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ABSTRACT

The concept of convex coding systems is presented together
with an application to image coding. A convex coder gives
the exact description of a convex set or a group of convex
sets in which the input signal is located. The reconstruc-
tion is left to the decoder whose role is to pick an estimate
in the intersection of these sets. Alternating projections
can be used to obtain such estimates which geometrically
lie in the intersection of the sets. Convex coding enables
us to supplement a criterion of “pleasingness” to the cur-
rent MSE-oriented criterion. This may be useful for very
high compression ratio. An example of convex coding which
utilizes the conventional DCT coder as one set is demon-
strated and the result shows that the blocking artifacts are
efficiently removed.

1. INTRODUCTION

Encoding a signal consists in giving an approximate discrete
description. In usual cases, the input signal is already dis-
crete in time and the approximation is due to the quantiza-
tion in amplitude. In more sophisticated encoding schemes,
such as DCT coding, an invertible linear transformation is
performed before quantization. However in any case, the
encoded signal is interpreted itself as a signal “estimate”
of the input signal, either directly or through some linear
transformation.

In this paper, we introduce a different approach of coding,
that we call convex coding. We ask the encoder, not
to give the description of an approximate version of the
input, but to give the description of a convex set which
well localizes the input signal. The reconstruction of the
input is then performed by the decoder whose role is to
pick an estimate in the encoded set. As already hinted
in [1], this is in fact what happens in traditional encoding
schemes. Hence convex coding is a generalization of coding
systems. The goal of convex coding is to design a set so
that its elements are a good representation of the input, in
the mean squared error (MSE) sense, or according to other
characteristics including human perception criteria.

One main contribution of convex coding is the possibility
to encode a set of signals gathering several characteristics
of different nature. Indeed, the set can be defined as the in-
tersection of several convex sets, each of which corresponds
to a desired characteristic and can be defined by a separate

encoder. An estimate can then be reconstructed by the
decoder thanks to the algorithm of alternating projections
onto convex sets (POCS) [2]. This technique has been espe-
cially developed in signal recovery and restoration [3, 4], and
more recently used in image compression post-processing,
especially to remove the blocking artifacts of DCT coding
[5, 6]. In the case of post-processing, there is no guarantee
that the input image exists in the intersection since one of
the sets is only an estimated set. In convex coding systems,
all of the sets contain the original signal by necessity, since
they were indeed encoded from it.

In this paper, we first present the concept of convex cod-
ing. Then, as an illustration, we propose an application
using two convex sets among which one is defined by the
classical block DCT encoder. The role of the second set
is to encode he information of smoothness of the original
image across the DCT block boundaries.

2. FORMULATION OF CONVEX CODING

Let us consider an N-dimensional Euclidean space, in which
distance is defined by MSE. Assume that an input signal f
is a vector in this space, that is, f e RV, Traditionally,
an encoder describes the input signal with a series of quan-
tization indices. These indices express a product space of
quantization bins, which is a subset of R”Y. The encod-
ing operation is therefore interpreted as the selection of the
subset which contains the input signal. Then, an encoding
operation C can be written as follows.

C:f—S;e{SCR"|feS}
while a decoding operation D is written as follows.
D:S; — f=6(5)

where G(-) denotes a centroid operation and f denotes a
reproduced signal. Obviously the centroid is an optimal
solution in a sense of MSE for uniform distribution. Al-
ternatively, convex coding describes an input signal with a
group of sets as follows.

C:fHSf:(qu,sz,...,Sh)

Sfe{(shszv"'vsz)y 51,52,-~"5;CRN|f€S;}

where 1 < ¢ < z. This implies that f ¢ N:_, Syi. Each
Syi is a subset of R™, which does not necessarily impose a
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constraint on every coordinate of f. A decoding operation
D is expressed as follows.

D;s,-—»feﬁs,.-

=1

As shown by the above equation, the decoded signal is not
unique. Reconstruction can be any vector within (;_, Ssi,
which is a set of possible estimates. Hence convex coding is
an application of set theoretic estimation [2].

When each set is convex, an element of the intersection
can be found by alternating projections. The projections
are, in general, iterated. Let f1 be an initial estimate for
signal f. When the projections onto 53, S2,...,S; are ex-
pressed by Py, Ps,. .., P;, we obtain the (m+1)-th estimate
by

fomt) = pp, ... P, f(™,
We can start with any (possible) estimate of the signal.
Unless our initial reconstruction is already located in the
intersection, we obtain a better reconstruction with each
projection in the MSE sense. The necessary condition for
the convergence is that the intersection is not empty, which
should be always true in convex coding.

In the case of scalar quantization, the shape of the en-
coded set is a hypercube or hyperparallelepiped and the
centroid is easy to obtain.

In a convex coding system, an encoder gives a group of
sets. Every set may not be a complete set to reconstruct
the signal but can be used as a certain constraint. Then
we obtain our reconstructed signal in the intersection of
the sets at the decoder side. Such intersection can have an
arbitrary shape.

In the case of VQ (Vector Quantization), the subsets can
be any Voronoi cells. For practical reasons, VQ is usually
performed in sub-dimensional signal spaces, such as blocks.
One possible “ultimate” coding system is an arbitrarily-
dimensional VQ, which may not be implementable. How-
ever convex coding can be one approach to the solution,
since it offers more flexibility to define arbitrarily shaped
subsets of the signal space.

The group of sets may form an overcomplete basis for the
space, which means that the coded data can be redundant.
The relation between the rate and distortion of the convex
coding system is geometrically interpreted as the relation
between the price to describe the sets and the size or vol-
ume of the intersection. Obviously our target is to obtain
the smaller intersection with the simplest description of the
sets. Furthermore, we can use other measurement criteria

than the MSE.
3. CONVEX CODING WITH A DCT CODER

One possibility of convex coding system is to define a set
based on an existing coding scheme such as a standard cod-
ing scheme, and to add another set in order to compensate
for some “weakness” of the existing scheme. We expect
that such a convex set can provide compatibility by ap-
propriate treatment. We propose one approach of convex
coding which uses the conventional DCT coding scheme as
one set and consider a way to solve a problem of blocking
effects.
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There are several studies on the reduction of blocking
effects such as [7], where block overlapping and low pass
filtering across the block boundaries are described; and
[5, 6, 8, 9], where several post-processing methods are de-
veloped, based on the features of band limitation, bounded
variation across the blocks, edge estimation and an image
model, respectively. Here we use a convex coding approach.
DCT followed by a uniform scalar quantizer amounts to en-
coding a hypercube in the signal space, since DCT is or-
thogonal and scalar quantization implies an independent
treatment for each coordinate. Let us call this set the DCT
set, which is defined by the quantization indices of DCT
coefficients. The additional sets should provide some of the
information which has been lost in the DCT set. Our mo-
tivation is to encode some missing information about the
transition between the blocks. Since the DCT basis already
defines a complete orthonormal basis of the signal space,
any additional data can be redundant. Therefore we do
not expect a significant improvement in the rate-distortion.
Instead, our target here is to introduce another criterion
which aims at reducing the blockiness.

First, we consider an expression of the transitions be-
tween the blocks. Assume that we have an original image
f and we use K x K block DCT. Let

T = [t-,,,t__("_l), Loy ton, oyt 2, ,t"_:l],‘

be a row vector of the image pixels, whose elements
t_n,t_(n~1);--.,t-1 belong to block b; while o, 11,...,tn—1
belong to block b;41. Block b; and block ;41 are adjacent
on the image. Suffix i denotes the i-th row within each
block b; and bj41, that is, 1 < ¢ < K. We call this vector
an i-th row transition vector between b; and bj41. Then, a
block boundary between b; and b;41 can be described by

Ty
T
T =

Tk
Next, we define a linear operator U as follows.
U=[ten ¥ (no1).--) %=1, %0, U1, U2,..

oy uu—-l]

Then an energy parameter B is expressed as

K 3
B= (M |v-T'}
=1

where the superscript ¢ means transposition. Assume that
the parameter B for the original image f is given. For
an estimate f, let us call T; the transition vectors. One
can easily show that the set of all estimates f such that
the corresponding transition vector satisfies the following
inequality

3

K
Y. luTif| <B (1)
i=1

is a convex set which contains the original signal. Let us

call this set the “smoothness set”. The smoothness set de-
pends on the choice of U. If we choose a Laplacian-like



operator, B represents the lack of smoothness around the
boundary. A criterion of smoothness with the Laplacian
operator has been utilized in the field of image recovery.
In [6], U = [1,—1] was used to remove the blockiness
of DCT coded images. The set was defined by using the
upper-bounded energy of the above operator’s output. The
projection onto this set was also described. The alternating
projections were used in a context of post-processing and
the upper-bound has not been encoded and therefore had
to be guessed. Here we encode the information about the
upper-bound as additional information block by block, with
a generalized linear operator. N

Let f be an estimate of f with energy parameter B. Its
projection onto the smoothness set is equal to f everywhere
except at the pixels of its transition vectors where we have
the following transformation

A SN (2 - ) i 2
=T+ (-1 5 )
where Q = Ut . U. Note that we simply keep T} in the case
where B is smaller or equal to B. The derivation of this
transformation is omitted due to space limitations. We can
derive the above discussion similarly for column vectors of
pixels.

It is necessary to encode the energy parameter B of the
original image for each block boundary. In this paper we
quantize B after normalizing it with the energy parameter
B obtained from a pure DCT decoded image. Obviously,
output levels larger than 1.0 are useless. In this quantiza-
tion, the output level is not the centroid of each quantiza-
tion bin but the largest value so that the condition in Eq.(1)
is still verified by the original image after quantization of
B.

The number of the pixels which are modified by the pro-
jection onto the smoothness set depends on the length of U.
However, when we project back the modified estimate onto
the DCT set, all pixels within some blocks can be modified
if the modified estimate is outside of the DCT set.

4. EXPERIMENTAL RESULTS

Experiments on deblocking were performed by computer
simulation. @~ We show an example on Lenna image
(512x512) which was processed with the method. U =
[1,2,3,4,—4,-3,—2,~1] was adopted as our operator to
define the smoothness set. U = [1,—1] was also tested,
which was proposed in [6], for comparison. Another set
corresponding to the constraint of the pixel intensity range.
This set has been used in the literature [4, 6]. We observed
that a few iterations were enough for convergence and that
the MSE decreased monotonically with the alternating pro-
jections as stated by the theory.

Figure 1 is the original Lenna (in part). Figure 2 is the
image after block DCT encoding at the rate of 0.41 bit/pel
and reconstruction according to the conventional method.
In Figures 3 and 4, we work at the same bit rate, however
0.32 bit/pel is used for the DCT encoding and 0.9 bit/pel
is used for encoding the smoothness set. The reconstructed
images are obtained by a DCT reconstruction at first, fol-
lowed by a single projection onto the smoothness set. The
operators U = [1,-1] and U = [1,2,3,4, -4, -3, -2, -1]

are respectively used in Figures 3 and 4. A comparison of
Figures 3 and 4 shows the difference in the effect of addi-
tional sets. We see that smooth area which covers several
blocks such as cheek is especially improved in Figure 4.
Both Figures 2 and 4 are coded at the same rate including
the bits for describing the additional set. These two pictures
show that our convex coding approach gives a less-blocky
reconstruction at the same rate.

5. CONCLUSION

We have presented a concept of convex coding. It is at-
tractive since we can include a supplemental criterion to
maintain “pleasingness” even at very low rate and since we
have a freedom to pick an estimate as we like. In this sense,
convex coding is related with a problem of image recovery
and restoration. We also expect that it has a potential for
a solution of extra-low rate compression with acceptable
quality.

An example of convex coding has been proposed, which
utilizes a DCT coding as one set. An additional set with
a linear operator was introduced to remove the blocking
artifacts. The proposed method is just one application of
convex coding and needs further optimization. Other types
of convex coding schemes are under study.

References

[1] N.T.Thao and M.Vetterli, “Deterministic analysis of
oversampled A/D conversion and decoding improve-
ment based on consistent estimates”, IEEE Trans. on
Signal Proc., to appear in Mar. 1994.

[2] P.L.Combettes, “The foundations of set theoretic esti-
mation,” Proc. of the IEEE, vol.81, No.2, Feb. 1993.

[3] D.C.Youla, “Generalized image restoration by the
method of alternating orthogonal projections,” IEEE
Trans.on CAS, CAS-25, No.9, Sep. 1978.

[4] H.Stark, Image Recovery: Theory and Application,
Academic press, 1987,

[5] R.Rosenholtz and A.Zakhor, “Iterative procedures for
reduction of blocking effects in transform image cod-
ing,” IEEE Trans. on CASVT, vol.2, No.1, March 1992.

[6] Y.Yang, N.P.Galatsanos and A.K.Katsaggelos, “Iter-
ative projection algorithms for removing the blocking
artifacts of block-DCT compressed images,” Proc. of
ICASSP, 1993.

{7] H.C.Reeve and J.S.Lim, “Reduction of blocking effects
in image coding,” Optical Engineering, vol.23, No.1,
January/February 1984.

(8] B.Ramamurthi and A.Gersho, “Nonlinear space-

variant post-processing of block coded images,” IEEE
Trans. on ASSP, vol. ASSP-34, No.5, October 1986.

[9] R.L.Stevenson, “Reduction of coding artifacts in trans-
form image coding,” Proc. of ICASSP, 1993.

V-583



Figure 3: A convex coding approach: result of alternating

Figure 1: Original Lenna (in part). projections using U = [1, —1].

Figure 4: A convex coding approach: result of alternating
projections using U =[1,2,3,4,—4,-3,-2,-1].

Figure 2: DCT reconstructed image.

V-584



