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ABSTRACT 

This paper deals with the estimation properties of 
morphological filters in terms of edge localization and grey 
level contrast preservation in two dimensional spaces. It is 
shown that, at least in practice, a compromise between these 
two characteristics has to be done. In a first step, 
morphological filters are compared with linear and median 
filters. It is concluded that, an efficient edge localization can 
be achieved with morphological filters with reconstruction and 
not with median filters or with morphological openings or 
closings with structuring elements. In the case of strong 
noise, the good edge preservation provided by the 
reconstruction filters is obtained at the expense of the contrast 
estimation. In order to be able to tune this tradeoff, a new type 
of morphological filters, called filters with p a r t i a l  
reconstruction, are proposed and studied. 

1 INTRODUCTION 

The goal of this paper is to investigate the performance of 
morphological filters in terms of edge and contrast estimation. 
This study comes from the classical statement following which 
nonlinear filters are very good at localizing edges. In the case 
of one dimensional signal, the study reported in [ l ]  has 
investigated the edge and amplitude estimation properties of 
linear and median filters. This study concludes that a tradeoff 
exists between those two parameters and that the median filter 
is actually very good at localizing edges if it is used within a 
multiresolution structure. The multiresolution approach means 
that, instead of filtering the signal directly with a filter of 
window size n, one should use compositions of filters with 
increasing window size from one to n. 

The present study concentrates on the case of morphological 
and median filters for two dimensional signals. Note that the 
results for median filters in 2D cannot be directly extrapolated 
from those of 1D at least for the following reason: in lD, 
median filters preserve edges because their root (invariant) 
signals are pulses. In 2D, this is not true and for example a 
square is not a root signal of a median filter with a squared 
window. Therefore, its edges are not preserved by the filtering. 
This problem was quoted in [2] where edge preservation of 
median filters as well as morphological filters are studied. This 
study concludes that median or morphological filters such as 
opening, closing or open-close filters are not very good for 
2D edge preservation even if they are used within a 
multiresolution structure. However a "reconstruction" process 
which dramatically improves the edge preservation properties 
was used. Finally, it was mentioned that the grey level contrast 
of the image may not be preserved by the reconstruction 
process. This remark leads to the tradeoff discussed in [ 11. 

By contrast with [ 2 ] ,  which has a qualitative approach, this 
paper precisely quantifies the edge and grey level contrast 

estimation characteristics of morphological and median filters 
for various noise probability density functions (Laplacian, 
Gaussian and uniform). Special attention is paid to the 
problem of multiresolution structures to see when it is useful. 
Finally, the results motivate the definition of a new class of 
morphological filters based on partial reconstruction. 

The organization of this paper is as follows: the next section 
presents the basic notions involved in morphological signal 
processing and filtering. Then, section 3 is devoted to the 
quantitative assessment of the filters performances. 

2 MORPHOLOGICAL FILTERS 

This section briefly describes the morphological notions of 
interest for this study. More details can be found in [3]. The 
first part of the presentation is devoted to basic notions and 
structures. Then, the second part deals with morphological 
filters which will be studied in section 3. 

2 . 1  Basic not ions 

By contrast with linear signal processing which is based on 
the mathematical structure of vectorial space. mathematical 
morphology relies on a structure called complete lattice [ 5 ] .  
Basically, a complete lattice is a set of elements on which an 
ordering relation (5) has been defined. Moreover, each family 
of elements (Xi)  possesses a supremum (maximum lower 
bound) and an infimum (minimum upper bound). This study is 
concerned with input signals which are discrete grey level 
functions. The corresponding lattice relies on an order which 
is simply defined at each spatial position by the natural 
ordering between grey level values: two functions f,  g are such 
that f I g if for each spatial position x. f(x) 5 g(x). Moreover, 
in the case of discrete signal, the two laws, infimum and 
supremum, are respectively minimum and maximum. 

On this lattice, the first transformations to be defined are those 
preserving the structure, that is the ordering relation I ,  and 
commuting with one of the two laws. Note that this procedure 
is similar to that used in linear signal processing. In this last 
case, the basic structure is a vectorial space where the 
fundamental laws are the addition between two vectors and the 
scalar product. The first transformation to be defined is a 
transformation which preserves the space, that is which 
transforms a vector into a vector, and which commutes with 
the fundamental laws, that is: 

w (af+Pg) = a w ( f )  + P w (g) (1 1 

It turns out that the only transformation fulfilling eq.(l) is the 
convolution. In mathematical morphology. the same approach 
leads to increasing transforms, erosions and dilations: 

Preserve of the structure: 
These transformations are called increasing 

f 5 g => w ( f )  5 w (g) (2 )  
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Commute with Max: v(Max(f,g)) = Max(v ( f ) , ~  (g)] (3) 
These transformations are called dilutions 
Commute with Min: V(Min(f,g)) = Min(v ( f ) , ~  (g)) (4) 
These transformations are called erosions 

These equations lead to an infinity of erosions and dilations. 
For the sake of simplicity, only two examples of dilation (and 
erosion) are presented in the sequel: 

alation and erosion with t l m r i n e  element; . .  
If f(Xi) denote a signal and Mn a window or flat structuring 
element of size n, the erosion and dilation are given by: 

Erosion: E,(f)(xi) = Min( f(xi+k), kc  M,) (5  ) 
Dilation: 6,(f)(xi)= Max(f(xi-k), kc M,] 

More general definitions of erosions and dilations with non 
flat structuring element can be found in the literature [3]. Here, 
flat structuring elements are preferred because they 

preserve edges: this will be discussed in section 3. 
allow fast implementation: with flat structuring element, it 
is possible to define algorithms for the erosion and the 
dilation leading to a computation time which is 
independent of the size of the structuring element. 
are robust with respect to grey level changes: in particular, 
they commute with modifications of the grey level scale 
with functions such as log or square root. 

These two transformations are dual in the sense that: 
4( f ) = -  E d  - f ) ( 6 )  

Geodesic grey level dilation and erosion: 
The geodesic transforms [4] of a given function are always 
defined with respect to a reference function (section 2.2 will 
discuss the choice of this reference). The geodesic dilation of 
size one (that is the smallest size on the discrete space) is 
defined as the minimum between the dilation of size of the 
original function (f) and the reference function (r). The 
geodesic erosion is defined by duality: 

Geodesic dilation a n d  erosion of size one: 

dl)(f,r) = - &(I)( - f, - r) 
6(l)(f,r) = Min(&(f), r ]  (7) 

The justification of this terminology involving the notion of 
geodesy goes beyond the scope of this description and the 
reader is referred to [4] for more details. Geodesic dilations and 
erosions of large size are defined by iterations. For example, 
the geodesic dilation (resp. erosion) of infinite size, also 
called reconstruction by dilation (resp. erosion) is given by: 

Reconstruction by dilation a n d  erosion: 
+rec)(f,r) = tdm)(f,r) = ...6(')(...6(')( f,r) ..., r) 
cp(reC)(f,r) = dm)(f,r) = . ..E( 1 )(...E(' )(f,r). . . ,r) 

(8) 

Note that the reconstruction can be implemented very 
efficiently, in particular, avoiding any iterating process [ 5 ] .  

2 . 2  Morphologica l  f i l t e rs  

A morphological filter is any increasing and idempotent 
transformation. In addition, if the transformation is 
antiextensive (resp. extensive), it is called an algebraic 
opening  (resp. algebraic closing). Let us recall that: 

v is idempotent if for all f, y ( ~ ( f ) )  = V(f) 
v is extensive if for all f, f I v ( f )  
y~ is antiextensive if for all f, ~ ( f )  I f 

(9) 

holoeical oDeniUp and dosin& 
The most classical cases of opening and closing are those 
based on the composition of erosion and dilation with 
structuring element. They are called morphological: 

Morphological opening: yn = 6, E, (10) 
Morphological closing: (P, = E, 6, 

The opening (resp. closing) simplifies by removing the bright 
(resp. dark) components which do not fit within the structuring 
element. If the simplification has to deal with both bright and 
dark elements an open-close (Y,(P,) or a close-open ((~~7,) has 
to be used. None of these filters are self-dual (dual of itself), but 
in practice they approximately remove the same kind of 
information. Fig. 1 presents examples of filtering results with 
open-close filter together with linear and median filters. It 
clearly shows that none of these filters perfectly preserve 
contour information as discussed in [2]. To improve the 
contour preservation, reconstruction processes can be used. 

ODeninn and closinn bv reconstruction: 
The opening (resp. closing) by reconstruction of erosion 
(dilation) is defined as: 

Opening by rec. of erosion: (f),f) (11) 
Closing by rec. of dilation: (P( '~~)(&,  (f),f) 

Let us take the first filter as an example: y(rec)(~,  (0 ,~ .  The 
simplification is performed by the erosion which eliminates 
all signal components that are smaller than the structuring 
element. Then, the reconstruction process restores the contour 
of the components which have not been totally removed by 
the erosion. Note that the reference function (r) mentioned in 
2.1 is f itself. The effect of an opening by reconstruction 
followed by a closing by reconstruction can be seen in Fig. 2.a 
where the very good contour preservation property is clearly 
visible. The resulting image is much simpler than the original 
image, but the objects that are present are precisely defined. 

In fact, these filters can be generalized as follows: from any 
algebraic opening (y), an opening by reconstruction can be 
defined by thresholding: let Xt(f) denote the binary signal 
resulting from the thresholding of f at a grey level value of t. 
Consider now, for each t, the connected components Yt(f) of 
Xt(f) containing at least one point of Xt(y(f)). Then, the 
opening by reconstruction is defined as the grey level function 
obtained by stacking the Yt(f) for all t. It can be demonstrated 
that this new transform is an algebraic opening. In practice, 
the reconstruction process is implemented by geodesic 
dilation of infinite size of y(f) with f as reference (eq. (8)): 

Opening by reconstruction : rcrec)(y(f),f) (12) 
Closing by recons t ruc t ion :  cp(rec)(cp(f),f) 

In the case of strong noise, it may not be appropriate to 
reconstruct totally the contour of the objects since they are 
highly corrupted. In this case, the reference signal for the 
reconstruction process, that is f, may be smoothed by a small 
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opening Yk(f). This approach leads to a new class of 
morphological filters called filters with partial reconstruction. 

(13) Opening by partial  rec.: .Y(=')(E~ ( f ) , ~  ( f ) )  

Closing by par t ia l  rec.: gdrec)(gn (f),cm, ( f ) )  

Note that if k = n, these filters correspond respectively to the 
morphological opening and closing, whereas if k = 0, they 
become the opening and closing by reconstruction. Fig. 2 
presents the results obtained with an opening followed by a 
closing with partial reconstruction. The parameter k allows a 
smooth tuning of the reconstruction process from no 
reconstruction (k=n) to "full" reconstruction (k=O). 

2.3 Mult i reso lu t ion  f i l t e r ing  

These filters can be used within a multiresolution structure 
which states that instead of filtering with a filter of size n, one 
should use composition of filters of increasing size from one 
to n. In the case of open-close, this composition is known as 
alternating sequential filters. Let Mn denote a filter involving 
a window of size n (for example a square window encompassing 
n*n pixels), the multiresolution filter is given by: 

Multiresolution filter: Mn(Mn.l.. .Mk(. . .M .))) (14) 

3 RESULTS 

3 . 1  C r i t e r i o n  

To assess the relative quality of each filter, a synthetic image 
can be used. It is composed of several objects on a background 
and it has been corrupted by noise. The advantage of using a 
synthetic image is that the optimal edge localization and grey 
level value estimation results are a priori known. The image is 
first filtered and then segmented (several segmentation 
algorithms have been used. They give similar results). Once 
the image has been segmented, two parameters are measured: . iffeung . .  between t h  

actual and the oDtimal segmentation. This parameter is 
referred to as Edge Estimation. It essentially measures 
the property of contour preservation of the filter. 

inside of each segmented region and the backeround. This 
parameter, called Cont ras t  Estimation, assesses the 
filter efficiency to preserve grey level differences. 

. ce of the grev level differences between thg 

The contrast criterion is used because most of the filters of 
interest are not self-dual and give a biased estimation of the 
absolute grey level value. However, in very few applications 
the absolute grey level value is of interest (it requires an 
extreme and often unrealistic control of the processing chain 
from the illumination and acquisition to the final display). 
What is more generally required is that the difference between 
two grey level values is preserved or can be precisely 
estimated. This feature is the contrast criterion used here. 

Each measure is plotted on a bidimensional plane (Edge / 
Contrast). In fact, for each filter, a set of measures are obtained 
by modifying the window (or structuring element) size. This 
creates a curve in the Edge / contrast plane. Finally, several 
tests have been performed with various noise probability 
density functions such as Laplacian, Gaussian and uniform. As 
far as the criteria described above are concerned. the Gaussian 

case leads to intermediate results between the Laplacian and 
uniform cases. Therefore, only the results obtained with 
Laplacian and uniform noise are presented here. 

3.2 Exper imenta l  resu l t s  

The experimental results are reported on Fig. 3 to 4. They 
respectively represent the contrast versus the edge estimation 
in the case of Laplacian and uniform noise. Each curve 
represents the performances of a given filter when its window 
size changes. The best filters are characterized by a curve 
which is close to the origin of the plane. 

In the case of Laplacian noise, the best filter in terms of 
contrast estimation is the median filter. The morphological 
open-close filter does not provide better results. As expected, 
the linear filter does not give a good estimation of the edge 
location and its contrast estimation performances are close to 
that of the median filter. Both, median and morphological 
open-close filters achieve similar performances (better than 
the linear filter) in terms of edge localization. However, the 
open-close by reconstruction improves dramatically the edge 
preservation properties. Multiresolution filtering improves 
the performances mainly in terms of robustness with respect to 
the window size. There is no major change in the absolute 
performances. This observation contrasts with the results 
reported in [ l ]  where multiresolution filtering proved to be 
much better than direct filtering. The results reported here are 
typical of multidimensional signals and can be explained by 
the different root properties observed for 1 and 2D nonlinear 
filters (see introduction). For example, the corners of a 
triangle are not preserved by a median or a morphological 
filter with a squared window. 

In the case of uniform noise, the results are quite similar except 
that the open-close is better than the median filter for contrast 
estimation (in the case of Gaussian noise, both filters give 
equivalent results). As can be seen, the open-close filter has 
good contrast estimation properties whereas the open-close 
with reconstruction is better for edge estimation. This 
observation leads to the use of morphological filters with 
partial  reconstruction to achieve a compromise between 
edge and contrast preservation. Fig. 4 presents an example of 
such a filter where the partial reconstruction was obtained by 
setting k=n-1 in eq.(16). This filter has very attractive 
characteristics for applications where both good edge and 
contrast preservation is required. 
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Figure 1: Example of filtering 
a: Original, b: Linear filter 

e: Median filter, d: Open-close 
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Figure 4.b: Edge versus contrast estimation of filter 
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