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ABSTRACT 

In this paper we present a novel scheme for phoneme recog- 
nition in continuous speech using inhomogeneous hidden 
Markov models (IHMMs). IHMMs can capture the tempo- 
ral structure of phonemes and inter-phonemic temporal re- 
lationships effectively, with their duration dependent state 
transition probabilities. A two stage IHMM is proposed to 
capture the variabilities in speech effectively for phoneme 
recognition. The first stage models the acoustic and du- 
rational variabilities of all distinct sub-phonemic segments 
and the second stage models the acoustic and durational 
variability of the whole phoneme. In an experimental eval- 
uation of the new scheme for recognizing a subset of al- 
phabets comprising of the most confusing set of phonemes, 
spoken randomly and continuously, a phoneme recognition 
accurary of 83% is observed. 

1. INTRODUCTION 

The recognition of phonemes accurately in continuous 
speech is yet a difficult problem. Acoustic variability due 
to coarticulation and high variability inherent to some 
phonemes are some of the important causes of difficulty in 
phoneme recognition. Phonemes such as stop consonants 
and semi-vowels are the commonly misclassified ones be- 
cause of their short duration and non-stationarity. Stop 
consonants have different spectral properties in their sub- 
phonemic segments i.e. in the closure and release. Vowels 
are highly affected by context in their onset and cessation 
regions compared to the steady regions. Therefore, to char- 
acterize phonemes accurately, the distinct sub-phonemic 
segments of each phoneme have to  be accounted separately 
by modeling their acoustic and durational variability. Fur- 
ther, the temporal relationships between the sub-phonemic 
segments have also to be: captured to distinguish some dif- 
ficult phonemes. Addit,ional knowledge, such as bigram 
transition probabilities between phonemes and durations of 
phonemes if incorporated into the recognizer, it  will con- 
tribute to achieve better recognition performance. 

The problem of phoneme recognition in continuous 
speech using HMMs has been addressed earlier by sev- 
eral researchers. Levinson et  al.,[l] have used a single 
large continuously variable duration hidden Markov model 
(CVDHMM) with the number of states equal to number 
of phonemes in the vocabulary. Here, each state models 
both the acoustic variability and durational variability of 

each phoneme. The maximum likelihood (ML) state se- 
quence of this CVDHMM gives the recognized phoneme se- 
quence. The limitation with this approach is that a single 
CVDHMM state is characterizing a whole phoneme. Earlier 
we have discussed that many phonemes have distinct sub- 
segments, with unique temporal relationships. Through 
experiments, we have found that highly non-stationary 
phonemes cannot be effectively modeled by a single state, 
since a single state can model only a stationary signal wit,h 
minor fluctuations. Also, the distinct temporal structure of 
the acoustic spectra of the phoneme is not characterized by 
a single state. Levinson et  al, achieved a reasonable perfor- 
mance because of the external knowledge incorporated into 
the model, such as phoneme duration and phoneme bigram 
transition probabilities. In another experiment of phoneme 
recognition, Lee et al.,[2] have reported better performance 
for phoneme recognition by using a large network of sepa- 
rately trained phonemic HMMs. As before, the maximum 
likelihood state sequence of this network gives the recog- 
nized phoneme sequence. In this model, each HMM repre- 
senting a phoneme had a multi-state fixed structure with 
three observation probability distributions, each modeling 
the acoustic variability of a sub-phonemic segment. Even 
though the acoustic variability is thus characterized better 
the durations of the phonemes and the temporal structure 
of phonemes are not modeled accurately. One of the rea- 
sons for this is the inherent geometric distribution of the 
state duration probability of the HMM states. This system 
if implemented using IHMMs in place of HMMs and also 
incorporate a phoneme duration postprocessing, it should 
yield better results. 

In this paper, we present a novel scheme of phoneme 
recognition in continuous speech using a two stage in- 
homogeneous hidden Markov modeling approach. This 
scheme models the acoustic and durational variability of 
sub-phonemic segments and also of the whole phonemes in 
an unique way, capturing the temporal structure of speech 
effectively. The proposed new scheme is discussed in section 
2. In section 3, we present the experimental evaluation of 
the scheme. Conclusions are given in section 4. 

2. TWO STAGE IHMM MODEL OF SPEECH 

The most successful HMM based phoneme recognizer [?I 
comprises explicit inter-connection as a large network of a 
large number of HMMs specifically trained for the individ- 
ual phonemes. This large network does not characterize 
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the continuous speech strncturc as crffectivdy as a single 
large HMM trained using continnous speech sentences. This 
is because in a single large HMM (.he Markovian property 
models the marticulation effects and talker variability much 
better when trained nsing continuous speech. However, a 
larger HMM should be bet,ter initialized to be sensiiive to 
all distinct acoust.ic ~wol~ert  ies. Further, all the parame- 
t,rrs of this HMM are dctermined automatically through 
ML training without maiinal intervention as done in other 
methods [I,’2]. The ML state sequence of such a large HMM 
reflects the consistenc-y of the phoneme segments in con- 
tinuous speech. However, these st,ate sequences could be 
easily mapped to the corresponding phonemes using a sec- 
ond HMM. The second HMM has the advantage of focusing 
on these differences in the state sequences that differentiate 
phonemes. The second HMhl could also incorporate phone- 
mic constraints, snch as duration and bigrani probabilities, 
whereas the first stage focuses on sub-phonemic properties. 
I t  is found that IHMkls are effective in realizing these prop- 
rrties. 

2.1. Inhomogeneous HMM 
Inhomogeneous HMMs [3], are more general and hence bet- 
ter suited to  model the state duration probability distribu- 
tion of the speech signal, compared to the ordinary (homo- 
geneous) HMMs and hidden semi-Markov models (HSMMs) 
[4]. In homogeneous HMMs. the inherent state occupancy 
probability follows a geometric distribution, which is not ap- 
propriate for speech evenss such as phonemes. In HSMMs, 
t,he self loop transitions of the states are removed and a sep- 
arate duration probability distribution is attached to each 
state lo  model the duration of the speech event to which the 
state is mapped. Inhomogeiieous HMMs model the state 
occupancy nsing duration dependent state transition prob- 
abilities. The transition probabilities are not represented 
as a,,’s but. as a,,(d)’s, ( 1  5 z , ]  5 N;1 5 d 5 D). The 
transition probabilities depend on the duration d already 
spent in the originating s t a k  i. ‘Therefore, each state has a 
matrix of transition probabilities to all other states, for dif- 
ferent time instants, until a maximum duration limit D. For 
duration d >_ D ,  the transition probability a, , (d)  = a;,(D).  
The probability of state occupancy is accurately modeled 
for d 5 D, and it follows a geometric distribution be- 
yond the dnration D. Therefore t,he limit D on transition 
probabilities is fixed greater than the average duration of 
the speech segments modelrd b y  the state. IHMMs not 
only model the state occupancy more effectively than the 
HSMMs nsing duration dependent self loop transition prob- 
abilities a , , ( d ) ,  but by nsing a , , ( d ) ,  the duration dependent 
transition probabilities to other states, they can capture the 
temporal constraints between distinct sperch events mod- 
Fled by different states, 1,i.e , duration dependent bigram 
transition probabilities b d  ween various speech segments), 
which is not achieved by .tnv of t,he earlier models. 

2.2. Two Stage Modeling 
I n  the prescwt scheme, wc: use two large IlIMMs to model 
the speech in two stages. I his scheme effectively models 
the acoustic. variat,ions and t,lie temporal structures within 
the phonemes and their temporal relationships with other 
phonemes. Fig 1 .  gives an ovrrview of the new scheme. The 

first stage ergodic IHMM has number of states equal t.o the 
total number of distinct acoustic events (i.e., total nuni- 
her of distinct sub-phonemic segments), this will be about 
two to  three times the number of phonemes in t,he vocab- 
ulary. Each state is designed to model a distinct acous- 
tic segment: stop consonants have two distinct segments, 
closure and release; vowels have three distinct regions be- 
cause of contextual effects in its onset and cessation regions 
compared to the steady region. Each state in this IHMM 
models the acoustic variability and duration of one distinct 
sub-phonemic segment i.e., a distinct acoustic event. This 
IHMM is trained by first initializing each of the state obser- 
vation probabilities with the statistics of the VQ symbols 
corresponding to a distinct acoustic segment. Thr  segments 
are identified using the labeled training data. The initial 

es and transition probabilities are initialized 
to uniform values. The Baum-Welch reestimation proce- 
dure is used to train the IHMM using the VQ coded contin- 
uous speech sentences. Because this model is trained using 
continuous sentences it represents the coarticulation effects 
accurately, compared to the case of a network of HMMs rep- 
resenting continuous sentences. After training, the obser- 
vation symbol probability distributions learnt by each state 
tend to be peaky (with less variance), modeling accurately 
one acoustic segment for which it is initialized. Because 
of the specific initialization, the duration dependcmt transi- 
tion probabilities and the initial state occupancy probabili- 
ties are learnt correctly reflecting the temporal relationship 
of the sub-phonemic segments. The maximum likelihood 
state sequence of this IHMM for a speech VQ symbol sc- 
quence, reflects the segmental structure of speech without 
the acoustic redundancies. Since the initialization of states 
is done by distinct sub-phonemic segments of all phonemes, 
the segmental commonality between several phonemes leads 
to more than one state modeling the same acoustic event. 
This will be reflected in the state sequences of the IHMM, 
for a single acoustic event different state indices may ap- 
pear in state sequences, and state sequences of different 
phonemes may have some common state indices. Because 
of coarticulation and thlker variability, one segment of a 
phoneme may get drastically affected, resulting in a differ- 
ent state sequence for the same phoneme. Thus different 
phonemes may share a few states. These intra-class and 
inter-class variabilities are taken care of by modeling them 
using a second IHMM following the first IHMM. The second 
IHMM processes the state sequences of first IHMM to ab- 
sorb the variabilities and differentiate the phoneme classes 
by also nsing additional knowledge such as overall duration 
of phonemes and bigram transition probabilities. 

The second stage IHMM is also ergodic with the num- 
ber of states exactly equal to the number of phonemes in 
the vocabulary. Each state here models a single phoneme. 
The observation symbols of the second stage IHMM are 
the state indices of the first IHMM. The observation proba- 
bilities and the duration dependent transition probabilities 
of the second IHMM are found from the statistics of the 
first IHMM state sequences for the training data. Since the 
speech training set is labeled as phonemes, the statistics of 
the state indices of the first IHMM corresponding to each 
phoneme (i.e. for each state i n  the second IHMM) could be 

1-42 



directly found. The dii ration dependent transition proba- 
bilities in the second IIIMM, are determined by counting 
the event occurrences of transitions from one phoneme to 
another, after the first phoneme occurred for that duration. 
These transition probabilities model the overall duration of 
phonemes and also temporal relationships between them. 
There is no further training done for this IHMM. The state 
sequence of the second IHMM gives the recognized phoneme 
string. Even though i n  the second stage only one state is 
modeling a phoneme, the observation sequence coming as 
input to this stage is not as non-stationary as the original 
speech signal, because of the segmental decoding done in 
the first stage. Thus, different known causes of variabil- 
ity in phoneme representation is modeled without resorting 
to unduly large HMM networks, which provides the ad- 
ditional advantage of better trainability leading to better 
performance. 

The idea of two stage modeling has been explored by 
Pepper and Clements [5] using homogeneous HMMs. The 
formulation of their first stage HMM has a different mo- 
tivation than ours. In their HMM each state observation 
density function corresponds to a cluster in vector quau- 
tization, i.e., corresponding to a single VQ codeword, and 
not to any particular acoustic event such as sub-phonemes 
in our case. Thmefore, the output M L  state sequence of this 
model would have much more variability compared to our 
case. .41so, both the stiiges of modeling do not character- 
ize the dnrational properties of speech accurately because 
cif the use of homogeneous HMMs. This resulted in only a 
moderate performance improvement compared to a direct 
VQ based finite stat,e automaton [ 5 ] .  

3. EXPERIMENT 

Two experiments were conducted in this work. (i) Recogni- 
tion of a confusable subset of phonemes sliced from speaker 
independent TIMIT database; (ii) Phoneme recognition in 
speaker dependent continuously spoken random alphabet 
sequences. from the set, of “B”,  “D” ,  “G” and “T” alpha- 
bets. 

Becairse of the huge computatioiial and mem- 
ory requirement to implenient the new scheme on 
the full set o f  phoiiemes from TIMIT. an experi- 
ment 011 a subset. of phonemes is devised Thirteen 
phonemes were selected in this experimeut: they are 

and / j h / .  These are the most confusable phoneme subset 
containing voiced and unvoiced stop ronsonants, affricates 
and nasals. Thrse phonemes are sliced out from training 
and test set of dialect L’ of t,he TIMIT database. Feature 
\ector.i of 18 L I T  derived repstral coefficients are found 
on l6n1s analysis witidow every 8ms, lor all the utterances. 
These utterances are cocled using 128 VQ codewords. A 29 
state first stage I H M M  is trained, after each state is initial- 
ized to a distinct aroustic event as explained earlier. The 
state sequences of t,he entire training set using this IHMM 
are found. Since the training data is of sliced phonemes, and 
not continuous speech, the knowledge of phoneme bigram 
t,ransitions to be used i t i  second stage modeling cannot be 
found. Also within the selerted set of phonemes, no two 
phonemes occur in sequence i n  practice. Therefore a src- 

i b / ,  I d / ,  i g / ?   PI^ /U> /k/, / n i l 3  I n / ,  /ng/, I t h i ,  / d h / ,  / c h /  

ond stage IHMM with uniform transition probabilities to 
other states and duration dependent self loop probabilities 
reflecting the durations of the individual phoneme slices, 
was designed. An accuracy of 43% is observed on the test 
set data. This performance is low because the coarticulation 
effects are not modeled well in the limited implementation 
using the sliced phonemes rather than continuous speech. 
Also, the reduced model does not incorporate additional 
knowledge such as bigram probabilities. But this experi- 
ment demonstrates the feasibility of using a single model 
for all the classes in the first stage. To demonstrate the 
capability of the two stage modeling fully, a different ex- 
periment is performed using a continuous speech database. 
The second experiment, which tests the entire scheme ex- 
plained in the paper without any restrictions, is described 
below. 

3.1. Task and Database 
In this experiment the task consists of recognizing 
phonemes in continuously spoken alphabets from the set 
B,D,G and T. These alphabets are selected because they 
comprise of the most confusing stop consonants, whose 
temporal structure is important for their discrimination. 
There are totally 6 phonemes occurring in the database 
including silence, they are /b/,/d/,/jh/,/t/ ,/i/  and /sil/. 
The database consisted of 180 random alphabet sequences 
from the above set, sampled at 10 KHz, spoken by a single 
speaker. The entire database is labeled phonetically. Out 
of 180 utterances. 120 were used for training the VQ code- 
hook and the first stage IHMM; remaining utterances are 
used for testing. 

3.2. Preprocessing 
The speech database is analyzed in frames of 20 ms with 
an overlap of 10 ms between frames. From each frame of 
speech 10 LPC derived weighted cepstral coefficients [6], 
were found, for the entire database. A VQ codebook hav- 
ing 32 codewords was designed using the LBG algorithm 
[i]. All the speech sequences are later coded using these 32 
codewords. 

3.3. Two Stage Modeling 
An 18 state first stage IHMM is trained using Baum-Welch 
reestimation formulae, with proper initialization, as ex- 
plained earlier by allocating one state for each of the distinct 
sub-phonemic event. The ML state sequences for the en- 
tire training set is found using this IHMM. Then a 6 state 
second stage IHMM is designed using these state sequences 
and the labeling information provided with the training set 
as explained before. The same scheme is also implemented 
using HMMs in each of the stages for comparison with the 
use of IHMMs. The results of all the experiments are given 
in Table-]. It is evident that IHMM is capturing the tem- 
poral structure of speech more effectively than HMMs. Es- 
pecially, the two stage IHMM-IHMM combination models 
the speech most effectively. 

4. CONCLUSIONS 

A novel scheme of phoneme recognition in continuous 
speech using a two stage inhomogeneous hidden Markov 
modeling approach is presented. The first stage models the 
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Figure 1. Overview of phoneme recognition system using W s .  
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acoustic and durational bariabilities of sub-phonemic seg- 
ments and the second stage models the acoustic and du- 
rational variabilities of the whole phoneme. Thus, both 
the stages put together are modeling all the temporal rela- 
tionships of the speech effectively. From the experimental 
results it is clear that the proposed scheme using IHMMs 
is performing better compared to using HMMs because the 
temporal structure of speech is captured more effectively, 
which is crucial for discriminating stop consonants. 
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