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ABSTRACT 
The properties of a special class of overcomplete wavelet 
transforms specified in terms of an interpolation filter are 
investigated. The decomposition is obtained by filtering the 
signal with a sequence of increasingly selective lowpass filters 
with a dyadic scale progression. The wavelet coefficients are 
evaluated by simple subtraction of two consecutive lowpass 
components. The lowpass filter bank is implemented using a 
standard iterative multiscale algorithm. The impulse responses 
of the analysis filters are shown to be interpolated versions of 
each other. This structure is computationally very efficient; it 
requires a little more than 1/4 as many operations as other 
comparable wavelet-based algorithms. The corresponding filter 
bank provides a perfect coverage of the frequency domain which 
results in a trivial reconstruction procedure by summation. 
Extensions for the sub-sampled case are also presented. The 
decompositions associated with spline interpolation filters are 
considered in more details and some image processing examples 
are presented. 

1. INTRODUCTION 

The equivalence between perfect reconstruction filter banks and 
the discrete wavelet transform is now well recognized [l, 21. In 
essence, these techniques provide a compact subband (or 
hierarchical) decomposition of signals and are therefore ideally 
suited for applications such as image coding. Despite the 
obvious appeal of these non-redundant representations, it 
appears that the use of overcomplete decompositions such as the 
dyadic wavelet transform may be better suited for certain tasks 
in signal analysis and image processing [3]. Recent examples of 
applications include edge detection, noise reduction, as well as 
the representation of signals by their maxima in the wavelet 
domain. 

The simplest way to obtain such signal decompositions is 
to use a tree-structured algorithm by which each branch is 
divided into its lowpass and highpass components. This process 

typically requires the implementation of two complementary 
lowpass and highpass fdters (for a redundant representation, 
one uses the "21 trous" algorithm in which the filters are 
progressively expanded by insertion of zeros in-between taps 
[4]). Note that in the special case of an ideal lowpass fdter, the 
highpass component can, in principle. be obtained by simple 
subtraction. This principle is also used explicitly in the 
difference-of-gaussian representation. which is commonly used 
for edge detection [5]. 

In this paper, we will build upon this simple subtraction 
idea and investigate a general class of discrete dyadic wavelet 
transforms that takes full advantage of this property and 
therefore results in very efficient implementation. These 
representations provide a subband decomposition with a perfect 
coverage of the frequency domain. This property results in a 
simple reconstruction algorithm by summation of the individual 
components. In this sense, the present construction is related to 
the multiresolution representation of Saito and Bey& that uses 
the autocorrelation function of a Daubechies wavelet [6].  

2. THE BASIC DECOMPOSITION 

2.1 Definition 
The decomposition algorithm is based on the specification 

of a single filter h that satisfies the inferpolation property 
h(2k) = 6,. In the z-transform domain, this condition is 
expressed as 

We also impose the lowpass constraint: H(1)=2 =$ H(-1)=0. 
The corresponding highpass filter g is obtained by simple 
modulation 

+(H(Z) + H(-z)) = 1. (1) 

(2) G(z)=H(-z). 
Based on these prototypes, we construct a sequence of 
complementary lowpass and bandpass filters using the 
following recursive definition 

H(i)(Z) = tN(ZZU ) q i - , ) ( Z ) ,  (3) 

G(i)(Z) = fG(z2" )qi-,)(z), (4) 
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Fig. 1. Multibmd Cbaractaistics of the fdtas associated with the quintic 
spline inmpoIatox (c.f. Eq. (19) with ~ 2 ) .  

with the initial condition H(,,(z)  = 1. The subscript (i) 
represents the scale index. 

A discrete signal { ~ ( k ) } ~ ~ ~  is then characterized by its 
discrete dyadic wavelet transform (d( , ) , - - , ,d  (,), s(,)) , obtained by 
simple digital filtering (without decimation) 

= +i) * dk) (5 1 
(6) d(i)(k) = &i) * s(k) 

where h(;) and g(;) are the impulse responses of the filters 
defined by (3) and (4). respectively. The d(i)’s are the highpass 
wavelet coefficients (or details), while s(I) is the lowpass 
component at resolution (0 (the depth of the decomposition). 

2.2 Propert ies  

lowpass filter at resolution (13 is simply 
By iterating (3). one finds that the transfer function of the 

I 

H(,)(Z) = + n H ( z 2 - ) .  (7) 
j=1 

For the bandpass filter, we can use (4). (2) and (1) to derive the 

from which we deduce that 
I 

H(,)(Z>+CG(,)(z)= 1. (9) 
,=1 

This last equation essentially states that we have a full coverage 
of the frequency domain and that the representation can be 
viewed as a subband Signal decomposition (c.f. Fig. 1). 

The sequence of filters $0 specified in Section 2.1 defines 
an interpolation filter bank. The use of this terminology is 
motivated by the following remarkable property 

where the operator [Ilm denotes the decimation by a factor of m. 

&. (10) indicates that the lowpass filters at finer scales can be 
obtained by decimation of filters corresponding to coarser 
resolutions (plus an appropriate normalization). Conversely, one 
can think off the sequence h(i) as an enlarged interpolated 
version of h(;-,,), for i>j>O. 

[+,Il2, = 2-’+t-,). (10) 

Proof: We start by down-sampling h(;) by a factor of two and 
express this operation in the z-transform domain 

Fig. 2. Fast subband decomposition algorithm. 

[+,,],(k) * fi(i)(z) = 3(H(i)(Z1/2)+H(i)(-Z1/2)). 

f i ( J Z 2 )  = + f i H ( z q H ( Z )  + H ( - z ) ) .  

A(i)(zZ) = &H(Z? = +H(i-l)(z2), 

Next, we replace H(,)(z) by its expression in (7) which gives 

j=2 

We then use the interpolation condition (1) and obtain 

j=2 

for which we conclude that 

[+a3112 = 34i-1). 

This decimation process is then repeated U-1) more times to get 
the desired result. 0 
2.3 Fast algorithms 

iterative wavelet decomposition algorithm 
Using (3) and (8), it is straightforward to derive the fast 

(1 1) 
X(i)(k) = [+h]t2I4 *s(i-l)(k) i d(i)(k) = s(,-l)(k) - S(i)(k) 

where the operator [‘]Tm denotes the up-sampling by a factor of 

m. Note that the complexity of the algorithm, which is constant 
over all iterations, is essentially one fourth of that of the 
conventional approach (there is only one filter instead of two, 
and every other (even) filter coefficient is zero) The 
reconstruction algorithm is trivial and follows directly from (9) 

w = S ( i ) ( k ) + C d ( j ) ( k ) .  (12) 
j=l 

These properties result in a very efficient and simple 
implementation (c.f. Fig. 2). 

3. INTERPRETATIONS AND EXTENSIONS 

3.1 The underlying interpolation kernel 

consider the function of the continuous variable x, 

Instead of the discrete sequence h(;)(k), let us now 
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(p(i)(x) = 2' . qi)(k), k /2' I x < ( k  + 1) /2 ' ,  (13) 
which is piecewise constant on intervals of length 1/2~'. If the 
filter h satisfies appropriate regularity conditions, then the 
sequence of functions q&) converges to some continuous 

limit cp(x) [7, 81. This limit, if it exists, is a (non-orthogonal) 
scaling function in the sense that it satisfies the two-scale 
equation 

cp(x) = C h ( k ) q ( 2 x - k ) .  (14) 

@(f) = f i ( + H ( e l z q z - J ) ) .  (15) 

kEZ 

Its Fourier transform can be obtained from the infiite product 

j = 1  

A necessary condition for this convergence to occur is that H(z)  
has at least one zero at z=-1 (c.f. the lowpass constraint in 
Section 2.1) .  Because of the conditions initially imposed on h. 
the scaling function q ( x )  is an interpolation kernel; i.e. 
cp(k) = 6,.  Moreover, the sequence of filters h( , )  can be 

generated by sampling q(x) at the appropriate rate 

This result follows directly from the definition (13 )  and the 
discrete interpolation property (10). Finally, we note that the 
degree of smoothness (or regularity) of q ( x )  is controlled by the 
number of zeros of H(z)  at z=-1 [7, 81. 

An altemative procedure for constructing a symmetrical 
interpolation filterbank is to start with an orthogonal scaling 
@ ( x )  (in the sense defined in [9]) and construct the 
autocorrelation function q ( x )  = @(-x) * @ ( x ) .  The fact that the 
resulting cp(x) is a valid interpolation kernel is a direct 
consequence of the orthogonality of @(x) with its integer 
translates. The corresponding discrete filter h can be obtained by 
sampling q(x) at the half-integers 

This is precisely the approach taken by Saito and Beyklin who 
considered a decomposition associated with the autocorrelation 
function of a Daubechies wavelet [6]. 

3.2 Extensions for higher dimensional signals 
The extension of our approach in higher dimensions is 

based on (8) and does not use tensor products. Specifically, a 
single wavelet channel is computed at each step by subtraction 
of two successive lowpass components. The lowpass filtering is 
implemented by successive 1D filtering along the various 
dimensions of the data. This leads to a natural interpretation of 
the wavelet channels as pseudo-laplacians (assuming that the 
filter h is symmetrical) (cf. Fig 4). In this representation, 
contours are characterized by zero-crossings. This distinguishes 
our approach from the 2D dyadic wavelet transform of Mallat et 
aI. in which the wavelet components provide the x and y 
components of the gradient [3].  

q , ( k )  = +cp(k/2') .  (16) 

h(k) = q(k  /2). (17) 

Fig. 3. Perfect nconseucticm filter bank for a wavelet transform bascd 011 an 
interpolaticm filter. 

3.3 The sub-sampled representation 
Although the focus of this paper is on overcomplete 

decompositions, it is usually also possible to reconstruct the 
signal s(k )  from a sub-sampled representation. In fact, this is 
equivalent to considering the discrete wavelet transform with 
analysis filters h and g. Such a wavelet transform can be 
implemented through the critically sampled perfect 
reconstruction filter bank shown in Fig. 3. The first part of the 
synthesis procedure uses the same filters as the analysis section. 
The post-filter P ( z )  corrects for the fact that H ( z )  does not 
satisfy the standard quadrature mirror filter condition required 
for an orthogonal wavelet transform. The explicit form of P(z )  
is found by solving the perfect reconstruction equations, which 
yields 

8 
H(z)' + H(-z)' ' 

P ( z )  = 

Obviously, the system is reversible only if the filter P ( z )  is 
stable; i.e.. it has no poles on the unit circle. Note that the 
impulse response of this post-filter is usually infinite. In most 
cases, however, it can be implemented quite efficiently using a 
recursive algorithm (c.f., for example, [lo]). 

4. EXAMPLES 

A "good" filter prototype h should have a sufficient number of 
zeros at z=-1 to guarantee a certain degree of regularity of the 
underlying scaling function, and should also provide a good 
approximation of an ideal filter (subband decomposition). One 
possibility is to select an FIR filter; for instance, the auto- 
correlation of a Daubechies filter [6]. 

Instead, we chose to investigate the use of spline filters 
which have precisely the right properties. These filters are W 
but can still be implemented efficiently using the 
recursivealgorithm described in [ l l ] .  The transfer function of 
the polynomial spline interpolator of order 2p+l is given by 

where B;(z)  is the (FIR) transfer function of a B-spline of 

ordern. The corresponding scaling function is the cardinal (or 
fundamental) spline of degree 2p+ 1 .  Moreover, the spline 
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Fig. 4. Example of a subband decomposition obtained using a quintic spline intapolata @=2). 

interpolators converge to an ideal lowpass filter as p goes to 
infinity [12]. 
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