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ABSTRACT

We address the problem of efficient bit allocation in a de-
pendent coding environment. While optimal bit alloca-
tion for independently coded signal blocks has been studied
in the literature, we extend these techniques to the more
general dependent coding scenarios. Of particular inter-
est is the topical MPEG [1] video coder. We show how
a certain monotonicity property of dependent operational
rate-distortion curves, verified through MPEG simulations,
can be exploited in formulating fast ways to obtain opti-
mal and near-optimal solutions (in the R-D sense) for the
MPEG bit allocation problem.

1. INTRODUCTION

The topic of optimal bit allocation for independently coded
signal sets has been studied in the literature [2]. In this
work, we generalize the allocation problem to include de-
pendent coding blocks. By dependent coding environments,
we mean scenarios where the operational rate-distortion (R-
D) curves of some coding blocks depend on the particular
operating R-D point of other blocks (see Fig. 1). Typical ex-
amples include DPCM, the Laplacian spatial pyramid with
quantization feedback (which, along with bit allocation for
the spatio-temporal pyramid video coder has been analyzed
in [3]), and MPEG [1]. In this paper, we address the theory
of bit allocation in temporally dependent coding environ-
ments. In particular, the MPEG coder is covered in detail.
We formulate the optimal strategy for a special case of the
MPEG coder, and show how the Viterbi algorithm provides
the optimal solution to this case. We then point out the im-
portance of the monotonicity property in the R-D curves of
dependent coding blocks, and show how it can be exploited
to reduce computational complexity. Finally, we show how
the intuition gained with the special case can be used to
solve the general MPEG bit allocation problem.

2. DEPENDENT BIT ALLOCATION

We now address the general temporal dependency quanti-
zation problem of which MPEG [1] is an example. Fig. 2
shows the MPEG temporal dependency framework. Let us
first consider a 2-layer dependency as in Fig. 1. Shown are
the R-D characteristics for the first independent frame and
the second dependent frame. Our constrained optimization
problem (COP) is: what quantization choice do we use for
each frame such that the total distortion is minimized sub-
ject to a maximum total bit budget constraint?
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Figure 1: Operational R-D characteristics of 2 frames in
a dependent coding framework, where frame 2 depends on
frame 1. (a) Independent frame’s R-D curve. (b) Depen-
dent frame’s R-D curves. Note how each quantizer choice
for frame 1 leads to a different R, — D curve.

min [D1 (QI)+D2(Q1,Q2)] s.t. Rl(ql)+32(91,q2) < Rbudget'
91,92

(1)

This problem can be solved by introducing the La-

grangian cost J = D + AR corresponding to the Lagrange
multiplier A > 0 as in [2] as follows:

Ji(gr) = Di(q1) + X Ra(q), (2)
J2(q1,42) D2(g1,92) + A R2(q1,42), (3)

and considering the following unconstrained minimization
problem:

:\;111112[11((11) + J2(q1, 82))- O

Then, by a direct extension of Theorem 1 of Shoham and
Gersho in {2], the following result follows:

Theorem 1 If (g7,95) solves the unconstrained problem
of Eq. (4), then it also solves the constrained problem of
Eq. (1) for the particular case of Rbuager = [Ri(g1) +
Ra(q1,93))-

The above result implies that if we solve the uncon-
strained problem of Eq. (4) for a fixed value of A, and if
the total bit rate happens to be Riudget, then we have also
optimally solved the constrained optimization problem of
Eq. (1). Further, as X is swept from 0 to oo, one traces
out the convex hull of the composite R-D curve of the de-
pendent allocation problem. The monotonic relationship
between X and the expended bit rate [2] makes it easy to
search for the “correct” value of A for a desired Rpudger.
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Figure 2: Typical MPEG coding framework. éa) The
MPEG frames: the I frames are independently coded, the
P frames are predicted from previous I or P frames, and the
B frames are interpolated from adjacent I and/or P frame
pairs. (b) Temporal dependency in the MPEG framework.
Note that the B frames are leaves in the dependency tree.

Note how for the independent case (Ja(g1,92) = J2(q2)),
Eq. (4) becomes the familiar result of [2], where each frame
is minimized independently. Thus, the 2-frame problem be-
comes the quest for g7, ¢5 that solve:

Jlar) + h(e,63) =

gmiqn?[J;(q:)+ J2(q1,92)]  (5)

IT;iIl[J](Ql) + J2(q1, 92 (91))].(6)

where J2(q1,¢3(q1)) = minq;JDﬂql- q2) + AR2(q1,¢2)] is
the minimum Lagrangian cost (for quality condition A) as-
sociated with the dependent layer when the independent
layer is quantized with ¢1. See Fig. 1. Thus, for the de-
sired operating quality A, we find the optimal solution by
finding, for all choices of ¢ for the independent layer, the
optimal (¢3(g1)) which “lives” at absolute slope X on the
(dependent) R;-D; curve associated with g;.

By a simple extension of this result, it follows that
the optimal solution to our general N-frame depen-
dency problem consists in introducing Ji(g1,¢2,...,q.) =
Di(g1,92,...,¢:)+ARi(g1,q2,...,¢) fori = 1,2,..., N an
solving the following unconstrained problem for the “cor-
rect” value of A which meets the given Rpydger:

[Ji(q1) + J2(g1,q2) + . .. Inlqr,q2, ..

min —gn))- (7)

91.92,-,9N

We will show how to use the above results to solve the
general MPEG (with I,P,B frames as in Fig. 2) allocation
problem. As a first step towards this end, we begin with a
simpler special case of MPEG that is easier to analyze and
which provides the intuition for the more complex general
problem.

2.1. A particular case of MPEG: I-B-I

We consider a special case of MPEG having only I and B
frames (see Fig. 3), i.e. the predicted P frames of the more
general MPEG format are missing. The dependency tree is
shown in the form of a more compact trellis. The “states”
of the trellis represent the quantization choices for the inde-
pendently coded 1 frames (ordered from top to bottom in the
direction of finest to coarsest), while the “branches” denote
the quantizer choices associated with the two B frames.
The trellis is populated with Lagrangian costs (for a fixed
A) associated with the quantizers for each frame. Let us
focus on the I — By — B, — I, stage of the trellis. The
state nodes are populated with the costs of the respective |
frame quantizers J(g) = (D(g)+ AR(q)). Each (¢,7) branch
connecting quantizer state 1 of I; to quantizer state J of

P3

A

J(B;)+J(By) J(By)+J(BY J(B9+J(Bg

J=D(q)+A R(q) for each quantization “node” of the I frames.
J=min(D(q)+ R(q) ) for each quantization “branch” of the B frames.
For quality slope }, globally optimal TOTAL cost path obtained with Viterbi algorithm.

Figure 3: The I-B-I special case of MPEG. Finding an R-
D convex hull point corresponding to a A is equivalent to
finding the smallest cost path through the trellis. Each trel-
lis node corresponds to a quantizer choice for the I frames,
monotonically ordered from finest to coarsest, and is pop-
ulated with the associated Lagrangian cost. The branches
correspond to the B frame pairs, and are populated with
their minimum Lagrangian costs for the particular I frame
quantizer choices given by each branch’s end nodes. The
“dark line” path joins the smallest cost I frame nodes.
Monotonicity implies that all dashed line paths can be
pruned out.

I> is populated with the sum of the minimum Lagrangian
costs of the By and B; frames, i.e. with Jp, + Jp,, with:

Jp, = min[D(gp,) + AR(¢p,)] forI=1,2 (8)
as,

where the R-D curves for By, B, are generated from the
1,J quantizer choices for I, I, respectively. From Eq. (7),
it is clear that the optimal path is that which has the min-
imum total cost across all trellis paths. Since the inde-
pendent I frames “decouple” the B frame pairs from one
another, it is obvious that the popular Viterbi algorithm
(VA) [4] will provide the minimum cost path through the
trellis!

2.2. Complexity

The VA which provides the optimal solution is obviously
computationally intensive. An important point to be made
1s that the computational complexity is dominated by the
data generation phase, i.e. in the trellis population phase.
In order to ease the computational burden, we are therefore
interested, not so much in fast methods which approximate
the VA given the entire trellis (like the stack algorithm [4]),
but rather in methods which will eliminate the very need to
populate the entire trellis' We now examine an important
property which enables us to do exactly this.

3. MONOTONICITY

The key to obtaining a fast solution to the complex de-
pendent allocation problem of Eq. (1) is the monotonicity
property of the R-D curves of the dependent components
(frames). We now explain what this means. Consider the
example of 2 frames, with the operational R-D curve of the
second frame depending on that of the first (see Fig. 1).
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Figure 4: Pruning conditions obtained from monotonicity.
(a) Ji(i2) + J2(i2,7) is the minimum Lagrangian cost of
all branches terminating in node j. Therefore (see Lemma
1), the (i3,7) branch can be pruned. (b) J2(1,51)) is the
minimum Lagrangian cost of all branches originating from
node i. Therefore (see Lemma 2), the (2, j2) and the (3, ja)
branches can be pruned. (c) Diagram used for the proof of
Lemma 1.

The ordering of the quantizer grades is, as before, mono-
tonic from finest to coarsest. Then, the monotonicity prop-
erty holds if, for g1 and ¢z as the quantizer choices for the
I and P frames respectively:

(g1, 42) € L2(g1,92),  forqi <gqi, (9)
Stated in words, the monotonicity condition simply im-
plies that a “better” (i.e. finer quantized) predictor will
lead to more efficient coding, in the rate-distortion sense, of
the residue (whose energy increases as the predictor quality
gets worse). That is, the dependent frame’s family of R-
D curves will be monotonic in the fineness of the quantizer
choice associated with the parent frame from which they are
derived. See Fig. 1. Experimental results involving MPEG
verify this monotonicity property for all the cases that we
studied. Thus, monotonicity appears to be a realistic prop-
erty, which has favorable theoretical implications as well, as
we now describe.

3.1. Pruning conditions implied by monotonicity
The monotonicity condition stated earlier implies the fol-
lowing two pruning conditions in the quest for the optimal
path for the dependent coding problem. The first lemma
is associated with Fig. 4(a). As a reminder, the quantizer
states are ordered monotonically from finest to coarsest.

Lemma 1 If
L) + Jo(i,5) < I (@) + (', 5) for any i' > i, (10)

then the (i, 7) branch cannot be part of the optimal path
and can be pruned out.

Proof: We prove the lemma by contradiction. Assume
that (¢/,7) for any i’ > i is part of the optimal path (see
Fig. 4(c)). Let the optimal quantizer sequence path be
(#',7,k,...,1). But, by monotonicity. we have:

J3(i,j,k) S J3(i”jvk) (11)

Ji(i gk, 00

Summing up Egs. (10), 91), .. (12), we get the
contradiction that the total Lagrangian cost of the path
(4,4, k,...,1) is smaller than that of the optimal path
(¢ 5,k,...,0). O

< (kD) (12)

The above lemraa is associated with pruning branches
that merge into a common destination state. A dual re-
sult holds for the pruning of branches that originate from
a common source state, as stated below. The proof will be
omitted as it is similar to that of Lemma 1. See Fig. 4(b)
for the diagram associated with the following lemma.

Lemma 2 If J2(1,5) < J2(3,3') for any j' > j, then the
(1,5') branch cannot be part of the optimal path and can be
pruned out.

The two pruning conditions of Lemmas 1 and 2 can be
used to lower the complexity of the VA. In the special case
of MPEG of Section 2.1. (refer to Fig. 3), Lemmas 1 and
2 eliminate the need to consider the full trellis on which to
run the VA making it unnecessary to consider any paths
lying below the (dark line) path connecting the minimum
cost state nodes of the I frames. This is because any path
with excursions below the path connecting the minimum
cost state nodes (corresponding to the I frames only) can
be replaced by one which lies above this boundary, by mono-
tonicity. The reduction in complexity is due to the lack of
need to grow branches out of nodes that have been elimi-
nated so that it is not necessary to populate the fully con-
nected trellis.
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Figure 5: General MPEG “trellis” diagram extension of
Fig. 3. Here, the inclusion of the P frames prevents the
decoupling of the B frame pairs, and the entire tree has to
be grown. Note that each stage of the trellis is represented
by “vector” branches whose dimension grows exponentially
with the dependency tree depth.
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4. GENERAL MPEG BIT ALLOCATION

Having established the intuition behind dependent alloca-
tion and the power of monotonicity, we now evolve to the
more complex ggeneral) MPEG format of Fig. 5. The pres-
ence of the P frames extends the dependency tree depth,
and the decoupling between successive stages of the trellis
is lost. We can thus no longer resort to the Viterbi algo-
rithm, but must instead retain the entire tree, which grows
exponentially with the number of dependent levels. The
good news, however, is that the monotonicity conditions
still apply, and the pruning conditions of Lemmas 1 and 2
can aid in reducing complexity dramatically. As an exam-
ple, see Fig. 6 where we consider an I-B-P-B.P sequence of
MPEG frames and a choice of 3 quantizer grades for each
frame. While the exhaustive search would have us grow
as many as 363 Lagrangian costs, in our example, only 36
costs need to be grown, an order of magnitude reduction in
complexity with no loss of optimality if the monotonicity
conditions apply (as verified in our examples)! The com-
plexity reduction due to monotonicity is dependent on the
desired quality slope A, with higher quality targets achiev-
ing better reduction. In the limit, as X goes to 0, the mini-
mum cost path is always the one corresponding to the finest
quantizers and thus only a single “highest quality” path has
to be grown. Conversely, if A goes to oo the monotonicity
property provides no gain. See [5] for details.

4.1. Suboptimal heuristics

As pointed out, the amount to which the monotonicity
property can be exploited is A dependent, and may not
suffice for some applications. To this end, it is advisable
to come up with fast heuristics, which used in combination
with monotonicity, can approach the optimal performance
at a fraction of the complexity. In trying to formulate a fast
MPEG heuristic, it is necessary to consider some important
points: g]) the “anchor” I-frame is the most important of the
group of pictures and must not be compromised, ii} most
signal sequences enjoy a finite memory property, where the
influence of a parent frame diminishes with the level of its
dependency. The folllowing heuristic seems to work well:
(1) retain all paths that originate from each of the I frame
quantization states; (i) use a “greedy” pruning condition
(in combination with the monotonicity property) to keep
only the lowest cost branch (so far) at all other nodes in the
trellis. This heuristic, as shown in Fig. 7, leads to near op-
timal performance at a fraction of the computational cost.
See [5] for details.
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Figure 6: Tree pruning using the monotonicity property
(Lemmas 1,2). The numbers are the cumulative Lagrangian
costs for a typical example for A = 10. Branches pruned at
each stage are shown with dashed lines. In this example,
the number of R-D points generated is cut down from 363
(exhaustive) to only 36 with no loss of optimality.
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Figure 7: Tree pruning using monotonicity as well as a
“greedy” heuristic for the same conditions as those of Fig. 6.
The number of R-D points generated is now 24, at a slight
loss of optimality (total Lagrangian cost is 77.91 versus op-
timal cost of 77.24).
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