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ABSTRACT

In this paper we develop a general multiscale stochastic
object detection algorithm for use in an automated inspec­
tion application. Information from a CAD model is used to
initialize the object model and guide the training phase of
the algorithm. An object is represented as a stochastic tree,
where each node of the tree is associated with one of the
various object components used to locate and identify the
part. During the training phase a number of model param­
ete~s are estimated from a set of training images, some of
which are generated from the CAD model. The algorithm
then uses a fast multiscale search strategy to locate and
identify the subassemblies making up the object tree. We
demonstrate the performance of the algorithm on a typical
mechanical assembly.

1. INTRODUCTION

One important component of an automated assembly sys­
tem is a fast, reliable automated inspection module. Auto­
mated assembly processes are often designed with the aid
of a CAD model of the manufactured part. This model
contains specifications for each of the subassemblies mak­
ing up the part as well as information describing how the
subassemblies fit together. The CAD model can provide
useful parameters and tolerances to the inspection module
which can then be tailored to a specific inspection task with
minimal human intervention.

We approach the inspection task as a problem in object
recognition, where we wish to detect and distinguish error­
free objects from those with assembly errors. In this work
we assume that our inspection system is provided with a sin­
gle monochrome image of each object to be inspected. We
also desire to minimize the amount of human intervention
required during the model building and training phase of
the algorithm, preferring to allow the CAD system to drive
the training. We feel that this approach is desirable to pro­
duce a general purpose algorithm that will work well under
a variety of conditions. Also, by using the CAD model to
guide the inspection process, the assembly and inspection
processes can be designed concurrentlyjt].

A number of authors have developed a variety of ap­
proaches to automated inspection, but many of them are
tailored to a specific application or do not rely on a proba­
bilistic object model[2]. In this work, we develop a consis­
tent stochastic approach to the problem of fast 2D object
d~tection and recognition in monochrome images. Since we
Wish to develop a general framework that will apply in a
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variety of situations, our approach will involve a number of
p~rameters that must be estimated from training data. We
will use a CAD model of the object to guide the design and
training of the object model.

We devise a multiresolution model of the object where
various object features are represented at different' resolu­
tions. We use some recent results in the study of multi­
scale random fields to aid us in our model development and
analysis[3, 4]. Object detection is then performed as a mul­
tiscale search procedure, generally progressing from coarse
object features to finer details. A similar search is employed
during the training phase, in which model parameters are
estimated. Finally, we implement this procedure on a gear
assembly to demonstrate its performance.

2. MULTISCALE OBJECT DETECTION

Our inspection algorithm models an object as a stochastic
tree, where the nodes of the tree represent various compo­
nents, or subassemblies, of the object. These subassemblies
contain the key features for discrimination and error detec­
tion. Nodes near the root of the tree typically model larger
structures that aid in locating the object while nodes fur­
ther down "zoom in" on the critical areas where assembly
errors are likely to occur[5]. The object model structure
is similar to the one we described in [6], but many of the
details concerning the data model are different here.

Suppose the nominal appearance of a subassembly is
given by a multiresolution template 9, which may also be
thought of as a deterministic parameter vector for the data
y. We will represent the position and orientation of the sub­
assembly as a state vector S. Since generally the subassem­
bly's position is not known, S will be considered random.
Finally, a set of state parameters q, is used to characterize
the allowed variations in the subassembly's position. Each
box in Figure 1 represents a single subassembly. The rela­
tionship among y, S, 9, and q, is shown for each subassem­
~ly, with arrows indicating conditional dependence. Ignor­
mg for the moment the dependence on other subassemblies
the relationship for a single subassembly can be written as

p(y, SI4>, 9) = p(YIS,9)p(SI4»·

Note that our probability notation only distinguishes be­
tween random and deterministic quantities through context.

W7 speed. the search for the subassembly by using the
multiresolution Haar transform representation for both the
image data and the template. Since the Haar transform rep­
resents horizontal and vertical frequencies separately the
template 91 at each resolution I actually consists of 'tem­
plates for both the horizontal and vertical components of
the data yr at that resolution. Successive resolutions of
the Haar .transform .are obtained by successive filtering and
subsampling operations, so at resolution I the data in each
component has been subsampled by 21+1

. The coarsest res-
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Figure 1. The object tree links together subassembly models

olution of the image or template is chosen so that the width
and height have no fewer than 4 samples.

We will search for the most likely position S of the sub­
assembly by starting at a coarse resolution and progressing
to finer resolutions. At each resolution 1 we use the image
data and templates {YI,ed = {Y",O" : k ~ I}. We use this
information at each position S and resolution 1 to compute
the log likelihood ratio between the hypothesis that the sub­
assembly is present and the hypothesis that it is not. IfPI (.)
is the density function assuming the subassembly is present
and po(-) is the density function assuming it is not, then we
define the log likelihood ratio
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Figure 2. Sample state space more finely at fine resolution
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with j E (v, h). Intuitively, this means we should choose the
hypothesis that gives a distribution with lower variance.

Using this log likelihood ratio as our "goodness of fit"
measure, we perform a multiscale search of the state space
to determine the position of the subassembly. The prior
term of (1) is used to restrict the search space. The al­
lowable state space is then sampled coarsely and searched
completely at coarse resolution. After this, the search pro­
ceeds generally from coarse to finer resolutions, with the
best matches at coarse resolution being expanded to the
next finer resolution, as illustrated for a one dimensional
state space in Figure 2. The state space is also sampled
more finely at these resolutions, allowing the search to grad­
ually refine its estimate of the subassembly's position.

Figure 3 shows how the search method is similar to a se­
quential likelihood ratio test that progresses in scale rather
than time. Acceptance and rejection thresholds determine
the stopping condition for the search. This search technique
is discussed in more detail in [6].

Figure 1 illustrates our object model, which links the var­
ious subassembly models in a tree structure. Nodes near
the root of the tree are typically associated with larger sub­
assemblies, while those further down model the finer details
of the object. The nodes are linked together in a top down
fashion, with the state of each node dependent on the state
of its parent node. Intuitively, this means that a node inher­
its the position and orientation of its parent node. There­
fore, the node states S form a Markov chain along any path
from the root to a leaf of the tree.

Figure 4 shows an example of an object tree for a gear
assembly. Each box represents a subassembly or node of
the tree. The level of each node is indicated by the number

Figure 3. A sequential likelihood ratio test terminates when
the log likelihood ratio exceeds the range [£1',,8]

where w~) is the set of pixels at resolution ~ I that lie
within the template at position S, and

E log e, ,

jEW~)

As in [6], we assume that S contains four conditionally inde­
pendent Gaussian components: vertical position; horizontal
position; scale factor; and rotation. _

We compute the data term of (1) by assuming the data set
{yl} consists of independent Laplacia~ samples. Each loc~­

tion of the template 0" contains a vertical band mean l'u(I),
a horizontal band mean I'h(i), and a scale U; assumed to be
common to that location for both the vertical and horizon­
tal Haar bands at resolution k, Thus, if the subassembly is
present, each data value can be normalized by subtracting
the appropriate mean and dividing by the scale factor. The
resulting values will then be identically distributed Lapla­
cian random variables. If the subassembly is not present,
the original data values are assumed to be identically dis­
tributed with zero mean. If we estimate the parameters of
the two Laplacians by their maximum likelihood estimates,
the data term of (1) becomes
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Figure 4. CAD generated synthetic image with object tree
marked.

of lines making up the box, and connecting lines indicate
parent-child relationships.

As before, we assume the state components of a given
node are conditionally independent given the state of its
parent node. We also assume each node has separate image
data associated with it. This is not strictly true, since sub­
assemblies can overlap. Overlapping subassemblies will gen­
erally be represented at different resolutions, however, since
larger subassemblies often use only coarse resolutions. Un­
der this assumption the only interaction between the nodes
is through the state linkages of the object tree. Thus, we
can generalize the log likelihood expression for node c with
parent node p as

{
PI (tidS(C) , 8~C») }

log
po (til)

+ 10gp(S(c)IS(p),t/J(c»).

We estimate the states for the tree using Bouman and
Shapiro's sequential MAP (SMAP) procedure[4]. Starting
at the root of the tree, we estimate the state of each node in
turn, passing the estimate to any child nodes as the parent
state. This procedure is explained in more detail in [6].

3. TRAINING (PARAMETER ESTIMATION)
The object model is trained using images of the object and
an initial tree structure as shown in Figure 4. As discussed
in section 4, the tree structure and initial parameters are
obtained from the CAD model. The model parameters
U~(c),t/J(c» are then estimated for each node c from a set
of training images using an iterative procedure. As in the
state estimation procedure, we estimate the parameters for
each node in turn starting at the root of the object tree.
Each iteration steps through the entire set of training im­
ages, estimating the position of the subassembly in each
image. The parameter estimates are then updated based
on the image data at these locations. After the parameter
estimates ha.ve converged, the node state for each training
image is passed to any child nodes as the parent state.

The estimation problem at each node can be viewed as a
"missing data" problem, where the missing data is the state
of the node S~c) for each training image n. We estimate the
parameters for each node via the well known expectation

maximization (EM) procedure, which is especially formu­
lated to deal with such problems. The resulting iterative
parameter updates are similar to those given in [6].

4. USE OF CAD MODEL FOR TRAINING

An automated assembly process is normally designed with
the aid of a CAD model of the manufactured object. The
CAD information can be used to generate synthetic images
of the object under a variety of workcell conditions and
component specifications[7]. In particular, the CAD model
is first used to select lighting conditions and an effective
viewing angle for the inspection. The model contains infor­
mation concerning the acceptable tolerances of each object
component, so training images can be generated with the
components of the assembly at the limit of their acceptable
dimensions. Relationships among the different components
deduced from the CAD model can aid in the design of the
object tree structure. These capabilities and the image gen­
eration procedure are discussed in more detail in [7].

We use the CAD model to first generate a nominal ini­
tialization image, as illustrated in Figure 4. The model
specifies the location and extent of the object and its com­
ponent parts, which are linked together to form the object
tree. This image is also used to generate initial parameter
estimates (8, J) for the training algorithm.

We then run the training algorithm on a set of two train­
ing images. One of the images is the synthetic initialization
image, for which the states are known. The other image is a
real picture of the manufactured object. After the training
algorithm has converged, the state estimates for the sec­
ond image are taken to be the actual states for that image,
and the new model parameters are used to initialize the
algorithm for a larger training set. The new training set,
which is a mixture of real and synthetic images, contains the
original two images as well as a number of other training
images. The initial parameter estimates are now charac­
teristic of both real and synthetic images, so the training
algorithm converges to good state estimates for all of the
training images. After training, the final model parameters
are stored and used for testing other real images.

We would like the object detection algorithm to be ro­
bust to changes in image brightness and noise level. In
particular, real images will contain much more noise than
synthetically generated images. In order to adjust for these
image differences, we use overall image statistics to estimate
a gain and noise parameter for each image. When comput­
ing log likelihood ratios during training or testing, the data
parameters (J are adjusted for each image according to these
parameters.

5. SIMULATION RESULTS

Figure 4 shows the initialization image used to define our
object tree, with the various nodes of the tree indicated
by the boxes. The algorithm first searches for the gear
assembly at coarse resolution. The resulting location is then
used to guide the search for the shaft, which proceeds to a
finer resolution. Finally, the shaft position guides the search
for the four pins.

The training algorithm is first run on only the initializa­
tion image and a single real image. Figure 5 illustrates the
final positions found for each subassembly in the real image.
The location of the root node is determined less precisely
than the other subassemblies since the search for this node
only proceeds at coarse resolutions.
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Figure 5. Real image used for training

Figure 6. Results for correctly assembled test image

The parameter estimates obtained from this small train­
ing set are then used to initialize the algorithm for a larger
training set. We ran the second stage of training on two dif­
ferent image sets. Training set A consists of the two original
images plus two additional real images. Training set B con­
tains the four images of training set A plus two additional
synthetic images. The object's three-dimensional position
and orientation changes slightly from image to image for
each training set.

Each training set gives rise to a different set of model pa­
rameters, which are used on two new test images. The final
results were comparable for the two training sets, but the
algorithm ran about 5 to 10 times faster using set A. Since
this training set consists primarily of real images, the as­
sociated data parameters match the test data more closely.
This results in a faster, more efficient search for the sub­
assemblies. The results shown here are for training set A.

Figure 6 shows the result on an image in which the object
is properly assembled, while Figure 7 illustrates the result
for an object in which one of the pins is missing. The algo­
rithm indicates the missing node by drawing a box with an
"X" through it at the expected node location. The test al­
gorithm locates the correctly assembled part in 6.5 seconds

Figure 7. Results for test image with a missing pin

of CPU time on a Spare 10 workstation. For the misas­
sembled part, the search for the missing pin traverses many
possible states before deciding that the node is missing. The
algorithm takes a total of 22.6 seconds for this part.

6. CONCLUSION
We have developed a multiscale object detection algorithm
for use in an automated inspection application. The algo­
rithm is quite general, using CAD information to guide the
model generation and training. After training, the algo­
rithm can be used to detect assembly errors.
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