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ABSTRACT

Speaker adaptation methods for tied-mixture-based
phoneme models are investigated for text-prompted
speaker recognition. For this type of speaker recognition,
speaker-specific phoneme models are essential for verifying
both the key text and the speaker. This paper proposes
a new method of creating speaker-specific phoneme mod-
els. This uses speaker-independent (universal) phoneme
models consisting of tied-mixture HMMs and adapts the
feature space of the tied-mixtures to that of the speaker
through phoneme-dependent/independent iterative train-
ing. Therefore, it can adapt models of phonemes that have
a small amount of training data to the speaker. The pro-
posed method was tested using 15 speakers’ voices recorded
over 10 months and achieved a speaker and text verification
rate of 99.4% even when both the voices of different speak-
ers and different texts uttered by the true speaker were to
be rejected.

1 INTRODUCTION

We recently reported very efficient text-prompted
speaker recognition methods using only a limited num-
ber of training utterances for each speaker [1][2]. In text-
prompted speaker recognition, an arbitrary key text can
be used at each recognition, and the recognizer accepts the
input utterance only when it decides that the true speaker
correctly uttered the prompted sentence. Therefore, it is
unnecessary to worry about the system being fooled by
recordings of key words or sentences uttered by the reg-
istered speaker. In this type of speaker recognition, the
speaker verification and text confirmation require models
that accurately represent both speaker and phonetic in-
formation. Reference [2] compared methods that create
speaker-specific phoneme models and showed the effective-
ness of a method that was based on speaker-adaptation of
universal phoneme models (3-state 4-mixture continuous
HMMs) accomplished by estimating the mean values and
the weighting factors of the mixtures.

By incorporating ticd-mixture HMMs for universal
phoneme models, this paper extends the previous work
based on speaker adaptation ol universal phoneme models
for creating speaker-specific phoneme models. Tle tied-
mixture HMM is better than the continuous HMM for the
following two reasons. First, the tied-mixture HMM has a
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Figure 1. Main procedure of text-prompted speaker recog-
nition.

mixture of Gaussian components in which mean and vari-
ance values are tied across all the phoneme models, and
it can be used to estimate parameters efficiently. This
works very well when the amount of training data is small
[3]. Second, the speaker information accumulated over all
phonemes, which is used in text-independent speaker recog-
nition [4), can be represented by the tied-mixtures. There-
fore, speaker adaptation using tied-mixture HMMs is ex-
pected to be better than that using continuous HMMs for
text-prompted speaker recognition.

In our previous work, we used a speaker adaptation
method that was originally developed for speech recog-
nition (5], and it proved to be inadequate for speaker
recognition. The speaker-adapted phoneme models did
not have enough speaker information, and the perfor-
mance of the phoneme models was not good enough.
To solve this problem, we used the combination method
(2] of speaker-adapted phoneme models and a phoneme-
independent speaker model, which made up for the lack
of speaker information. The combination method had the
problem that likelilhood values for speaker verification and
text confirmation had to be measured separately. In our
new method presented in this paper, the combination is un-
necessary, and the likelihood values for both speaker verifi-
cation and text confirmation are evaluated simultaneously.
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2 TEXT-PROMPTED SPEAKER
RECOGNITION

The main procedure of text-prompted speaker recogni-
tion is shown in Figure 1. The system creates speaker-
specific phoneme models for each reference speaker in the
training phase. In the speaker and text verification, the
phoneme-concatenation model corresponding to the key
text is made, and the accumulated likelihood of the input
speech frames for the model is compared with a threshold
to decide whether to accept or reject the speaker.

Since the likelihood has a wide range for different in-
put speech data, it is difficult to set stable thresholds for
speaker and text verification using speech recorded at sev-
eral sessions using different texts. To set stable thresholds,
the likelihood value is normalized using a posteriori prob-
ability [2]. This normalization method was experimentally
compared with a similar method [6] based on the likelihood
ratio and shown to be more effective.

The a posteriori probability, which is used in the nor-
malization method, is given by

p(z(sc, t:) X p(sc, te)
22i 2gip(zlsi ;) x p(si 1)}
P($|3C: 1)

2i 2y plalsi b))

where s; is a speaker, and ¢; is a text; in particular s, is the
claimed speaker and t. is the prompted text. The p(si,t,)
is the simultaneous probability for speaker 7 and text 7, and
is assumed to be a constant for all combinations of speakers
and texts. The p(z|s., c) is the probability of the claimed
speaker’s HMM for the prompted text. Y, 3" p(z|s:, ¢;)
is approximated by the average of the n highest iikelihoods
by using parallel phoneme HMM networks for all registered
speakers including the claimed speaker.

p(SC: tclz) =

3 PHONEME DEPENDENT/INDEPENDENT
ITERATIVE SPEAKER ADAPTATION: PDI

3.1 Principle

In speaker recognition, a method that needs a large
amount of training data is unrealistic. However, when us-
ing only a small amount of training data, there can be some
infrequent or even zero-frequency phonemes (phonemes
that are not included in the training data), so it is difficult
to adapt the model parameters to the speaker. Although
it can be considered that the feature spaces for infrequent
phonemes are estimated from those for frequent phonemes
by using some assumptions about the geometric structure
of the feature spaces, the geometric structure differs from
speaker to speaker, so it will be very difficult to find effi-
cient assumptions for each speaker. On the other hand, if
universal phoneme models are directly used for infrequent
phonemes, input speech that includes such phonemes may
be mistakenly rejected since the speaker’s voice does not
necessarily fit the universal phoneme models.
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Here we investigate a new method, in which the model
parameters of even infrequent phonemes can be adapted
to a new speaker. We assume that the feature parameter
space for each speaker can be approximately represented
by the distribution of feature parameters accumulated over
several sentences. This assumption is based on our previ-
ous work [4] which indicated that such distribution repre-
sented by Gaussian mixtures or a VQ-codebook could be
effectively used for text-independent speaker recognition.
In the next section we introduce the procedure of our new
method based on this principle.

3.2 Procedure

Phoneme dependent/independent iterative speaker
adaptation (PDI) is a speaker adaptation method using
tied-mixture HMMs for phoneme models. In this method,
the feature space of the tied-mixtures is adapted to that
of the speaker by applying both phoneme-dependent and
independent training in series. There can be several types
of series. As one of the robust determination techniques
of HMM parameters when training data are insufficient,
the technique of deleted interpolation is well-known [7]. In
deleted interpolation, two (or more) models are trained sep-
arately, and the model parameters are determined by inter-
polating those models. However, it is very difficult to inter-
polate phoneme models and phoneme-independent speaker
models. For PDI, tied-mixtures are used as a common
component, and two different types of training are applied
to them sequentially. The phoneme-dependent training
corresponds to conventional speaker adaptation applied to
each phoneme model. In the phoneme-independent train-
ing, speaker information across all phonemes is used for
adapting the tied-mixtures, and the feature spaces of each
phoneme are shifted according to the distribution of feature
parameters across all the phonemes in the training data.
Therefore, even phoneme models for which the amount of
training data is small can be adapted to the speaker.

In the phoneme-dependent training, universal phoneme
HMMs are concatenated according to the sequence of
phonemes in the training text. The training speech data
is applied to the phoneme-concatenation HMM, and the
mean values and the weighting factors of the tied-mixtures
are estimated for each phoneme [5]. In this training, mod-
els for phonemes that are not included in the training data
are not explicitly adapted.

In the phoneme-independent training, a l-state HMM
is created using the tied-mixtures for each speaker. The
training speech data is used for estimating both the mean
values and the weighting factors of the mixtures character-
izing the 1-state HMM for each speaker. (The initial values
of the weighing factors are set to a common value for all the
mixtures.) The mean values of the tied-mixtures are then
replaced by those of the 1-state HMM for each speaker.
Since phoneme information is not used in this training, it
is not assumed that phonetic discrimination power is im-~
proved. However, it has the advantage that even a mixture
used in modeling a phoneme not included in the training
data can be shifted to the feature space of the speaker.
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Figure 2. Phoneme dependent/independent iterative speaker adaptation {PDI) procedure.

Table 1. Verification error rates (%). []: the error rate
using the likelihood normalization method.

session continuous | tied-mizture PDI
T1 2.1 [2.2 1.1 [1.6 0.8 [0.9
T2 25 (1.8 3.6 (1.0 3.0 0.3
T3 4.7 (2.3 5.0 |1.7 44 (1.0
T4 1.5 |4.6 1.5 (1.6 1.1 (0.9
[ Average | 2.7 [2.7] | 2.8 [1.3] [ 2.300.7] |

4 EXPERIMENTAL CONDITIONS

The database consists of sentence data uttered by 10
male and 5 female speakers. It was recorded in five ses-
sions (T0-4) over ten months. Cepstral coefficients were
calculated by LPC analysis with an order of 16, a frame
period of 8 ms, and a frame length of 32 ms. Ten sentences
from session TO were used for training, and five sentences
from sessions T1, T2, T3, or T4 were individually used for
testing. In the ten sentences for training, the texts of half
of them were the same for all speakers and all sessions, and
the other half differed from speaker to speaker and from
session to session. The sentences for testing were different
from those for training, and were the same for all speak-
ers and all recording sessions. 300 utterances (15 people
X 5 sentences x 4 sessions) were used for evaluation. The
average duration of each sentence was 4.2 s. The number
of phoneme models was 41. The tied-mixture HMMs were
3-state 256-mixture HMMs.

For PDI, phoneme-dependent/independent training was
carried as in Figure 2. (This series showed the best perfor-
mance under these experimental conditions.) For the pur-
pose of comparison, 3-state 4-mixture HMMs were used as
continuous HMMs. The HMM parameters were estimated
by using the Baum-Welch algorithm.

The performance of our method was evaluated by the
speaker and text verification error rate. The threshold was
set a posteriori to equalize the probability of false accep-
tance and false rejection. In these experiments, we also
used speech data of texts that differed from the prompted
texts but were uttered by the true speaker as data that
should be rejected. The likelihood values were calculated
using the trellis algorithm.

5 RESULTS

Table 1 lists the speaker and text verification error rates.
Here, “continuous” and “tied-mixture” means methods
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Figure 3. PDI vs. tied-mixture.

that create speaker-specific phoneme models by the conven-
tional phoneme-dependent training algorithm for phoneme
models using either continuous or tied-mixture HMMs.
The [] indicates the error rate using the likelihood nor-
malization method. For all methods, phoneme-dependent
training was iterated three times. (For PDI, phoneme-
dependent training was applied alternately, so the total
number of training iterations in the series was five.) These
results show that PDI is more effective than “continuous”
and “tied-mixture,” and that the likelihood normalization
method is very effective.

Figure 3 compares performances of PDI and “tied-
mixture” for different numbers of phoneme-dependent
training iterations. For PDI, the total number of training
iterations in the series was twice the number of phoneme-
dependent training iterations minus one. These results
show that PDI is more effective than “tied-mixture”, es-
pecially when using the likelihood normalization method.

6 DISCUSSION

6.1 Phoneme-dependent/independent
series

training

For PDI, additional experiments for several types of
phoneme-dependent/independent training series were car-
ried out. Table 2 lists the speaker and text verification




error rates. “D™” means that phoneme-dependent train-
ing was iterated n times. “ID"” means that phoneme-
independent training was applied first and then phoneme-
dependent training was iterated n times. “(/D)"” means
that the series of phoneme-independent and dependent
training was iterated n times. “D(I/D)"” is the same se-
ries as in Figure 2. These results indicate that when the
number of iterations for phoneme-dependent training is
fixed, the error rate is decreased by applying phoneme-
independent training for any series. The best accuracy,
99.4%, was obtained for D(ID)*.

6.2 Likelihood values of phoneme models

For PDI and “tied-mixture”, the likelihood value of in-
put speech for each phoneme model was examined as a
function of the frequency of each phoneme in the training
data. The phoneme for each input speech frame was de-
termined by its alignment using the Viterbi search. Before
the comparison between PDI and “tied-mixture”, the log-
likelihood values were normalized to the normal distribu-
tion N(0,1) for each method. The averaged differences be-
tween the likelihood values for each phoneme model by PDI
and “tied-mixture” were calculated and ordered according

Table 2. Verification error rates for several types
of phoneme-dependent/independent training series. D:
phoneme-dependent training, J: phoneme-independent
training.

No. of I
iterations 0 1 2 3 4
1 D 1D - - -
4.7 3.1
5| D7 DID | (1D} - -
3.2 2.5 2.7
D 3 D? 1D° D(IDy | (ID)® -
2.8 [1.3] | 2.7 2.3 [0.7] | 2.5 [1.3]
i | D - - DUDY [UD)
2.5 [1.1] 2.4[06] | 2.4
5 [ D° . ~ - DD
2.4 [1.1] 2.2 [0.6]

Table 3. Difference between the normalized log-likelihood
values of PDI and “tied-mixture”: L(PDI) — L(tied —
miziure).

sesston phoneme frequency order (low — high)
1st-10th | 11th-20th | 21th-30th | 31th-41th
T1 0.14 0.00 0.05 -0.07
T2 0.20 -0.04 0.03 -0.05
T3 0.23 -0.04 0.05 -0.06
T4 0.20 0.04 0.00 -0.07
[ Average | 0.19 | -0.01 | 0.03 | -0.06 |
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to the frequency of each phoneme in the training data.
Table 3 lists the averaged differences when the phoneme
frequency order was divided into four parts. The first part
“1st-10th” represents phonemes that are from the lowest to
the 10th-lowest frequency. These results show that for in-
frequent phonemes, the likelihood values of PDI are higher
than those of “tied-mixture” and vice versa for frequent
phonemes. This indicates that infrequent phonemes are
more effectively adapted to the speaker using PDI than
using “tied-mixture”.

7 CONCLUSIONS

A new speaker adaptation method called PDI has been
developed by using tied-mixture-based phoneme models
for text-prompted speaker recognition. PDI is more ef-
fective than the conventional methods. It uses the ad-
vantage of the tied-mixture HMMs, which can represent
speaker information accumulated over all phonemes in the
tied-mixtures. The phoneme models made by PDI can,
therefore, be used simultaneously for speaker and text ver-
ification. We also showed that the likelihood normalization
method is very effective. PDI achieved a speaker and text
verification rate of 99.4%.

For future work, we plan to investigate the geometric
structure of the feature spaces for phonemes in order to
estimate the feature spaces for infrequent phonemes from
those for frequent phonemes.
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