uniquely recovered from
its samples taken at the Nyquist rate (operation IV and V
in Figure 1). However, some information is irreversibly lost
when the samples are moreover encoded in amplitude (op-
eration IT). Recent techniques of ADC use amplitude quan-
tization together with oversampling (choice of fi > 2fm),
that is, quantization of a redundant set of samples [1, 2].
Because we have an oversampled set of quantized samples,
a decoder (operation III) is used to take advantage of the
redundancy, that is, reduce the quantization error. This
decoding is the focus of our paper.

The classical way to analyze the effect of oversampling re-
dundancy on amplitude encoding is to consider the quan-
tizer as an additive source of error which is a white noise
independent of the input 1, 2]. This permits a linearized
analysis of the different encoding schemes (Figure 3) and
leads to the conclusion that the encoded signal is the sum
of the bandlimited input signal and an error signal which is
not bandlimited and spreads out over the whole frequency
range. This will be shown in Section 2. The redundancy
due to oversampling is then exploited by canceling the out-
of-band energy of the encoded signal, using a linear low-
pass filter. This is the classical, linear decoding scheme.
Although the white noise assumption is not theoretically
justified, linear filtering leads to a good performance which
is well predicted by the linear model analysis [1].

The basic question is whether the remaining in-band er-
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ror is really irreversible? To analyze this question, we look
at quantization from its basic definition as a determinis-
tic operator (Section 3), that is, as defining a partition of
the space of discrete-time signals. In oversampled ADC
(Section 4) we show that the information contained in the
encoded signal is a set of consistent estimates and that a
decoded estimate of the input is not optimal as long as it is
not consistent. We show that linear decoding estimates are
not necessarily consistent. Numerical simulations (Section
5) show that consistent estimates asymptotically reduce the
quantization error signal by 3 dB per octave of oversampling
over linear decoding estimates. Some analytical evaluation
done previously anticipated this result }3, 4, 5]. Finally, the
deterministic analysis gives principles for finite complexity
methods for non-consistent estimate improvement, which
approach the performance of consistent ones.

2. BACKGROUND ON OVERSAMPLED
ENCODERS

In oversampled ADC, there exists a large number of differ-
ent encoding schemes [2]. We present here the basic struc-
tures which underline these schemes and will be sufficient
for the presentation of our deterministic approach in the
next sections.

The simplest version of encoding consists in the individual
quantization of the input samples. We call it simple encod-
ing. The transfer function of a quantizer is (in z-transform

notations):
C(z) = X(z) + E(2), (1)

where X (z), C(z) and E(z) are respectively the input, the
output and the quantizer error signal. With the white noise
assumption, the linear decoding mean square error (MSE)

is equal to T%'zﬁy where ¢ is the quantization step size and
R= -5%: is the oversampling ratio.

Predictive encoders are more sophisticated encoders includ-
ing a feedback loop, as shown in Figure 3(a), in order to
minimize the amplitude of the input Ax to the quantizer.
For a quantizer of given complexity, this allows the use of
a smaller step size ¢. The two built-in filters H and G are
chosen so that the transfer function of the whole encoder in
the linearized approach is of the type (1), where E(z) is the
error generated by the built-in quantizer. It can be shown
[1] that this is verified with the following constraint:

H(z)=1+0G(2). (@)

The most popular example of predictive encoder is the A
modulator where H is an integrator, leading to

and G(z) = = (3)
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Figure 1: Block diagram of oversampled ADC

Currently, the most successful type of encoders are the
noise-shaping encoders. They are derived from predictive
encoders by putting the filter H in front of the feedback
loop, as shown in Figure 3(b), while the constraint &2) is
maintained. When taking the choice of H and G of (3),
we obtain the 1°* order ZA modulator. In the general case
of noise-shaping encoding, H is typically an integrator and
the input of the quantizer is no longer of small amplitude.
However, it can be shown [1] that the constraint (2) implies
the following relation:

C(z) = X(2) + H ' (2)E(2). (4)
Typically, H™! is a differentiator and filters out the low fre-
quency components of the error signal Ex (in 1** order £4,
H~'(z) = 1—2z71). In the classical approach, although the
total variance of Ejx is large, its in-band portion is reduced
by the “shaping” function H~!(z). With the white noise
approach [1], the linear decoding MSE decreases with R at
the speed O(R~(®*"t1)) in the case of n*" order multi-loop
TA modulation. Multi-stage £A modulators of order =,
described in [2], also achieve this MSE performance.
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Figure 2: Simple encoding. (a) Quantization. (b) Additive
error source model.
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Figure 3: Encoding using two filters H and G satisfying the
constraint (2). (a) Predictive encoding. (b) Noise-shaping
encoding.

3. DETERMINISTIC ANALYSIS OF

ENCODING

In practice, a finite number N of samples of the input signal
is processed through the encoder to give a quantized signal
which is another sequence of N points. The determinis-
tic approach of encoding consists in analyzing the encoder
as a many-to-one mapping from the space of N-point se-
quence R” into a discrete subset of R”. When a sequence
X = (X&)k=1,..,~ is only known by the encoded sequence
C = (Ck)k=1,...,N, the exact information we have about X
is that it belongs to the inverse image of C through the
encoding mapping. This inverse image is a whole subset
of RY, denoted by C(C). We call its elements the consis-
tent estimates of X. In other words, C(C) is the set of all
signals of R" having the same encoded signal C as X.

In the case of simple encoding, the many-to-one mapping is
reduced to the quantization operation. In the case of single
sample sequences N = 1, whole intervals of R (quantiza-
tion intervals) are mapped into a discrete set of values of
R (quantization levels) (Figure 4(a)). A quantization level
¢ is typically chosen to be the center of the corresponding
quantization interval q~'[c]. When = € q~[¢], ¢ is a partic-
ular consistent estimate of z. In the general case of N-point
sequences, a quantizer is a many-to-one mapping Q of RY.
If Q[X] = C, the set of consistent estimates of X is:

¢(€) = Q~(c], (5)
where Q'I[C] is the inverse image of C through the map-
ping Q, that 1s:

Q'[C)={YeR" [/ Vk=1,..,N, Yreq '[C:]}.
(6)
This set is typically a hyper cube of R whose geometric
center is the quantized signal C.

This mapping analysis can be performed on predictive and
noise-shaping encoders as well. The operators H and G are
themselves mappings of RY denoted by H and G. We will
use the fact that H is a linear and invertible mapping, and
G is a strictly causal mapping’. From (2), we also have the
mapping relationship:

H=I+G, (7
where I is the identity mapping R~ . Using these properties,
we show in [6], in the case of predictive encoding, that:

¢(C) = (Q7'[B] - B) +C, where B=H'[C]. (8)
11n practice, the feedback loop of a predictive or noise-shaping

encoder necessarily has a delay. In our models, this delay is
included in G, not in Q
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In this relationship, B is the fixed signal obtained from C by
the inverse mapping H™* (see Figure 3(a)), and (Q~'[B] -
B)+C designates the subset Q~[B] successively translated
by the fixed signals —B and C. Since Q~'[B] is a hyper-
cube of RY and B is its center, C(C) is a hyper-cube of RY
with center C. For the case of noise-shaping encoding, we
show in [6] that:

cc)=H"[Q7'[c]-C]+C. (9)

In this relation, H™? [Q'1 C]- C] is the transformation
through H™?! of Q~}[C] — C, which is a hyper-cube cen-
tered on O (zero signal). Since H™' is a linear map-
ping, H-! [Q_I[C]—C] has the structure of a hyper-
parallelepiped in RY, no longer cubic, but still centered
on O. We conclude that in noise-shaping encoding, C(C) is
a hyper-parallelepiped of RN with center C.

Therefore, the deterministic approach leads to the following
proposition:
Proposition 1 The encoded signal has the geometric prop-

erty to be the center of the set of consistent estimates, re-
gardless of the type of encoder.

4. APPLICATION TO OVERSAMPLED ADC

In oversampled ADC, the discrete-time signals have the ex-
tra feature that they are the sampled versions of bandlim-
ited signals. Therefore, they belong to a subset V of RY
which is a subspace. In this situation, the encoder is a map-
ping from V to R". Also, when a signal X € V is known
by its encoded C, the exact information available about X
is: “ X € C(C)nVY . We call the elements of C(C) NV the
consistent estimates of X. This set can be represented
geometrically as shown in Figure 5.

This set has the particular property to be convex, since
C(C) and V are both convex. As a consequence, we have
the following property:

Proposition 2 If C is the encoded signal of X € V, an

estimate X of X which is not consistent, is not optimal,
since it can be theoretically improved by a convex projection
on C(C)NV.

This property is derived from the fact that projecting an
element on a convex set (which does not contain the ele-
ment) necessarily reduces its distance with any element of
the set (Figure 6).

In linear decoding, the estimate X is obtained from the en-
coded signal C by a cancellation of the out-of-band energy.
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Figure 4: Representation of quantization as many-to-one
mapping. (a) Single sample quantization. (b) Discrete-time
signal quantization.

(b)

Figure 5: Geometric representation of encoding information
in oversampled ADC and linear decoding scheme. (a) Sim-
ple and predictive encoding. (b) Noise-shaping encoding.

This is typically an orthogonal projection on the subspace
V. Therefore, the classical linear decoding has a geometric
representation as shown in Figure 5. The figure shows that

the projected estimate X does no longer belong to C(C).
This indicates that the estimate obtained from the linear
decoding scheme is not necessarily consistent and can be
improved.

In [3, 5], some analytical evaluation of the improvement
yielded by consistent decoding was given . For the case of
simple encoding, it was shown in that under certain condi-
tions on the quantization threshold crossings of the input
signal, the mean square error (MSE) of consistent estimates
decreases with R in O(R™?), instead of O(R™") for linear

decoding. In the case of n** order £A modulation, starting
on a certain model of quantization error signal, the order of
O(R~?"*+2)) was derived, instead of O(R=(?"*1)) in linear
decoding.

)

Figure 6: Geometric representation of Proposition 2
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Figure 7: Geometric representation of the one-step improve-
ment of a non-consistent estimate, on the example of the
linear decoding estimate.
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Figure 8: Numerical result of MSE reduction with respect
to the linear decoding MSE obtained by finite step decoding
improvement and consistent decoding approached by alter-
nating projections, in two-bit double-loop £A modulation.
The MSE is averaged over 600 periodic and lowpass signals
containing 7 non-zero randomly generated discrete Fourier
coefficients.

5. METHODS OF IMPROVEMENT OF
NON-CONSISTENT ESTIMATES

It is not necessary to look for a consistent estimate to ob-
tain an immediate improvement of a non-consistent esti-
mate. Indeed, if for example, X belongs to V but not to
C(C), as it is the case in linear decoding, a single projec-
tion on C(C? will lead to an immediate improvement, since
C(C) is itself a convex set and X € C(C) (see Figure 7).
This estimate can then be further improved by a second
projection on V (lowpass filtering). We call this operation
a one-step improvement of a non-consistent estimate. Al-
gorithms performing the projection on C’éC) were proposed
in [3, 6] for different types of encoders. This pro jection has
a very straightforward implementation in the time domain
in the case of simple encoding [3]. It is performed in a simi-
lar way in predictive encoding, since the expression of C(C)
in (8) is similar to (5) up to a signal translation. In the
case of noise-shaping encoders, algorithms for multi-loop
T A modulators were also proposed [6]. Figure 8 shows the
numerical results obtained from one to three steps of im-
provements performed on the linear decoding estimates, for
a 2 bit double-loop £A modulator.

In fact, from a result on alternating projections on convex
sets [7], iterating the one-step improvement infinitely will
automatically converge to a consistent estimate. We used
this property to approach a consistent estimate numerically

multl-stage sigma-delta modulators

single-stage 1

two-stage

. three-stage |

4 5 ;3 7 ) 9 10 11
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Figure 9: Comparison between the linear decoding MSE
and the consistent decoding (approached by alternating
projections) MSE, in single-bit single-loop, two-bit double-
loop and three-bit triple-loop £A modulation. The experi-
mental conditions are the same as in Figure 8.

by iterating the one-step improvement a large number of
times. Infinite iteration schemes have also been investigated
in [8], where the projection on V has been studied in partic-
ular. For double-loop A modulation, the result is plotted
in the same figure and shows an asymptotic improvement
of at least 3 dB per octave of oversampling. Also, the com-
parison between the absolute MSE of linear decoding and
consistent decoding (approached by alternating projections)
is shown in Figure 9 for multi-stage A modulators of order
one to three. It confirms the asymptotic improvement of 3
dB/octave, regardless of the order of the modulator. This

implies that the MSE is of the order of O(R~?"*2}), versus
O(R™®**1) in linear decoding.
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